4627 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4627 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 | 
						|
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 | 
						|
 *
 | 
						|
 * Authors:
 | 
						|
 *    Paul Mackerras <paulus@au1.ibm.com>
 | 
						|
 *    Alexander Graf <agraf@suse.de>
 | 
						|
 *    Kevin Wolf <mail@kevin-wolf.de>
 | 
						|
 *
 | 
						|
 * Description: KVM functions specific to running on Book 3S
 | 
						|
 * processors in hypervisor mode (specifically POWER7 and later).
 | 
						|
 *
 | 
						|
 * This file is derived from arch/powerpc/kvm/book3s.c,
 | 
						|
 * by Alexander Graf <agraf@suse.de>.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License, version 2, as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kvm_host.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/preempt.h>
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <linux/sched/stat.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/anon_inodes.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/page-flags.h>
 | 
						|
#include <linux/srcu.h>
 | 
						|
#include <linux/miscdevice.h>
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/kvm_irqfd.h>
 | 
						|
#include <linux/irqbypass.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/of.h>
 | 
						|
 | 
						|
#include <asm/ftrace.h>
 | 
						|
#include <asm/reg.h>
 | 
						|
#include <asm/ppc-opcode.h>
 | 
						|
#include <asm/asm-prototypes.h>
 | 
						|
#include <asm/debug.h>
 | 
						|
#include <asm/disassemble.h>
 | 
						|
#include <asm/cputable.h>
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/kvm_ppc.h>
 | 
						|
#include <asm/kvm_book3s.h>
 | 
						|
#include <asm/mmu_context.h>
 | 
						|
#include <asm/lppaca.h>
 | 
						|
#include <asm/processor.h>
 | 
						|
#include <asm/cputhreads.h>
 | 
						|
#include <asm/page.h>
 | 
						|
#include <asm/hvcall.h>
 | 
						|
#include <asm/switch_to.h>
 | 
						|
#include <asm/smp.h>
 | 
						|
#include <asm/dbell.h>
 | 
						|
#include <asm/hmi.h>
 | 
						|
#include <asm/pnv-pci.h>
 | 
						|
#include <asm/mmu.h>
 | 
						|
#include <asm/opal.h>
 | 
						|
#include <asm/xics.h>
 | 
						|
#include <asm/xive.h>
 | 
						|
 | 
						|
#include "book3s.h"
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include "trace_hv.h"
 | 
						|
 | 
						|
/* #define EXIT_DEBUG */
 | 
						|
/* #define EXIT_DEBUG_SIMPLE */
 | 
						|
/* #define EXIT_DEBUG_INT */
 | 
						|
 | 
						|
/* Used to indicate that a guest page fault needs to be handled */
 | 
						|
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
 | 
						|
/* Used to indicate that a guest passthrough interrupt needs to be handled */
 | 
						|
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
 | 
						|
 | 
						|
/* Used as a "null" value for timebase values */
 | 
						|
#define TB_NIL	(~(u64)0)
 | 
						|
 | 
						|
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
 | 
						|
 | 
						|
static int dynamic_mt_modes = 6;
 | 
						|
module_param(dynamic_mt_modes, int, 0644);
 | 
						|
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
 | 
						|
static int target_smt_mode;
 | 
						|
module_param(target_smt_mode, int, 0644);
 | 
						|
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
 | 
						|
 | 
						|
static bool indep_threads_mode = true;
 | 
						|
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
 | 
						|
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
 | 
						|
 | 
						|
#ifdef CONFIG_KVM_XICS
 | 
						|
static struct kernel_param_ops module_param_ops = {
 | 
						|
	.set = param_set_int,
 | 
						|
	.get = param_get_int,
 | 
						|
};
 | 
						|
 | 
						|
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
 | 
						|
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
 | 
						|
 | 
						|
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
 | 
						|
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
 | 
						|
#endif
 | 
						|
 | 
						|
/* If set, the threads on each CPU core have to be in the same MMU mode */
 | 
						|
static bool no_mixing_hpt_and_radix;
 | 
						|
 | 
						|
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
 | 
						|
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
 | 
						|
 | 
						|
/*
 | 
						|
 * RWMR values for POWER8.  These control the rate at which PURR
 | 
						|
 * and SPURR count and should be set according to the number of
 | 
						|
 * online threads in the vcore being run.
 | 
						|
 */
 | 
						|
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
 | 
						|
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
 | 
						|
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
 | 
						|
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
 | 
						|
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
 | 
						|
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
 | 
						|
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
 | 
						|
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
 | 
						|
 | 
						|
static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
 | 
						|
	RWMR_RPA_P8_1THREAD,
 | 
						|
	RWMR_RPA_P8_1THREAD,
 | 
						|
	RWMR_RPA_P8_2THREAD,
 | 
						|
	RWMR_RPA_P8_3THREAD,
 | 
						|
	RWMR_RPA_P8_4THREAD,
 | 
						|
	RWMR_RPA_P8_5THREAD,
 | 
						|
	RWMR_RPA_P8_6THREAD,
 | 
						|
	RWMR_RPA_P8_7THREAD,
 | 
						|
	RWMR_RPA_P8_8THREAD,
 | 
						|
};
 | 
						|
 | 
						|
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
 | 
						|
		int *ip)
 | 
						|
{
 | 
						|
	int i = *ip;
 | 
						|
	struct kvm_vcpu *vcpu;
 | 
						|
 | 
						|
	while (++i < MAX_SMT_THREADS) {
 | 
						|
		vcpu = READ_ONCE(vc->runnable_threads[i]);
 | 
						|
		if (vcpu) {
 | 
						|
			*ip = i;
 | 
						|
			return vcpu;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Used to traverse the list of runnable threads for a given vcore */
 | 
						|
#define for_each_runnable_thread(i, vcpu, vc) \
 | 
						|
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
 | 
						|
 | 
						|
static bool kvmppc_ipi_thread(int cpu)
 | 
						|
{
 | 
						|
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 | 
						|
 | 
						|
	/* On POWER9 we can use msgsnd to IPI any cpu */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 | 
						|
		msg |= get_hard_smp_processor_id(cpu);
 | 
						|
		smp_mb();
 | 
						|
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 | 
						|
		preempt_disable();
 | 
						|
		if (cpu_first_thread_sibling(cpu) ==
 | 
						|
		    cpu_first_thread_sibling(smp_processor_id())) {
 | 
						|
			msg |= cpu_thread_in_core(cpu);
 | 
						|
			smp_mb();
 | 
						|
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 | 
						|
			preempt_enable();
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
		preempt_enable();
 | 
						|
	}
 | 
						|
 | 
						|
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
 | 
						|
	if (cpu >= 0 && cpu < nr_cpu_ids) {
 | 
						|
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
 | 
						|
			xics_wake_cpu(cpu);
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	struct swait_queue_head *wqp;
 | 
						|
 | 
						|
	wqp = kvm_arch_vcpu_wq(vcpu);
 | 
						|
	if (swq_has_sleeper(wqp)) {
 | 
						|
		swake_up_one(wqp);
 | 
						|
		++vcpu->stat.halt_wakeup;
 | 
						|
	}
 | 
						|
 | 
						|
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
 | 
						|
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* CPU points to the first thread of the core */
 | 
						|
	cpu = vcpu->cpu;
 | 
						|
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
 | 
						|
		smp_send_reschedule(cpu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We use the vcpu_load/put functions to measure stolen time.
 | 
						|
 * Stolen time is counted as time when either the vcpu is able to
 | 
						|
 * run as part of a virtual core, but the task running the vcore
 | 
						|
 * is preempted or sleeping, or when the vcpu needs something done
 | 
						|
 * in the kernel by the task running the vcpu, but that task is
 | 
						|
 * preempted or sleeping.  Those two things have to be counted
 | 
						|
 * separately, since one of the vcpu tasks will take on the job
 | 
						|
 * of running the core, and the other vcpu tasks in the vcore will
 | 
						|
 * sleep waiting for it to do that, but that sleep shouldn't count
 | 
						|
 * as stolen time.
 | 
						|
 *
 | 
						|
 * Hence we accumulate stolen time when the vcpu can run as part of
 | 
						|
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 | 
						|
 * needs its task to do other things in the kernel (for example,
 | 
						|
 * service a page fault) in busy_stolen.  We don't accumulate
 | 
						|
 * stolen time for a vcore when it is inactive, or for a vcpu
 | 
						|
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 | 
						|
 * a misnomer; it means that the vcpu task is not executing in
 | 
						|
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 | 
						|
 * the kernel.  We don't have any way of dividing up that time
 | 
						|
 * between time that the vcpu is genuinely stopped, time that
 | 
						|
 * the task is actively working on behalf of the vcpu, and time
 | 
						|
 * that the task is preempted, so we don't count any of it as
 | 
						|
 * stolen.
 | 
						|
 *
 | 
						|
 * Updates to busy_stolen are protected by arch.tbacct_lock;
 | 
						|
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 | 
						|
 * lock.  The stolen times are measured in units of timebase ticks.
 | 
						|
 * (Note that the != TB_NIL checks below are purely defensive;
 | 
						|
 * they should never fail.)
 | 
						|
 */
 | 
						|
 | 
						|
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&vc->stoltb_lock, flags);
 | 
						|
	vc->preempt_tb = mftb();
 | 
						|
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&vc->stoltb_lock, flags);
 | 
						|
	if (vc->preempt_tb != TB_NIL) {
 | 
						|
		vc->stolen_tb += mftb() - vc->preempt_tb;
 | 
						|
		vc->preempt_tb = TB_NIL;
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
 | 
						|
{
 | 
						|
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can test vc->runner without taking the vcore lock,
 | 
						|
	 * because only this task ever sets vc->runner to this
 | 
						|
	 * vcpu, and once it is set to this vcpu, only this task
 | 
						|
	 * ever sets it to NULL.
 | 
						|
	 */
 | 
						|
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 | 
						|
		kvmppc_core_end_stolen(vc);
 | 
						|
 | 
						|
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 | 
						|
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
 | 
						|
	    vcpu->arch.busy_preempt != TB_NIL) {
 | 
						|
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
 | 
						|
		vcpu->arch.busy_preempt = TB_NIL;
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 | 
						|
		kvmppc_core_start_stolen(vc);
 | 
						|
 | 
						|
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 | 
						|
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
 | 
						|
		vcpu->arch.busy_preempt = mftb();
 | 
						|
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Check for illegal transactional state bit combination
 | 
						|
	 * and if we find it, force the TS field to a safe state.
 | 
						|
	 */
 | 
						|
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
 | 
						|
		msr &= ~MSR_TS_MASK;
 | 
						|
	vcpu->arch.shregs.msr = msr;
 | 
						|
	kvmppc_end_cede(vcpu);
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
 | 
						|
{
 | 
						|
	vcpu->arch.pvr = pvr;
 | 
						|
}
 | 
						|
 | 
						|
/* Dummy value used in computing PCR value below */
 | 
						|
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)
 | 
						|
 | 
						|
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
 | 
						|
{
 | 
						|
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
 | 
						|
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
 | 
						|
 | 
						|
	/* We can (emulate) our own architecture version and anything older */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		host_pcr_bit = PCR_ARCH_300;
 | 
						|
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
 | 
						|
		host_pcr_bit = PCR_ARCH_207;
 | 
						|
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
 | 
						|
		host_pcr_bit = PCR_ARCH_206;
 | 
						|
	else
 | 
						|
		host_pcr_bit = PCR_ARCH_205;
 | 
						|
 | 
						|
	/* Determine lowest PCR bit needed to run guest in given PVR level */
 | 
						|
	guest_pcr_bit = host_pcr_bit;
 | 
						|
	if (arch_compat) {
 | 
						|
		switch (arch_compat) {
 | 
						|
		case PVR_ARCH_205:
 | 
						|
			guest_pcr_bit = PCR_ARCH_205;
 | 
						|
			break;
 | 
						|
		case PVR_ARCH_206:
 | 
						|
		case PVR_ARCH_206p:
 | 
						|
			guest_pcr_bit = PCR_ARCH_206;
 | 
						|
			break;
 | 
						|
		case PVR_ARCH_207:
 | 
						|
			guest_pcr_bit = PCR_ARCH_207;
 | 
						|
			break;
 | 
						|
		case PVR_ARCH_300:
 | 
						|
			guest_pcr_bit = PCR_ARCH_300;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check requested PCR bits don't exceed our capabilities */
 | 
						|
	if (guest_pcr_bit > host_pcr_bit)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	spin_lock(&vc->lock);
 | 
						|
	vc->arch_compat = arch_compat;
 | 
						|
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
 | 
						|
	vc->pcr = host_pcr_bit - guest_pcr_bit;
 | 
						|
	spin_unlock(&vc->lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int r;
 | 
						|
 | 
						|
	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
 | 
						|
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
 | 
						|
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
 | 
						|
	for (r = 0; r < 16; ++r)
 | 
						|
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
 | 
						|
		       r, kvmppc_get_gpr(vcpu, r),
 | 
						|
		       r+16, kvmppc_get_gpr(vcpu, r+16));
 | 
						|
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
 | 
						|
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
 | 
						|
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
 | 
						|
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
 | 
						|
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
 | 
						|
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 | 
						|
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 | 
						|
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 | 
						|
	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
 | 
						|
	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
 | 
						|
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 | 
						|
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
 | 
						|
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 | 
						|
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
 | 
						|
	for (r = 0; r < vcpu->arch.slb_max; ++r)
 | 
						|
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
 | 
						|
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
 | 
						|
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
 | 
						|
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
 | 
						|
	       vcpu->arch.last_inst);
 | 
						|
}
 | 
						|
 | 
						|
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
 | 
						|
{
 | 
						|
	return kvm_get_vcpu_by_id(kvm, id);
 | 
						|
}
 | 
						|
 | 
						|
static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
 | 
						|
{
 | 
						|
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
 | 
						|
	vpa->yield_count = cpu_to_be32(1);
 | 
						|
}
 | 
						|
 | 
						|
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
 | 
						|
		   unsigned long addr, unsigned long len)
 | 
						|
{
 | 
						|
	/* check address is cacheline aligned */
 | 
						|
	if (addr & (L1_CACHE_BYTES - 1))
 | 
						|
		return -EINVAL;
 | 
						|
	spin_lock(&vcpu->arch.vpa_update_lock);
 | 
						|
	if (v->next_gpa != addr || v->len != len) {
 | 
						|
		v->next_gpa = addr;
 | 
						|
		v->len = addr ? len : 0;
 | 
						|
		v->update_pending = 1;
 | 
						|
	}
 | 
						|
	spin_unlock(&vcpu->arch.vpa_update_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
 | 
						|
struct reg_vpa {
 | 
						|
	u32 dummy;
 | 
						|
	union {
 | 
						|
		__be16 hword;
 | 
						|
		__be32 word;
 | 
						|
	} length;
 | 
						|
};
 | 
						|
 | 
						|
static int vpa_is_registered(struct kvmppc_vpa *vpap)
 | 
						|
{
 | 
						|
	if (vpap->update_pending)
 | 
						|
		return vpap->next_gpa != 0;
 | 
						|
	return vpap->pinned_addr != NULL;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
 | 
						|
				       unsigned long flags,
 | 
						|
				       unsigned long vcpuid, unsigned long vpa)
 | 
						|
{
 | 
						|
	struct kvm *kvm = vcpu->kvm;
 | 
						|
	unsigned long len, nb;
 | 
						|
	void *va;
 | 
						|
	struct kvm_vcpu *tvcpu;
 | 
						|
	int err;
 | 
						|
	int subfunc;
 | 
						|
	struct kvmppc_vpa *vpap;
 | 
						|
 | 
						|
	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
 | 
						|
	if (!tvcpu)
 | 
						|
		return H_PARAMETER;
 | 
						|
 | 
						|
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
 | 
						|
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
 | 
						|
	    subfunc == H_VPA_REG_SLB) {
 | 
						|
		/* Registering new area - address must be cache-line aligned */
 | 
						|
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
 | 
						|
			return H_PARAMETER;
 | 
						|
 | 
						|
		/* convert logical addr to kernel addr and read length */
 | 
						|
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
 | 
						|
		if (va == NULL)
 | 
						|
			return H_PARAMETER;
 | 
						|
		if (subfunc == H_VPA_REG_VPA)
 | 
						|
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
 | 
						|
		else
 | 
						|
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
 | 
						|
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
 | 
						|
 | 
						|
		/* Check length */
 | 
						|
		if (len > nb || len < sizeof(struct reg_vpa))
 | 
						|
			return H_PARAMETER;
 | 
						|
	} else {
 | 
						|
		vpa = 0;
 | 
						|
		len = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	err = H_PARAMETER;
 | 
						|
	vpap = NULL;
 | 
						|
	spin_lock(&tvcpu->arch.vpa_update_lock);
 | 
						|
 | 
						|
	switch (subfunc) {
 | 
						|
	case H_VPA_REG_VPA:		/* register VPA */
 | 
						|
		/*
 | 
						|
		 * The size of our lppaca is 1kB because of the way we align
 | 
						|
		 * it for the guest to avoid crossing a 4kB boundary. We only
 | 
						|
		 * use 640 bytes of the structure though, so we should accept
 | 
						|
		 * clients that set a size of 640.
 | 
						|
		 */
 | 
						|
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
 | 
						|
		if (len < sizeof(struct lppaca))
 | 
						|
			break;
 | 
						|
		vpap = &tvcpu->arch.vpa;
 | 
						|
		err = 0;
 | 
						|
		break;
 | 
						|
 | 
						|
	case H_VPA_REG_DTL:		/* register DTL */
 | 
						|
		if (len < sizeof(struct dtl_entry))
 | 
						|
			break;
 | 
						|
		len -= len % sizeof(struct dtl_entry);
 | 
						|
 | 
						|
		/* Check that they have previously registered a VPA */
 | 
						|
		err = H_RESOURCE;
 | 
						|
		if (!vpa_is_registered(&tvcpu->arch.vpa))
 | 
						|
			break;
 | 
						|
 | 
						|
		vpap = &tvcpu->arch.dtl;
 | 
						|
		err = 0;
 | 
						|
		break;
 | 
						|
 | 
						|
	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
 | 
						|
		/* Check that they have previously registered a VPA */
 | 
						|
		err = H_RESOURCE;
 | 
						|
		if (!vpa_is_registered(&tvcpu->arch.vpa))
 | 
						|
			break;
 | 
						|
 | 
						|
		vpap = &tvcpu->arch.slb_shadow;
 | 
						|
		err = 0;
 | 
						|
		break;
 | 
						|
 | 
						|
	case H_VPA_DEREG_VPA:		/* deregister VPA */
 | 
						|
		/* Check they don't still have a DTL or SLB buf registered */
 | 
						|
		err = H_RESOURCE;
 | 
						|
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
 | 
						|
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
 | 
						|
			break;
 | 
						|
 | 
						|
		vpap = &tvcpu->arch.vpa;
 | 
						|
		err = 0;
 | 
						|
		break;
 | 
						|
 | 
						|
	case H_VPA_DEREG_DTL:		/* deregister DTL */
 | 
						|
		vpap = &tvcpu->arch.dtl;
 | 
						|
		err = 0;
 | 
						|
		break;
 | 
						|
 | 
						|
	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
 | 
						|
		vpap = &tvcpu->arch.slb_shadow;
 | 
						|
		err = 0;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (vpap) {
 | 
						|
		vpap->next_gpa = vpa;
 | 
						|
		vpap->len = len;
 | 
						|
		vpap->update_pending = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&tvcpu->arch.vpa_update_lock);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
 | 
						|
{
 | 
						|
	struct kvm *kvm = vcpu->kvm;
 | 
						|
	void *va;
 | 
						|
	unsigned long nb;
 | 
						|
	unsigned long gpa;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to pin the page pointed to by vpap->next_gpa,
 | 
						|
	 * but we can't call kvmppc_pin_guest_page under the lock
 | 
						|
	 * as it does get_user_pages() and down_read().  So we
 | 
						|
	 * have to drop the lock, pin the page, then get the lock
 | 
						|
	 * again and check that a new area didn't get registered
 | 
						|
	 * in the meantime.
 | 
						|
	 */
 | 
						|
	for (;;) {
 | 
						|
		gpa = vpap->next_gpa;
 | 
						|
		spin_unlock(&vcpu->arch.vpa_update_lock);
 | 
						|
		va = NULL;
 | 
						|
		nb = 0;
 | 
						|
		if (gpa)
 | 
						|
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
 | 
						|
		spin_lock(&vcpu->arch.vpa_update_lock);
 | 
						|
		if (gpa == vpap->next_gpa)
 | 
						|
			break;
 | 
						|
		/* sigh... unpin that one and try again */
 | 
						|
		if (va)
 | 
						|
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
 | 
						|
	}
 | 
						|
 | 
						|
	vpap->update_pending = 0;
 | 
						|
	if (va && nb < vpap->len) {
 | 
						|
		/*
 | 
						|
		 * If it's now too short, it must be that userspace
 | 
						|
		 * has changed the mappings underlying guest memory,
 | 
						|
		 * so unregister the region.
 | 
						|
		 */
 | 
						|
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
 | 
						|
		va = NULL;
 | 
						|
	}
 | 
						|
	if (vpap->pinned_addr)
 | 
						|
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
 | 
						|
					vpap->dirty);
 | 
						|
	vpap->gpa = gpa;
 | 
						|
	vpap->pinned_addr = va;
 | 
						|
	vpap->dirty = false;
 | 
						|
	if (va)
 | 
						|
		vpap->pinned_end = va + vpap->len;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	if (!(vcpu->arch.vpa.update_pending ||
 | 
						|
	      vcpu->arch.slb_shadow.update_pending ||
 | 
						|
	      vcpu->arch.dtl.update_pending))
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock(&vcpu->arch.vpa_update_lock);
 | 
						|
	if (vcpu->arch.vpa.update_pending) {
 | 
						|
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
 | 
						|
		if (vcpu->arch.vpa.pinned_addr)
 | 
						|
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
 | 
						|
	}
 | 
						|
	if (vcpu->arch.dtl.update_pending) {
 | 
						|
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
 | 
						|
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
 | 
						|
		vcpu->arch.dtl_index = 0;
 | 
						|
	}
 | 
						|
	if (vcpu->arch.slb_shadow.update_pending)
 | 
						|
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
 | 
						|
	spin_unlock(&vcpu->arch.vpa_update_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the accumulated stolen time for the vcore up until `now'.
 | 
						|
 * The caller should hold the vcore lock.
 | 
						|
 */
 | 
						|
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
 | 
						|
{
 | 
						|
	u64 p;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&vc->stoltb_lock, flags);
 | 
						|
	p = vc->stolen_tb;
 | 
						|
	if (vc->vcore_state != VCORE_INACTIVE &&
 | 
						|
	    vc->preempt_tb != TB_NIL)
 | 
						|
		p += now - vc->preempt_tb;
 | 
						|
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
 | 
						|
				    struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	struct dtl_entry *dt;
 | 
						|
	struct lppaca *vpa;
 | 
						|
	unsigned long stolen;
 | 
						|
	unsigned long core_stolen;
 | 
						|
	u64 now;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	dt = vcpu->arch.dtl_ptr;
 | 
						|
	vpa = vcpu->arch.vpa.pinned_addr;
 | 
						|
	now = mftb();
 | 
						|
	core_stolen = vcore_stolen_time(vc, now);
 | 
						|
	stolen = core_stolen - vcpu->arch.stolen_logged;
 | 
						|
	vcpu->arch.stolen_logged = core_stolen;
 | 
						|
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 | 
						|
	stolen += vcpu->arch.busy_stolen;
 | 
						|
	vcpu->arch.busy_stolen = 0;
 | 
						|
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 | 
						|
	if (!dt || !vpa)
 | 
						|
		return;
 | 
						|
	memset(dt, 0, sizeof(struct dtl_entry));
 | 
						|
	dt->dispatch_reason = 7;
 | 
						|
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
 | 
						|
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
 | 
						|
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
 | 
						|
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
 | 
						|
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
 | 
						|
	++dt;
 | 
						|
	if (dt == vcpu->arch.dtl.pinned_end)
 | 
						|
		dt = vcpu->arch.dtl.pinned_addr;
 | 
						|
	vcpu->arch.dtl_ptr = dt;
 | 
						|
	/* order writing *dt vs. writing vpa->dtl_idx */
 | 
						|
	smp_wmb();
 | 
						|
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
 | 
						|
	vcpu->arch.dtl.dirty = true;
 | 
						|
}
 | 
						|
 | 
						|
/* See if there is a doorbell interrupt pending for a vcpu */
 | 
						|
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int thr;
 | 
						|
	struct kvmppc_vcore *vc;
 | 
						|
 | 
						|
	if (vcpu->arch.doorbell_request)
 | 
						|
		return true;
 | 
						|
	/*
 | 
						|
	 * Ensure that the read of vcore->dpdes comes after the read
 | 
						|
	 * of vcpu->doorbell_request.  This barrier matches the
 | 
						|
	 * lwsync in book3s_hv_rmhandlers.S just before the
 | 
						|
	 * fast_guest_return label.
 | 
						|
	 */
 | 
						|
	smp_rmb();
 | 
						|
	vc = vcpu->arch.vcore;
 | 
						|
	thr = vcpu->vcpu_id - vc->first_vcpuid;
 | 
						|
	return !!(vc->dpdes & (1 << thr));
 | 
						|
}
 | 
						|
 | 
						|
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
 | 
						|
		return true;
 | 
						|
	if ((!vcpu->arch.vcore->arch_compat) &&
 | 
						|
	    cpu_has_feature(CPU_FTR_ARCH_207S))
 | 
						|
		return true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
 | 
						|
			     unsigned long resource, unsigned long value1,
 | 
						|
			     unsigned long value2)
 | 
						|
{
 | 
						|
	switch (resource) {
 | 
						|
	case H_SET_MODE_RESOURCE_SET_CIABR:
 | 
						|
		if (!kvmppc_power8_compatible(vcpu))
 | 
						|
			return H_P2;
 | 
						|
		if (value2)
 | 
						|
			return H_P4;
 | 
						|
		if (mflags)
 | 
						|
			return H_UNSUPPORTED_FLAG_START;
 | 
						|
		/* Guests can't breakpoint the hypervisor */
 | 
						|
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
 | 
						|
			return H_P3;
 | 
						|
		vcpu->arch.ciabr  = value1;
 | 
						|
		return H_SUCCESS;
 | 
						|
	case H_SET_MODE_RESOURCE_SET_DAWR:
 | 
						|
		if (!kvmppc_power8_compatible(vcpu))
 | 
						|
			return H_P2;
 | 
						|
		if (!ppc_breakpoint_available())
 | 
						|
			return H_P2;
 | 
						|
		if (mflags)
 | 
						|
			return H_UNSUPPORTED_FLAG_START;
 | 
						|
		if (value2 & DABRX_HYP)
 | 
						|
			return H_P4;
 | 
						|
		vcpu->arch.dawr  = value1;
 | 
						|
		vcpu->arch.dawrx = value2;
 | 
						|
		return H_SUCCESS;
 | 
						|
	default:
 | 
						|
		return H_TOO_HARD;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
 | 
						|
{
 | 
						|
	struct kvmppc_vcore *vcore = target->arch.vcore;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We expect to have been called by the real mode handler
 | 
						|
	 * (kvmppc_rm_h_confer()) which would have directly returned
 | 
						|
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
 | 
						|
	 * have useful work to do and should not confer) so we don't
 | 
						|
	 * recheck that here.
 | 
						|
	 */
 | 
						|
 | 
						|
	spin_lock(&vcore->lock);
 | 
						|
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
 | 
						|
	    vcore->vcore_state != VCORE_INACTIVE &&
 | 
						|
	    vcore->runner)
 | 
						|
		target = vcore->runner;
 | 
						|
	spin_unlock(&vcore->lock);
 | 
						|
 | 
						|
	return kvm_vcpu_yield_to(target);
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int yield_count = 0;
 | 
						|
	struct lppaca *lppaca;
 | 
						|
 | 
						|
	spin_lock(&vcpu->arch.vpa_update_lock);
 | 
						|
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
 | 
						|
	if (lppaca)
 | 
						|
		yield_count = be32_to_cpu(lppaca->yield_count);
 | 
						|
	spin_unlock(&vcpu->arch.vpa_update_lock);
 | 
						|
	return yield_count;
 | 
						|
}
 | 
						|
 | 
						|
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
 | 
						|
	unsigned long target, ret = H_SUCCESS;
 | 
						|
	int yield_count;
 | 
						|
	struct kvm_vcpu *tvcpu;
 | 
						|
	int idx, rc;
 | 
						|
 | 
						|
	if (req <= MAX_HCALL_OPCODE &&
 | 
						|
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
 | 
						|
		return RESUME_HOST;
 | 
						|
 | 
						|
	switch (req) {
 | 
						|
	case H_CEDE:
 | 
						|
		break;
 | 
						|
	case H_PROD:
 | 
						|
		target = kvmppc_get_gpr(vcpu, 4);
 | 
						|
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 | 
						|
		if (!tvcpu) {
 | 
						|
			ret = H_PARAMETER;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		tvcpu->arch.prodded = 1;
 | 
						|
		smp_mb();
 | 
						|
		if (tvcpu->arch.ceded)
 | 
						|
			kvmppc_fast_vcpu_kick_hv(tvcpu);
 | 
						|
		break;
 | 
						|
	case H_CONFER:
 | 
						|
		target = kvmppc_get_gpr(vcpu, 4);
 | 
						|
		if (target == -1)
 | 
						|
			break;
 | 
						|
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 | 
						|
		if (!tvcpu) {
 | 
						|
			ret = H_PARAMETER;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		yield_count = kvmppc_get_gpr(vcpu, 5);
 | 
						|
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
 | 
						|
			break;
 | 
						|
		kvm_arch_vcpu_yield_to(tvcpu);
 | 
						|
		break;
 | 
						|
	case H_REGISTER_VPA:
 | 
						|
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
 | 
						|
					kvmppc_get_gpr(vcpu, 5),
 | 
						|
					kvmppc_get_gpr(vcpu, 6));
 | 
						|
		break;
 | 
						|
	case H_RTAS:
 | 
						|
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
 | 
						|
			return RESUME_HOST;
 | 
						|
 | 
						|
		idx = srcu_read_lock(&vcpu->kvm->srcu);
 | 
						|
		rc = kvmppc_rtas_hcall(vcpu);
 | 
						|
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | 
						|
 | 
						|
		if (rc == -ENOENT)
 | 
						|
			return RESUME_HOST;
 | 
						|
		else if (rc == 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		/* Send the error out to userspace via KVM_RUN */
 | 
						|
		return rc;
 | 
						|
	case H_LOGICAL_CI_LOAD:
 | 
						|
		ret = kvmppc_h_logical_ci_load(vcpu);
 | 
						|
		if (ret == H_TOO_HARD)
 | 
						|
			return RESUME_HOST;
 | 
						|
		break;
 | 
						|
	case H_LOGICAL_CI_STORE:
 | 
						|
		ret = kvmppc_h_logical_ci_store(vcpu);
 | 
						|
		if (ret == H_TOO_HARD)
 | 
						|
			return RESUME_HOST;
 | 
						|
		break;
 | 
						|
	case H_SET_MODE:
 | 
						|
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
 | 
						|
					kvmppc_get_gpr(vcpu, 5),
 | 
						|
					kvmppc_get_gpr(vcpu, 6),
 | 
						|
					kvmppc_get_gpr(vcpu, 7));
 | 
						|
		if (ret == H_TOO_HARD)
 | 
						|
			return RESUME_HOST;
 | 
						|
		break;
 | 
						|
	case H_XIRR:
 | 
						|
	case H_CPPR:
 | 
						|
	case H_EOI:
 | 
						|
	case H_IPI:
 | 
						|
	case H_IPOLL:
 | 
						|
	case H_XIRR_X:
 | 
						|
		if (kvmppc_xics_enabled(vcpu)) {
 | 
						|
			if (xive_enabled()) {
 | 
						|
				ret = H_NOT_AVAILABLE;
 | 
						|
				return RESUME_GUEST;
 | 
						|
			}
 | 
						|
			ret = kvmppc_xics_hcall(vcpu, req);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		return RESUME_HOST;
 | 
						|
	case H_PUT_TCE:
 | 
						|
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 | 
						|
						kvmppc_get_gpr(vcpu, 5),
 | 
						|
						kvmppc_get_gpr(vcpu, 6));
 | 
						|
		if (ret == H_TOO_HARD)
 | 
						|
			return RESUME_HOST;
 | 
						|
		break;
 | 
						|
	case H_PUT_TCE_INDIRECT:
 | 
						|
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
 | 
						|
						kvmppc_get_gpr(vcpu, 5),
 | 
						|
						kvmppc_get_gpr(vcpu, 6),
 | 
						|
						kvmppc_get_gpr(vcpu, 7));
 | 
						|
		if (ret == H_TOO_HARD)
 | 
						|
			return RESUME_HOST;
 | 
						|
		break;
 | 
						|
	case H_STUFF_TCE:
 | 
						|
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 | 
						|
						kvmppc_get_gpr(vcpu, 5),
 | 
						|
						kvmppc_get_gpr(vcpu, 6),
 | 
						|
						kvmppc_get_gpr(vcpu, 7));
 | 
						|
		if (ret == H_TOO_HARD)
 | 
						|
			return RESUME_HOST;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return RESUME_HOST;
 | 
						|
	}
 | 
						|
	kvmppc_set_gpr(vcpu, 3, ret);
 | 
						|
	vcpu->arch.hcall_needed = 0;
 | 
						|
	return RESUME_GUEST;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_hcall_impl_hv(unsigned long cmd)
 | 
						|
{
 | 
						|
	switch (cmd) {
 | 
						|
	case H_CEDE:
 | 
						|
	case H_PROD:
 | 
						|
	case H_CONFER:
 | 
						|
	case H_REGISTER_VPA:
 | 
						|
	case H_SET_MODE:
 | 
						|
	case H_LOGICAL_CI_LOAD:
 | 
						|
	case H_LOGICAL_CI_STORE:
 | 
						|
#ifdef CONFIG_KVM_XICS
 | 
						|
	case H_XIRR:
 | 
						|
	case H_CPPR:
 | 
						|
	case H_EOI:
 | 
						|
	case H_IPI:
 | 
						|
	case H_IPOLL:
 | 
						|
	case H_XIRR_X:
 | 
						|
#endif
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* See if it's in the real-mode table */
 | 
						|
	return kvmppc_hcall_impl_hv_realmode(cmd);
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
 | 
						|
					struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	u32 last_inst;
 | 
						|
 | 
						|
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
 | 
						|
					EMULATE_DONE) {
 | 
						|
		/*
 | 
						|
		 * Fetch failed, so return to guest and
 | 
						|
		 * try executing it again.
 | 
						|
		 */
 | 
						|
		return RESUME_GUEST;
 | 
						|
	}
 | 
						|
 | 
						|
	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
 | 
						|
		run->exit_reason = KVM_EXIT_DEBUG;
 | 
						|
		run->debug.arch.address = kvmppc_get_pc(vcpu);
 | 
						|
		return RESUME_HOST;
 | 
						|
	} else {
 | 
						|
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 | 
						|
		return RESUME_GUEST;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void do_nothing(void *x)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int thr, cpu, pcpu, nthreads;
 | 
						|
	struct kvm_vcpu *v;
 | 
						|
	unsigned long dpdes;
 | 
						|
 | 
						|
	nthreads = vcpu->kvm->arch.emul_smt_mode;
 | 
						|
	dpdes = 0;
 | 
						|
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
 | 
						|
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
 | 
						|
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
 | 
						|
		if (!v)
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * If the vcpu is currently running on a physical cpu thread,
 | 
						|
		 * interrupt it in order to pull it out of the guest briefly,
 | 
						|
		 * which will update its vcore->dpdes value.
 | 
						|
		 */
 | 
						|
		pcpu = READ_ONCE(v->cpu);
 | 
						|
		if (pcpu >= 0)
 | 
						|
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
 | 
						|
		if (kvmppc_doorbell_pending(v))
 | 
						|
			dpdes |= 1 << thr;
 | 
						|
	}
 | 
						|
	return dpdes;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * On POWER9, emulate doorbell-related instructions in order to
 | 
						|
 * give the guest the illusion of running on a multi-threaded core.
 | 
						|
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 | 
						|
 * and mfspr DPDES.
 | 
						|
 */
 | 
						|
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	u32 inst, rb, thr;
 | 
						|
	unsigned long arg;
 | 
						|
	struct kvm *kvm = vcpu->kvm;
 | 
						|
	struct kvm_vcpu *tvcpu;
 | 
						|
 | 
						|
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
 | 
						|
		return RESUME_GUEST;
 | 
						|
	if (get_op(inst) != 31)
 | 
						|
		return EMULATE_FAIL;
 | 
						|
	rb = get_rb(inst);
 | 
						|
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
 | 
						|
	switch (get_xop(inst)) {
 | 
						|
	case OP_31_XOP_MSGSNDP:
 | 
						|
		arg = kvmppc_get_gpr(vcpu, rb);
 | 
						|
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
 | 
						|
			break;
 | 
						|
		arg &= 0x3f;
 | 
						|
		if (arg >= kvm->arch.emul_smt_mode)
 | 
						|
			break;
 | 
						|
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
 | 
						|
		if (!tvcpu)
 | 
						|
			break;
 | 
						|
		if (!tvcpu->arch.doorbell_request) {
 | 
						|
			tvcpu->arch.doorbell_request = 1;
 | 
						|
			kvmppc_fast_vcpu_kick_hv(tvcpu);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case OP_31_XOP_MSGCLRP:
 | 
						|
		arg = kvmppc_get_gpr(vcpu, rb);
 | 
						|
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
 | 
						|
			break;
 | 
						|
		vcpu->arch.vcore->dpdes = 0;
 | 
						|
		vcpu->arch.doorbell_request = 0;
 | 
						|
		break;
 | 
						|
	case OP_31_XOP_MFSPR:
 | 
						|
		switch (get_sprn(inst)) {
 | 
						|
		case SPRN_TIR:
 | 
						|
			arg = thr;
 | 
						|
			break;
 | 
						|
		case SPRN_DPDES:
 | 
						|
			arg = kvmppc_read_dpdes(vcpu);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			return EMULATE_FAIL;
 | 
						|
		}
 | 
						|
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return EMULATE_FAIL;
 | 
						|
	}
 | 
						|
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
 | 
						|
	return RESUME_GUEST;
 | 
						|
}
 | 
						|
 | 
						|
/* Called with vcpu->arch.vcore->lock held */
 | 
						|
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
 | 
						|
				 struct task_struct *tsk)
 | 
						|
{
 | 
						|
	int r = RESUME_HOST;
 | 
						|
 | 
						|
	vcpu->stat.sum_exits++;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This can happen if an interrupt occurs in the last stages
 | 
						|
	 * of guest entry or the first stages of guest exit (i.e. after
 | 
						|
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
 | 
						|
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
 | 
						|
	 * That can happen due to a bug, or due to a machine check
 | 
						|
	 * occurring at just the wrong time.
 | 
						|
	 */
 | 
						|
	if (vcpu->arch.shregs.msr & MSR_HV) {
 | 
						|
		printk(KERN_EMERG "KVM trap in HV mode!\n");
 | 
						|
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
 | 
						|
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
 | 
						|
			vcpu->arch.shregs.msr);
 | 
						|
		kvmppc_dump_regs(vcpu);
 | 
						|
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | 
						|
		run->hw.hardware_exit_reason = vcpu->arch.trap;
 | 
						|
		return RESUME_HOST;
 | 
						|
	}
 | 
						|
	run->exit_reason = KVM_EXIT_UNKNOWN;
 | 
						|
	run->ready_for_interrupt_injection = 1;
 | 
						|
	switch (vcpu->arch.trap) {
 | 
						|
	/* We're good on these - the host merely wanted to get our attention */
 | 
						|
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
 | 
						|
		vcpu->stat.dec_exits++;
 | 
						|
		r = RESUME_GUEST;
 | 
						|
		break;
 | 
						|
	case BOOK3S_INTERRUPT_EXTERNAL:
 | 
						|
	case BOOK3S_INTERRUPT_H_DOORBELL:
 | 
						|
	case BOOK3S_INTERRUPT_H_VIRT:
 | 
						|
		vcpu->stat.ext_intr_exits++;
 | 
						|
		r = RESUME_GUEST;
 | 
						|
		break;
 | 
						|
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
 | 
						|
	case BOOK3S_INTERRUPT_HMI:
 | 
						|
	case BOOK3S_INTERRUPT_PERFMON:
 | 
						|
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
 | 
						|
		r = RESUME_GUEST;
 | 
						|
		break;
 | 
						|
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
 | 
						|
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
 | 
						|
		run->exit_reason = KVM_EXIT_NMI;
 | 
						|
		run->hw.hardware_exit_reason = vcpu->arch.trap;
 | 
						|
		/* Clear out the old NMI status from run->flags */
 | 
						|
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
 | 
						|
		/* Now set the NMI status */
 | 
						|
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
 | 
						|
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
 | 
						|
		else
 | 
						|
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
 | 
						|
 | 
						|
		r = RESUME_HOST;
 | 
						|
		/* Print the MCE event to host console. */
 | 
						|
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
 | 
						|
		break;
 | 
						|
	case BOOK3S_INTERRUPT_PROGRAM:
 | 
						|
	{
 | 
						|
		ulong flags;
 | 
						|
		/*
 | 
						|
		 * Normally program interrupts are delivered directly
 | 
						|
		 * to the guest by the hardware, but we can get here
 | 
						|
		 * as a result of a hypervisor emulation interrupt
 | 
						|
		 * (e40) getting turned into a 700 by BML RTAS.
 | 
						|
		 */
 | 
						|
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
 | 
						|
		kvmppc_core_queue_program(vcpu, flags);
 | 
						|
		r = RESUME_GUEST;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case BOOK3S_INTERRUPT_SYSCALL:
 | 
						|
	{
 | 
						|
		/* hcall - punt to userspace */
 | 
						|
		int i;
 | 
						|
 | 
						|
		/* hypercall with MSR_PR has already been handled in rmode,
 | 
						|
		 * and never reaches here.
 | 
						|
		 */
 | 
						|
 | 
						|
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
 | 
						|
		for (i = 0; i < 9; ++i)
 | 
						|
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
 | 
						|
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
 | 
						|
		vcpu->arch.hcall_needed = 1;
 | 
						|
		r = RESUME_HOST;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * We get these next two if the guest accesses a page which it thinks
 | 
						|
	 * it has mapped but which is not actually present, either because
 | 
						|
	 * it is for an emulated I/O device or because the corresonding
 | 
						|
	 * host page has been paged out.  Any other HDSI/HISI interrupts
 | 
						|
	 * have been handled already.
 | 
						|
	 */
 | 
						|
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
 | 
						|
		r = RESUME_PAGE_FAULT;
 | 
						|
		break;
 | 
						|
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
 | 
						|
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
 | 
						|
		vcpu->arch.fault_dsisr = 0;
 | 
						|
		r = RESUME_PAGE_FAULT;
 | 
						|
		break;
 | 
						|
	/*
 | 
						|
	 * This occurs if the guest executes an illegal instruction.
 | 
						|
	 * If the guest debug is disabled, generate a program interrupt
 | 
						|
	 * to the guest. If guest debug is enabled, we need to check
 | 
						|
	 * whether the instruction is a software breakpoint instruction.
 | 
						|
	 * Accordingly return to Guest or Host.
 | 
						|
	 */
 | 
						|
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
 | 
						|
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
 | 
						|
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
 | 
						|
				swab32(vcpu->arch.emul_inst) :
 | 
						|
				vcpu->arch.emul_inst;
 | 
						|
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
 | 
						|
			/* Need vcore unlocked to call kvmppc_get_last_inst */
 | 
						|
			spin_unlock(&vcpu->arch.vcore->lock);
 | 
						|
			r = kvmppc_emulate_debug_inst(run, vcpu);
 | 
						|
			spin_lock(&vcpu->arch.vcore->lock);
 | 
						|
		} else {
 | 
						|
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 | 
						|
			r = RESUME_GUEST;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	/*
 | 
						|
	 * This occurs if the guest (kernel or userspace), does something that
 | 
						|
	 * is prohibited by HFSCR.
 | 
						|
	 * On POWER9, this could be a doorbell instruction that we need
 | 
						|
	 * to emulate.
 | 
						|
	 * Otherwise, we just generate a program interrupt to the guest.
 | 
						|
	 */
 | 
						|
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
 | 
						|
		r = EMULATE_FAIL;
 | 
						|
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
 | 
						|
		    cpu_has_feature(CPU_FTR_ARCH_300)) {
 | 
						|
			/* Need vcore unlocked to call kvmppc_get_last_inst */
 | 
						|
			spin_unlock(&vcpu->arch.vcore->lock);
 | 
						|
			r = kvmppc_emulate_doorbell_instr(vcpu);
 | 
						|
			spin_lock(&vcpu->arch.vcore->lock);
 | 
						|
		}
 | 
						|
		if (r == EMULATE_FAIL) {
 | 
						|
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 | 
						|
			r = RESUME_GUEST;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | 
						|
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
 | 
						|
		/*
 | 
						|
		 * This occurs for various TM-related instructions that
 | 
						|
		 * we need to emulate on POWER9 DD2.2.  We have already
 | 
						|
		 * handled the cases where the guest was in real-suspend
 | 
						|
		 * mode and was transitioning to transactional state.
 | 
						|
		 */
 | 
						|
		r = kvmhv_p9_tm_emulation(vcpu);
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
 | 
						|
	case BOOK3S_INTERRUPT_HV_RM_HARD:
 | 
						|
		r = RESUME_PASSTHROUGH;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		kvmppc_dump_regs(vcpu);
 | 
						|
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
 | 
						|
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
 | 
						|
			vcpu->arch.shregs.msr);
 | 
						|
		run->hw.hardware_exit_reason = vcpu->arch.trap;
 | 
						|
		r = RESUME_HOST;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
 | 
						|
					    struct kvm_sregs *sregs)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	memset(sregs, 0, sizeof(struct kvm_sregs));
 | 
						|
	sregs->pvr = vcpu->arch.pvr;
 | 
						|
	for (i = 0; i < vcpu->arch.slb_max; i++) {
 | 
						|
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
 | 
						|
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
 | 
						|
					    struct kvm_sregs *sregs)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	/* Only accept the same PVR as the host's, since we can't spoof it */
 | 
						|
	if (sregs->pvr != vcpu->arch.pvr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	j = 0;
 | 
						|
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
 | 
						|
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
 | 
						|
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
 | 
						|
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
 | 
						|
			++j;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	vcpu->arch.slb_max = j;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
 | 
						|
		bool preserve_top32)
 | 
						|
{
 | 
						|
	struct kvm *kvm = vcpu->kvm;
 | 
						|
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
 | 
						|
	u64 mask;
 | 
						|
 | 
						|
	spin_lock(&vc->lock);
 | 
						|
	/*
 | 
						|
	 * If ILE (interrupt little-endian) has changed, update the
 | 
						|
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
 | 
						|
	 */
 | 
						|
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
 | 
						|
		struct kvm_vcpu *vcpu;
 | 
						|
		int i;
 | 
						|
 | 
						|
		kvm_for_each_vcpu(i, vcpu, kvm) {
 | 
						|
			if (vcpu->arch.vcore != vc)
 | 
						|
				continue;
 | 
						|
			if (new_lpcr & LPCR_ILE)
 | 
						|
				vcpu->arch.intr_msr |= MSR_LE;
 | 
						|
			else
 | 
						|
				vcpu->arch.intr_msr &= ~MSR_LE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Userspace can only modify DPFD (default prefetch depth),
 | 
						|
	 * ILE (interrupt little-endian) and TC (translation control).
 | 
						|
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
 | 
						|
	 */
 | 
						|
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
 | 
						|
		mask |= LPCR_AIL;
 | 
						|
	/*
 | 
						|
	 * On POWER9, allow userspace to enable large decrementer for the
 | 
						|
	 * guest, whether or not the host has it enabled.
 | 
						|
	 */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		mask |= LPCR_LD;
 | 
						|
 | 
						|
	/* Broken 32-bit version of LPCR must not clear top bits */
 | 
						|
	if (preserve_top32)
 | 
						|
		mask &= 0xFFFFFFFF;
 | 
						|
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
 | 
						|
	spin_unlock(&vc->lock);
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
 | 
						|
				 union kvmppc_one_reg *val)
 | 
						|
{
 | 
						|
	int r = 0;
 | 
						|
	long int i;
 | 
						|
 | 
						|
	switch (id) {
 | 
						|
	case KVM_REG_PPC_DEBUG_INST:
 | 
						|
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_HIOR:
 | 
						|
		*val = get_reg_val(id, 0);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DABR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.dabr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DABRX:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.dabrx);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DSCR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.dscr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PURR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.purr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SPURR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.spurr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_AMR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.amr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_UAMOR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.uamor);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
 | 
						|
		i = id - KVM_REG_PPC_MMCR0;
 | 
						|
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
 | 
						|
		i = id - KVM_REG_PPC_PMC1;
 | 
						|
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
 | 
						|
		i = id - KVM_REG_PPC_SPMC1;
 | 
						|
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SIAR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.siar);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SDAR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.sdar);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SIER:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.sier);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_IAMR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.iamr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PSPB:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.pspb);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DPDES:
 | 
						|
		/*
 | 
						|
		 * On POWER9, where we are emulating msgsndp etc.,
 | 
						|
		 * we return 1 bit for each vcpu, which can come from
 | 
						|
		 * either vcore->dpdes or doorbell_request.
 | 
						|
		 * On POWER8, doorbell_request is 0.
 | 
						|
		 */
 | 
						|
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
 | 
						|
				   vcpu->arch.doorbell_request);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_VTB:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DAWR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.dawr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DAWRX:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.dawrx);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_CIABR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.ciabr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_CSIGR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.csigr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TACR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.tacr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TCSCR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.tcscr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PID:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.pid);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_ACOP:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.acop);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_WORT:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.wort);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TIDR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.tid);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PSSCR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.psscr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_VPA_ADDR:
 | 
						|
		spin_lock(&vcpu->arch.vpa_update_lock);
 | 
						|
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
 | 
						|
		spin_unlock(&vcpu->arch.vpa_update_lock);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_VPA_SLB:
 | 
						|
		spin_lock(&vcpu->arch.vpa_update_lock);
 | 
						|
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
 | 
						|
		val->vpaval.length = vcpu->arch.slb_shadow.len;
 | 
						|
		spin_unlock(&vcpu->arch.vpa_update_lock);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_VPA_DTL:
 | 
						|
		spin_lock(&vcpu->arch.vpa_update_lock);
 | 
						|
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
 | 
						|
		val->vpaval.length = vcpu->arch.dtl.len;
 | 
						|
		spin_unlock(&vcpu->arch.vpa_update_lock);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TB_OFFSET:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_LPCR:
 | 
						|
	case KVM_REG_PPC_LPCR_64:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PPR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.ppr);
 | 
						|
		break;
 | 
						|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | 
						|
	case KVM_REG_PPC_TFHAR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.tfhar);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TFIAR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.tfiar);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TEXASR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.texasr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
 | 
						|
		i = id - KVM_REG_PPC_TM_GPR0;
 | 
						|
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
 | 
						|
	{
 | 
						|
		int j;
 | 
						|
		i = id - KVM_REG_PPC_TM_VSR0;
 | 
						|
		if (i < 32)
 | 
						|
			for (j = 0; j < TS_FPRWIDTH; j++)
 | 
						|
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
 | 
						|
		else {
 | 
						|
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
 | 
						|
				val->vval = vcpu->arch.vr_tm.vr[i-32];
 | 
						|
			else
 | 
						|
				r = -ENXIO;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case KVM_REG_PPC_TM_CR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.cr_tm);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_XER:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.xer_tm);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_LR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.lr_tm);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_CTR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_FPSCR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_AMR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.amr_tm);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_PPR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_VRSAVE:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_VSCR:
 | 
						|
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
 | 
						|
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
 | 
						|
		else
 | 
						|
			r = -ENXIO;
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_DSCR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_TAR:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.tar_tm);
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
	case KVM_REG_PPC_ARCH_COMPAT:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DEC_EXPIRY:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.dec_expires +
 | 
						|
				   vcpu->arch.vcore->tb_offset);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_ONLINE:
 | 
						|
		*val = get_reg_val(id, vcpu->arch.online);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		r = -EINVAL;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
 | 
						|
				 union kvmppc_one_reg *val)
 | 
						|
{
 | 
						|
	int r = 0;
 | 
						|
	long int i;
 | 
						|
	unsigned long addr, len;
 | 
						|
 | 
						|
	switch (id) {
 | 
						|
	case KVM_REG_PPC_HIOR:
 | 
						|
		/* Only allow this to be set to zero */
 | 
						|
		if (set_reg_val(id, *val))
 | 
						|
			r = -EINVAL;
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DABR:
 | 
						|
		vcpu->arch.dabr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DABRX:
 | 
						|
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DSCR:
 | 
						|
		vcpu->arch.dscr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PURR:
 | 
						|
		vcpu->arch.purr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SPURR:
 | 
						|
		vcpu->arch.spurr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_AMR:
 | 
						|
		vcpu->arch.amr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_UAMOR:
 | 
						|
		vcpu->arch.uamor = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
 | 
						|
		i = id - KVM_REG_PPC_MMCR0;
 | 
						|
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
 | 
						|
		i = id - KVM_REG_PPC_PMC1;
 | 
						|
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
 | 
						|
		i = id - KVM_REG_PPC_SPMC1;
 | 
						|
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SIAR:
 | 
						|
		vcpu->arch.siar = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SDAR:
 | 
						|
		vcpu->arch.sdar = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_SIER:
 | 
						|
		vcpu->arch.sier = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_IAMR:
 | 
						|
		vcpu->arch.iamr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PSPB:
 | 
						|
		vcpu->arch.pspb = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DPDES:
 | 
						|
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_VTB:
 | 
						|
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DAWR:
 | 
						|
		vcpu->arch.dawr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DAWRX:
 | 
						|
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_CIABR:
 | 
						|
		vcpu->arch.ciabr = set_reg_val(id, *val);
 | 
						|
		/* Don't allow setting breakpoints in hypervisor code */
 | 
						|
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
 | 
						|
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_CSIGR:
 | 
						|
		vcpu->arch.csigr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TACR:
 | 
						|
		vcpu->arch.tacr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TCSCR:
 | 
						|
		vcpu->arch.tcscr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PID:
 | 
						|
		vcpu->arch.pid = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_ACOP:
 | 
						|
		vcpu->arch.acop = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_WORT:
 | 
						|
		vcpu->arch.wort = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TIDR:
 | 
						|
		vcpu->arch.tid = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PSSCR:
 | 
						|
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_VPA_ADDR:
 | 
						|
		addr = set_reg_val(id, *val);
 | 
						|
		r = -EINVAL;
 | 
						|
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
 | 
						|
			      vcpu->arch.dtl.next_gpa))
 | 
						|
			break;
 | 
						|
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_VPA_SLB:
 | 
						|
		addr = val->vpaval.addr;
 | 
						|
		len = val->vpaval.length;
 | 
						|
		r = -EINVAL;
 | 
						|
		if (addr && !vcpu->arch.vpa.next_gpa)
 | 
						|
			break;
 | 
						|
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_VPA_DTL:
 | 
						|
		addr = val->vpaval.addr;
 | 
						|
		len = val->vpaval.length;
 | 
						|
		r = -EINVAL;
 | 
						|
		if (addr && (len < sizeof(struct dtl_entry) ||
 | 
						|
			     !vcpu->arch.vpa.next_gpa))
 | 
						|
			break;
 | 
						|
		len -= len % sizeof(struct dtl_entry);
 | 
						|
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TB_OFFSET:
 | 
						|
		/* round up to multiple of 2^24 */
 | 
						|
		vcpu->arch.vcore->tb_offset =
 | 
						|
			ALIGN(set_reg_val(id, *val), 1UL << 24);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_LPCR:
 | 
						|
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_LPCR_64:
 | 
						|
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_PPR:
 | 
						|
		vcpu->arch.ppr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | 
						|
	case KVM_REG_PPC_TFHAR:
 | 
						|
		vcpu->arch.tfhar = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TFIAR:
 | 
						|
		vcpu->arch.tfiar = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TEXASR:
 | 
						|
		vcpu->arch.texasr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
 | 
						|
		i = id - KVM_REG_PPC_TM_GPR0;
 | 
						|
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
 | 
						|
	{
 | 
						|
		int j;
 | 
						|
		i = id - KVM_REG_PPC_TM_VSR0;
 | 
						|
		if (i < 32)
 | 
						|
			for (j = 0; j < TS_FPRWIDTH; j++)
 | 
						|
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
 | 
						|
		else
 | 
						|
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
 | 
						|
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
 | 
						|
			else
 | 
						|
				r = -ENXIO;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case KVM_REG_PPC_TM_CR:
 | 
						|
		vcpu->arch.cr_tm = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_XER:
 | 
						|
		vcpu->arch.xer_tm = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_LR:
 | 
						|
		vcpu->arch.lr_tm = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_CTR:
 | 
						|
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_FPSCR:
 | 
						|
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_AMR:
 | 
						|
		vcpu->arch.amr_tm = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_PPR:
 | 
						|
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_VRSAVE:
 | 
						|
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_VSCR:
 | 
						|
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
 | 
						|
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
 | 
						|
		else
 | 
						|
			r = - ENXIO;
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_DSCR:
 | 
						|
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_TM_TAR:
 | 
						|
		vcpu->arch.tar_tm = set_reg_val(id, *val);
 | 
						|
		break;
 | 
						|
#endif
 | 
						|
	case KVM_REG_PPC_ARCH_COMPAT:
 | 
						|
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_DEC_EXPIRY:
 | 
						|
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
 | 
						|
			vcpu->arch.vcore->tb_offset;
 | 
						|
		break;
 | 
						|
	case KVM_REG_PPC_ONLINE:
 | 
						|
		i = set_reg_val(id, *val);
 | 
						|
		if (i && !vcpu->arch.online)
 | 
						|
			atomic_inc(&vcpu->arch.vcore->online_count);
 | 
						|
		else if (!i && vcpu->arch.online)
 | 
						|
			atomic_dec(&vcpu->arch.vcore->online_count);
 | 
						|
		vcpu->arch.online = i;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		r = -EINVAL;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * On POWER9, threads are independent and can be in different partitions.
 | 
						|
 * Therefore we consider each thread to be a subcore.
 | 
						|
 * There is a restriction that all threads have to be in the same
 | 
						|
 * MMU mode (radix or HPT), unfortunately, but since we only support
 | 
						|
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 | 
						|
 */
 | 
						|
static int threads_per_vcore(struct kvm *kvm)
 | 
						|
{
 | 
						|
	if (kvm->arch.threads_indep)
 | 
						|
		return 1;
 | 
						|
	return threads_per_subcore;
 | 
						|
}
 | 
						|
 | 
						|
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
 | 
						|
{
 | 
						|
	struct kvmppc_vcore *vcore;
 | 
						|
 | 
						|
	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
 | 
						|
 | 
						|
	if (vcore == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	spin_lock_init(&vcore->lock);
 | 
						|
	spin_lock_init(&vcore->stoltb_lock);
 | 
						|
	init_swait_queue_head(&vcore->wq);
 | 
						|
	vcore->preempt_tb = TB_NIL;
 | 
						|
	vcore->lpcr = kvm->arch.lpcr;
 | 
						|
	vcore->first_vcpuid = id;
 | 
						|
	vcore->kvm = kvm;
 | 
						|
	INIT_LIST_HEAD(&vcore->preempt_list);
 | 
						|
 | 
						|
	return vcore;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
 | 
						|
static struct debugfs_timings_element {
 | 
						|
	const char *name;
 | 
						|
	size_t offset;
 | 
						|
} timings[] = {
 | 
						|
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
 | 
						|
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
 | 
						|
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
 | 
						|
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
 | 
						|
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
 | 
						|
};
 | 
						|
 | 
						|
#define N_TIMINGS	(ARRAY_SIZE(timings))
 | 
						|
 | 
						|
struct debugfs_timings_state {
 | 
						|
	struct kvm_vcpu	*vcpu;
 | 
						|
	unsigned int	buflen;
 | 
						|
	char		buf[N_TIMINGS * 100];
 | 
						|
};
 | 
						|
 | 
						|
static int debugfs_timings_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	struct kvm_vcpu *vcpu = inode->i_private;
 | 
						|
	struct debugfs_timings_state *p;
 | 
						|
 | 
						|
	p = kzalloc(sizeof(*p), GFP_KERNEL);
 | 
						|
	if (!p)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	kvm_get_kvm(vcpu->kvm);
 | 
						|
	p->vcpu = vcpu;
 | 
						|
	file->private_data = p;
 | 
						|
 | 
						|
	return nonseekable_open(inode, file);
 | 
						|
}
 | 
						|
 | 
						|
static int debugfs_timings_release(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	struct debugfs_timings_state *p = file->private_data;
 | 
						|
 | 
						|
	kvm_put_kvm(p->vcpu->kvm);
 | 
						|
	kfree(p);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
 | 
						|
				    size_t len, loff_t *ppos)
 | 
						|
{
 | 
						|
	struct debugfs_timings_state *p = file->private_data;
 | 
						|
	struct kvm_vcpu *vcpu = p->vcpu;
 | 
						|
	char *s, *buf_end;
 | 
						|
	struct kvmhv_tb_accumulator tb;
 | 
						|
	u64 count;
 | 
						|
	loff_t pos;
 | 
						|
	ssize_t n;
 | 
						|
	int i, loops;
 | 
						|
	bool ok;
 | 
						|
 | 
						|
	if (!p->buflen) {
 | 
						|
		s = p->buf;
 | 
						|
		buf_end = s + sizeof(p->buf);
 | 
						|
		for (i = 0; i < N_TIMINGS; ++i) {
 | 
						|
			struct kvmhv_tb_accumulator *acc;
 | 
						|
 | 
						|
			acc = (struct kvmhv_tb_accumulator *)
 | 
						|
				((unsigned long)vcpu + timings[i].offset);
 | 
						|
			ok = false;
 | 
						|
			for (loops = 0; loops < 1000; ++loops) {
 | 
						|
				count = acc->seqcount;
 | 
						|
				if (!(count & 1)) {
 | 
						|
					smp_rmb();
 | 
						|
					tb = *acc;
 | 
						|
					smp_rmb();
 | 
						|
					if (count == acc->seqcount) {
 | 
						|
						ok = true;
 | 
						|
						break;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				udelay(1);
 | 
						|
			}
 | 
						|
			if (!ok)
 | 
						|
				snprintf(s, buf_end - s, "%s: stuck\n",
 | 
						|
					timings[i].name);
 | 
						|
			else
 | 
						|
				snprintf(s, buf_end - s,
 | 
						|
					"%s: %llu %llu %llu %llu\n",
 | 
						|
					timings[i].name, count / 2,
 | 
						|
					tb_to_ns(tb.tb_total),
 | 
						|
					tb_to_ns(tb.tb_min),
 | 
						|
					tb_to_ns(tb.tb_max));
 | 
						|
			s += strlen(s);
 | 
						|
		}
 | 
						|
		p->buflen = s - p->buf;
 | 
						|
	}
 | 
						|
 | 
						|
	pos = *ppos;
 | 
						|
	if (pos >= p->buflen)
 | 
						|
		return 0;
 | 
						|
	if (len > p->buflen - pos)
 | 
						|
		len = p->buflen - pos;
 | 
						|
	n = copy_to_user(buf, p->buf + pos, len);
 | 
						|
	if (n) {
 | 
						|
		if (n == len)
 | 
						|
			return -EFAULT;
 | 
						|
		len -= n;
 | 
						|
	}
 | 
						|
	*ppos = pos + len;
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
 | 
						|
				     size_t len, loff_t *ppos)
 | 
						|
{
 | 
						|
	return -EACCES;
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations debugfs_timings_ops = {
 | 
						|
	.owner	 = THIS_MODULE,
 | 
						|
	.open	 = debugfs_timings_open,
 | 
						|
	.release = debugfs_timings_release,
 | 
						|
	.read	 = debugfs_timings_read,
 | 
						|
	.write	 = debugfs_timings_write,
 | 
						|
	.llseek	 = generic_file_llseek,
 | 
						|
};
 | 
						|
 | 
						|
/* Create a debugfs directory for the vcpu */
 | 
						|
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
 | 
						|
{
 | 
						|
	char buf[16];
 | 
						|
	struct kvm *kvm = vcpu->kvm;
 | 
						|
 | 
						|
	snprintf(buf, sizeof(buf), "vcpu%u", id);
 | 
						|
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
 | 
						|
		return;
 | 
						|
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
 | 
						|
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
 | 
						|
		return;
 | 
						|
	vcpu->arch.debugfs_timings =
 | 
						|
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
 | 
						|
				    vcpu, &debugfs_timings_ops);
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
 | 
						|
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
 | 
						|
 | 
						|
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
 | 
						|
						   unsigned int id)
 | 
						|
{
 | 
						|
	struct kvm_vcpu *vcpu;
 | 
						|
	int err;
 | 
						|
	int core;
 | 
						|
	struct kvmppc_vcore *vcore;
 | 
						|
 | 
						|
	err = -ENOMEM;
 | 
						|
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 | 
						|
	if (!vcpu)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	err = kvm_vcpu_init(vcpu, kvm, id);
 | 
						|
	if (err)
 | 
						|
		goto free_vcpu;
 | 
						|
 | 
						|
	vcpu->arch.shared = &vcpu->arch.shregs;
 | 
						|
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
 | 
						|
	/*
 | 
						|
	 * The shared struct is never shared on HV,
 | 
						|
	 * so we can always use host endianness
 | 
						|
	 */
 | 
						|
#ifdef __BIG_ENDIAN__
 | 
						|
	vcpu->arch.shared_big_endian = true;
 | 
						|
#else
 | 
						|
	vcpu->arch.shared_big_endian = false;
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
	vcpu->arch.mmcr[0] = MMCR0_FC;
 | 
						|
	vcpu->arch.ctrl = CTRL_RUNLATCH;
 | 
						|
	/* default to host PVR, since we can't spoof it */
 | 
						|
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
 | 
						|
	spin_lock_init(&vcpu->arch.vpa_update_lock);
 | 
						|
	spin_lock_init(&vcpu->arch.tbacct_lock);
 | 
						|
	vcpu->arch.busy_preempt = TB_NIL;
 | 
						|
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set the default HFSCR for the guest from the host value.
 | 
						|
	 * This value is only used on POWER9.
 | 
						|
	 * On POWER9, we want to virtualize the doorbell facility, so we
 | 
						|
	 * turn off the HFSCR bit, which causes those instructions to trap.
 | 
						|
	 */
 | 
						|
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
 | 
						|
	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
 | 
						|
		vcpu->arch.hfscr |= HFSCR_TM;
 | 
						|
	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
 | 
						|
		vcpu->arch.hfscr &= ~HFSCR_TM;
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
 | 
						|
 | 
						|
	kvmppc_mmu_book3s_hv_init(vcpu);
 | 
						|
 | 
						|
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
 | 
						|
 | 
						|
	init_waitqueue_head(&vcpu->arch.cpu_run);
 | 
						|
 | 
						|
	mutex_lock(&kvm->lock);
 | 
						|
	vcore = NULL;
 | 
						|
	err = -EINVAL;
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 | 
						|
		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
 | 
						|
			pr_devel("KVM: VCPU ID too high\n");
 | 
						|
			core = KVM_MAX_VCORES;
 | 
						|
		} else {
 | 
						|
			BUG_ON(kvm->arch.smt_mode != 1);
 | 
						|
			core = kvmppc_pack_vcpu_id(kvm, id);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		core = id / kvm->arch.smt_mode;
 | 
						|
	}
 | 
						|
	if (core < KVM_MAX_VCORES) {
 | 
						|
		vcore = kvm->arch.vcores[core];
 | 
						|
		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
 | 
						|
			pr_devel("KVM: collision on id %u", id);
 | 
						|
			vcore = NULL;
 | 
						|
		} else if (!vcore) {
 | 
						|
			err = -ENOMEM;
 | 
						|
			vcore = kvmppc_vcore_create(kvm,
 | 
						|
					id & ~(kvm->arch.smt_mode - 1));
 | 
						|
			kvm->arch.vcores[core] = vcore;
 | 
						|
			kvm->arch.online_vcores++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mutex_unlock(&kvm->lock);
 | 
						|
 | 
						|
	if (!vcore)
 | 
						|
		goto free_vcpu;
 | 
						|
 | 
						|
	spin_lock(&vcore->lock);
 | 
						|
	++vcore->num_threads;
 | 
						|
	spin_unlock(&vcore->lock);
 | 
						|
	vcpu->arch.vcore = vcore;
 | 
						|
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
 | 
						|
	vcpu->arch.thread_cpu = -1;
 | 
						|
	vcpu->arch.prev_cpu = -1;
 | 
						|
 | 
						|
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
 | 
						|
	kvmppc_sanity_check(vcpu);
 | 
						|
 | 
						|
	debugfs_vcpu_init(vcpu, id);
 | 
						|
 | 
						|
	return vcpu;
 | 
						|
 | 
						|
free_vcpu:
 | 
						|
	kmem_cache_free(kvm_vcpu_cache, vcpu);
 | 
						|
out:
 | 
						|
	return ERR_PTR(err);
 | 
						|
}
 | 
						|
 | 
						|
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
 | 
						|
			      unsigned long flags)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	int esmt = 0;
 | 
						|
 | 
						|
	if (flags)
 | 
						|
		return -EINVAL;
 | 
						|
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
 | 
						|
		return -EINVAL;
 | 
						|
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
 | 
						|
		/*
 | 
						|
		 * On POWER8 (or POWER7), the threading mode is "strict",
 | 
						|
		 * so we pack smt_mode vcpus per vcore.
 | 
						|
		 */
 | 
						|
		if (smt_mode > threads_per_subcore)
 | 
						|
			return -EINVAL;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * On POWER9, the threading mode is "loose",
 | 
						|
		 * so each vcpu gets its own vcore.
 | 
						|
		 */
 | 
						|
		esmt = smt_mode;
 | 
						|
		smt_mode = 1;
 | 
						|
	}
 | 
						|
	mutex_lock(&kvm->lock);
 | 
						|
	err = -EBUSY;
 | 
						|
	if (!kvm->arch.online_vcores) {
 | 
						|
		kvm->arch.smt_mode = smt_mode;
 | 
						|
		kvm->arch.emul_smt_mode = esmt;
 | 
						|
		err = 0;
 | 
						|
	}
 | 
						|
	mutex_unlock(&kvm->lock);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
 | 
						|
{
 | 
						|
	if (vpa->pinned_addr)
 | 
						|
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
 | 
						|
					vpa->dirty);
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	spin_lock(&vcpu->arch.vpa_update_lock);
 | 
						|
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
 | 
						|
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
 | 
						|
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
 | 
						|
	spin_unlock(&vcpu->arch.vpa_update_lock);
 | 
						|
	kvm_vcpu_uninit(vcpu);
 | 
						|
	kmem_cache_free(kvm_vcpu_cache, vcpu);
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	/* Indicate we want to get back into the guest */
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	unsigned long dec_nsec, now;
 | 
						|
 | 
						|
	now = get_tb();
 | 
						|
	if (now > vcpu->arch.dec_expires) {
 | 
						|
		/* decrementer has already gone negative */
 | 
						|
		kvmppc_core_queue_dec(vcpu);
 | 
						|
		kvmppc_core_prepare_to_enter(vcpu);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
 | 
						|
		   / tb_ticks_per_sec;
 | 
						|
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
 | 
						|
	vcpu->arch.timer_running = 1;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	vcpu->arch.ceded = 0;
 | 
						|
	if (vcpu->arch.timer_running) {
 | 
						|
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
 | 
						|
		vcpu->arch.timer_running = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
extern int __kvmppc_vcore_entry(void);
 | 
						|
 | 
						|
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
 | 
						|
				   struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	u64 now;
 | 
						|
 | 
						|
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
 | 
						|
		return;
 | 
						|
	spin_lock_irq(&vcpu->arch.tbacct_lock);
 | 
						|
	now = mftb();
 | 
						|
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
 | 
						|
		vcpu->arch.stolen_logged;
 | 
						|
	vcpu->arch.busy_preempt = now;
 | 
						|
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
 | 
						|
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
 | 
						|
	--vc->n_runnable;
 | 
						|
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_grab_hwthread(int cpu)
 | 
						|
{
 | 
						|
	struct paca_struct *tpaca;
 | 
						|
	long timeout = 10000;
 | 
						|
 | 
						|
	tpaca = paca_ptrs[cpu];
 | 
						|
 | 
						|
	/* Ensure the thread won't go into the kernel if it wakes */
 | 
						|
	tpaca->kvm_hstate.kvm_vcpu = NULL;
 | 
						|
	tpaca->kvm_hstate.kvm_vcore = NULL;
 | 
						|
	tpaca->kvm_hstate.napping = 0;
 | 
						|
	smp_wmb();
 | 
						|
	tpaca->kvm_hstate.hwthread_req = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the thread is already executing in the kernel (e.g. handling
 | 
						|
	 * a stray interrupt), wait for it to get back to nap mode.
 | 
						|
	 * The smp_mb() is to ensure that our setting of hwthread_req
 | 
						|
	 * is visible before we look at hwthread_state, so if this
 | 
						|
	 * races with the code at system_reset_pSeries and the thread
 | 
						|
	 * misses our setting of hwthread_req, we are sure to see its
 | 
						|
	 * setting of hwthread_state, and vice versa.
 | 
						|
	 */
 | 
						|
	smp_mb();
 | 
						|
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
 | 
						|
		if (--timeout <= 0) {
 | 
						|
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
 | 
						|
			return -EBUSY;
 | 
						|
		}
 | 
						|
		udelay(1);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_release_hwthread(int cpu)
 | 
						|
{
 | 
						|
	struct paca_struct *tpaca;
 | 
						|
 | 
						|
	tpaca = paca_ptrs[cpu];
 | 
						|
	tpaca->kvm_hstate.hwthread_req = 0;
 | 
						|
	tpaca->kvm_hstate.kvm_vcpu = NULL;
 | 
						|
	tpaca->kvm_hstate.kvm_vcore = NULL;
 | 
						|
	tpaca->kvm_hstate.kvm_split_mode = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	cpu = cpu_first_thread_sibling(cpu);
 | 
						|
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
 | 
						|
	/*
 | 
						|
	 * Make sure setting of bit in need_tlb_flush precedes
 | 
						|
	 * testing of cpu_in_guest bits.  The matching barrier on
 | 
						|
	 * the other side is the first smp_mb() in kvmppc_run_core().
 | 
						|
	 */
 | 
						|
	smp_mb();
 | 
						|
	for (i = 0; i < threads_per_core; ++i)
 | 
						|
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
 | 
						|
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
 | 
						|
{
 | 
						|
	struct kvm *kvm = vcpu->kvm;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * With radix, the guest can do TLB invalidations itself,
 | 
						|
	 * and it could choose to use the local form (tlbiel) if
 | 
						|
	 * it is invalidating a translation that has only ever been
 | 
						|
	 * used on one vcpu.  However, that doesn't mean it has
 | 
						|
	 * only ever been used on one physical cpu, since vcpus
 | 
						|
	 * can move around between pcpus.  To cope with this, when
 | 
						|
	 * a vcpu moves from one pcpu to another, we need to tell
 | 
						|
	 * any vcpus running on the same core as this vcpu previously
 | 
						|
	 * ran to flush the TLB.  The TLB is shared between threads,
 | 
						|
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
 | 
						|
	 */
 | 
						|
	if (vcpu->arch.prev_cpu != pcpu) {
 | 
						|
		if (vcpu->arch.prev_cpu >= 0 &&
 | 
						|
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
 | 
						|
		    cpu_first_thread_sibling(pcpu))
 | 
						|
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
 | 
						|
		vcpu->arch.prev_cpu = pcpu;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
	struct paca_struct *tpaca;
 | 
						|
	struct kvm *kvm = vc->kvm;
 | 
						|
 | 
						|
	cpu = vc->pcpu;
 | 
						|
	if (vcpu) {
 | 
						|
		if (vcpu->arch.timer_running) {
 | 
						|
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
 | 
						|
			vcpu->arch.timer_running = 0;
 | 
						|
		}
 | 
						|
		cpu += vcpu->arch.ptid;
 | 
						|
		vcpu->cpu = vc->pcpu;
 | 
						|
		vcpu->arch.thread_cpu = cpu;
 | 
						|
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
 | 
						|
	}
 | 
						|
	tpaca = paca_ptrs[cpu];
 | 
						|
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
 | 
						|
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
 | 
						|
	tpaca->kvm_hstate.fake_suspend = 0;
 | 
						|
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
 | 
						|
	smp_wmb();
 | 
						|
	tpaca->kvm_hstate.kvm_vcore = vc;
 | 
						|
	if (cpu != smp_processor_id())
 | 
						|
		kvmppc_ipi_thread(cpu);
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_wait_for_nap(int n_threads)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
	int i, loops;
 | 
						|
 | 
						|
	if (n_threads <= 1)
 | 
						|
		return;
 | 
						|
	for (loops = 0; loops < 1000000; ++loops) {
 | 
						|
		/*
 | 
						|
		 * Check if all threads are finished.
 | 
						|
		 * We set the vcore pointer when starting a thread
 | 
						|
		 * and the thread clears it when finished, so we look
 | 
						|
		 * for any threads that still have a non-NULL vcore ptr.
 | 
						|
		 */
 | 
						|
		for (i = 1; i < n_threads; ++i)
 | 
						|
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
 | 
						|
				break;
 | 
						|
		if (i == n_threads) {
 | 
						|
			HMT_medium();
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		HMT_low();
 | 
						|
	}
 | 
						|
	HMT_medium();
 | 
						|
	for (i = 1; i < n_threads; ++i)
 | 
						|
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
 | 
						|
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check that we are on thread 0 and that any other threads in
 | 
						|
 * this core are off-line.  Then grab the threads so they can't
 | 
						|
 * enter the kernel.
 | 
						|
 */
 | 
						|
static int on_primary_thread(void)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
	int thr;
 | 
						|
 | 
						|
	/* Are we on a primary subcore? */
 | 
						|
	if (cpu_thread_in_subcore(cpu))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	thr = 0;
 | 
						|
	while (++thr < threads_per_subcore)
 | 
						|
		if (cpu_online(cpu + thr))
 | 
						|
			return 0;
 | 
						|
 | 
						|
	/* Grab all hw threads so they can't go into the kernel */
 | 
						|
	for (thr = 1; thr < threads_per_subcore; ++thr) {
 | 
						|
		if (kvmppc_grab_hwthread(cpu + thr)) {
 | 
						|
			/* Couldn't grab one; let the others go */
 | 
						|
			do {
 | 
						|
				kvmppc_release_hwthread(cpu + thr);
 | 
						|
			} while (--thr > 0);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A list of virtual cores for each physical CPU.
 | 
						|
 * These are vcores that could run but their runner VCPU tasks are
 | 
						|
 * (or may be) preempted.
 | 
						|
 */
 | 
						|
struct preempted_vcore_list {
 | 
						|
	struct list_head	list;
 | 
						|
	spinlock_t		lock;
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
 | 
						|
 | 
						|
static void init_vcore_lists(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
 | 
						|
		spin_lock_init(&lp->lock);
 | 
						|
		INIT_LIST_HEAD(&lp->list);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
 | 
						|
 | 
						|
	vc->vcore_state = VCORE_PREEMPT;
 | 
						|
	vc->pcpu = smp_processor_id();
 | 
						|
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
 | 
						|
		spin_lock(&lp->lock);
 | 
						|
		list_add_tail(&vc->preempt_list, &lp->list);
 | 
						|
		spin_unlock(&lp->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Start accumulating stolen time */
 | 
						|
	kvmppc_core_start_stolen(vc);
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	struct preempted_vcore_list *lp;
 | 
						|
 | 
						|
	kvmppc_core_end_stolen(vc);
 | 
						|
	if (!list_empty(&vc->preempt_list)) {
 | 
						|
		lp = &per_cpu(preempted_vcores, vc->pcpu);
 | 
						|
		spin_lock(&lp->lock);
 | 
						|
		list_del_init(&vc->preempt_list);
 | 
						|
		spin_unlock(&lp->lock);
 | 
						|
	}
 | 
						|
	vc->vcore_state = VCORE_INACTIVE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This stores information about the virtual cores currently
 | 
						|
 * assigned to a physical core.
 | 
						|
 */
 | 
						|
struct core_info {
 | 
						|
	int		n_subcores;
 | 
						|
	int		max_subcore_threads;
 | 
						|
	int		total_threads;
 | 
						|
	int		subcore_threads[MAX_SUBCORES];
 | 
						|
	struct kvmppc_vcore *vc[MAX_SUBCORES];
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
 | 
						|
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
 | 
						|
 */
 | 
						|
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
 | 
						|
 | 
						|
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	memset(cip, 0, sizeof(*cip));
 | 
						|
	cip->n_subcores = 1;
 | 
						|
	cip->max_subcore_threads = vc->num_threads;
 | 
						|
	cip->total_threads = vc->num_threads;
 | 
						|
	cip->subcore_threads[0] = vc->num_threads;
 | 
						|
	cip->vc[0] = vc;
 | 
						|
}
 | 
						|
 | 
						|
static bool subcore_config_ok(int n_subcores, int n_threads)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
 | 
						|
	 * split-core mode, with one thread per subcore.
 | 
						|
	 */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		return n_subcores <= 4 && n_threads == 1;
 | 
						|
 | 
						|
	/* On POWER8, can only dynamically split if unsplit to begin with */
 | 
						|
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
 | 
						|
		return false;
 | 
						|
	if (n_subcores > MAX_SUBCORES)
 | 
						|
		return false;
 | 
						|
	if (n_subcores > 1) {
 | 
						|
		if (!(dynamic_mt_modes & 2))
 | 
						|
			n_subcores = 4;
 | 
						|
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
 | 
						|
			return false;
 | 
						|
	}
 | 
						|
 | 
						|
	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
 | 
						|
}
 | 
						|
 | 
						|
static void init_vcore_to_run(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	vc->entry_exit_map = 0;
 | 
						|
	vc->in_guest = 0;
 | 
						|
	vc->napping_threads = 0;
 | 
						|
	vc->conferring_threads = 0;
 | 
						|
	vc->tb_offset_applied = 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
 | 
						|
{
 | 
						|
	int n_threads = vc->num_threads;
 | 
						|
	int sub;
 | 
						|
 | 
						|
	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Some POWER9 chips require all threads to be in the same MMU mode */
 | 
						|
	if (no_mixing_hpt_and_radix &&
 | 
						|
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (n_threads < cip->max_subcore_threads)
 | 
						|
		n_threads = cip->max_subcore_threads;
 | 
						|
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
 | 
						|
		return false;
 | 
						|
	cip->max_subcore_threads = n_threads;
 | 
						|
 | 
						|
	sub = cip->n_subcores;
 | 
						|
	++cip->n_subcores;
 | 
						|
	cip->total_threads += vc->num_threads;
 | 
						|
	cip->subcore_threads[sub] = vc->num_threads;
 | 
						|
	cip->vc[sub] = vc;
 | 
						|
	init_vcore_to_run(vc);
 | 
						|
	list_del_init(&vc->preempt_list);
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Work out whether it is possible to piggyback the execution of
 | 
						|
 * vcore *pvc onto the execution of the other vcores described in *cip.
 | 
						|
 */
 | 
						|
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
 | 
						|
			  int target_threads)
 | 
						|
{
 | 
						|
	if (cip->total_threads + pvc->num_threads > target_threads)
 | 
						|
		return false;
 | 
						|
 | 
						|
	return can_dynamic_split(pvc, cip);
 | 
						|
}
 | 
						|
 | 
						|
static void prepare_threads(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct kvm_vcpu *vcpu;
 | 
						|
 | 
						|
	for_each_runnable_thread(i, vcpu, vc) {
 | 
						|
		if (signal_pending(vcpu->arch.run_task))
 | 
						|
			vcpu->arch.ret = -EINTR;
 | 
						|
		else if (vcpu->arch.vpa.update_pending ||
 | 
						|
			 vcpu->arch.slb_shadow.update_pending ||
 | 
						|
			 vcpu->arch.dtl.update_pending)
 | 
						|
			vcpu->arch.ret = RESUME_GUEST;
 | 
						|
		else
 | 
						|
			continue;
 | 
						|
		kvmppc_remove_runnable(vc, vcpu);
 | 
						|
		wake_up(&vcpu->arch.cpu_run);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void collect_piggybacks(struct core_info *cip, int target_threads)
 | 
						|
{
 | 
						|
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
 | 
						|
	struct kvmppc_vcore *pvc, *vcnext;
 | 
						|
 | 
						|
	spin_lock(&lp->lock);
 | 
						|
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
 | 
						|
		if (!spin_trylock(&pvc->lock))
 | 
						|
			continue;
 | 
						|
		prepare_threads(pvc);
 | 
						|
		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
 | 
						|
			list_del_init(&pvc->preempt_list);
 | 
						|
			if (pvc->runner == NULL) {
 | 
						|
				pvc->vcore_state = VCORE_INACTIVE;
 | 
						|
				kvmppc_core_end_stolen(pvc);
 | 
						|
			}
 | 
						|
			spin_unlock(&pvc->lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (!can_piggyback(pvc, cip, target_threads)) {
 | 
						|
			spin_unlock(&pvc->lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		kvmppc_core_end_stolen(pvc);
 | 
						|
		pvc->vcore_state = VCORE_PIGGYBACK;
 | 
						|
		if (cip->total_threads >= target_threads)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	spin_unlock(&lp->lock);
 | 
						|
}
 | 
						|
 | 
						|
static bool recheck_signals_and_mmu(struct core_info *cip)
 | 
						|
{
 | 
						|
	int sub, i;
 | 
						|
	struct kvm_vcpu *vcpu;
 | 
						|
	struct kvmppc_vcore *vc;
 | 
						|
 | 
						|
	for (sub = 0; sub < cip->n_subcores; ++sub) {
 | 
						|
		vc = cip->vc[sub];
 | 
						|
		if (!vc->kvm->arch.mmu_ready)
 | 
						|
			return true;
 | 
						|
		for_each_runnable_thread(i, vcpu, vc)
 | 
						|
			if (signal_pending(vcpu->arch.run_task))
 | 
						|
				return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
 | 
						|
{
 | 
						|
	int still_running = 0, i;
 | 
						|
	u64 now;
 | 
						|
	long ret;
 | 
						|
	struct kvm_vcpu *vcpu;
 | 
						|
 | 
						|
	spin_lock(&vc->lock);
 | 
						|
	now = get_tb();
 | 
						|
	for_each_runnable_thread(i, vcpu, vc) {
 | 
						|
		/* cancel pending dec exception if dec is positive */
 | 
						|
		if (now < vcpu->arch.dec_expires &&
 | 
						|
		    kvmppc_core_pending_dec(vcpu))
 | 
						|
			kvmppc_core_dequeue_dec(vcpu);
 | 
						|
 | 
						|
		trace_kvm_guest_exit(vcpu);
 | 
						|
 | 
						|
		ret = RESUME_GUEST;
 | 
						|
		if (vcpu->arch.trap)
 | 
						|
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
 | 
						|
						    vcpu->arch.run_task);
 | 
						|
 | 
						|
		vcpu->arch.ret = ret;
 | 
						|
		vcpu->arch.trap = 0;
 | 
						|
 | 
						|
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
 | 
						|
			if (vcpu->arch.pending_exceptions)
 | 
						|
				kvmppc_core_prepare_to_enter(vcpu);
 | 
						|
			if (vcpu->arch.ceded)
 | 
						|
				kvmppc_set_timer(vcpu);
 | 
						|
			else
 | 
						|
				++still_running;
 | 
						|
		} else {
 | 
						|
			kvmppc_remove_runnable(vc, vcpu);
 | 
						|
			wake_up(&vcpu->arch.cpu_run);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (!is_master) {
 | 
						|
		if (still_running > 0) {
 | 
						|
			kvmppc_vcore_preempt(vc);
 | 
						|
		} else if (vc->runner) {
 | 
						|
			vc->vcore_state = VCORE_PREEMPT;
 | 
						|
			kvmppc_core_start_stolen(vc);
 | 
						|
		} else {
 | 
						|
			vc->vcore_state = VCORE_INACTIVE;
 | 
						|
		}
 | 
						|
		if (vc->n_runnable > 0 && vc->runner == NULL) {
 | 
						|
			/* make sure there's a candidate runner awake */
 | 
						|
			i = -1;
 | 
						|
			vcpu = next_runnable_thread(vc, &i);
 | 
						|
			wake_up(&vcpu->arch.cpu_run);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(&vc->lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear core from the list of active host cores as we are about to
 | 
						|
 * enter the guest. Only do this if it is the primary thread of the
 | 
						|
 * core (not if a subcore) that is entering the guest.
 | 
						|
 */
 | 
						|
static inline int kvmppc_clear_host_core(unsigned int cpu)
 | 
						|
{
 | 
						|
	int core;
 | 
						|
 | 
						|
	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
 | 
						|
		return 0;
 | 
						|
	/*
 | 
						|
	 * Memory barrier can be omitted here as we will do a smp_wmb()
 | 
						|
	 * later in kvmppc_start_thread and we need ensure that state is
 | 
						|
	 * visible to other CPUs only after we enter guest.
 | 
						|
	 */
 | 
						|
	core = cpu >> threads_shift;
 | 
						|
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Advertise this core as an active host core since we exited the guest
 | 
						|
 * Only need to do this if it is the primary thread of the core that is
 | 
						|
 * exiting.
 | 
						|
 */
 | 
						|
static inline int kvmppc_set_host_core(unsigned int cpu)
 | 
						|
{
 | 
						|
	int core;
 | 
						|
 | 
						|
	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Memory barrier can be omitted here because we do a spin_unlock
 | 
						|
	 * immediately after this which provides the memory barrier.
 | 
						|
	 */
 | 
						|
	core = cpu >> threads_shift;
 | 
						|
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void set_irq_happened(int trap)
 | 
						|
{
 | 
						|
	switch (trap) {
 | 
						|
	case BOOK3S_INTERRUPT_EXTERNAL:
 | 
						|
		local_paca->irq_happened |= PACA_IRQ_EE;
 | 
						|
		break;
 | 
						|
	case BOOK3S_INTERRUPT_H_DOORBELL:
 | 
						|
		local_paca->irq_happened |= PACA_IRQ_DBELL;
 | 
						|
		break;
 | 
						|
	case BOOK3S_INTERRUPT_HMI:
 | 
						|
		local_paca->irq_happened |= PACA_IRQ_HMI;
 | 
						|
		break;
 | 
						|
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
 | 
						|
		replay_system_reset();
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Run a set of guest threads on a physical core.
 | 
						|
 * Called with vc->lock held.
 | 
						|
 */
 | 
						|
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	struct kvm_vcpu *vcpu;
 | 
						|
	int i;
 | 
						|
	int srcu_idx;
 | 
						|
	struct core_info core_info;
 | 
						|
	struct kvmppc_vcore *pvc;
 | 
						|
	struct kvm_split_mode split_info, *sip;
 | 
						|
	int split, subcore_size, active;
 | 
						|
	int sub;
 | 
						|
	bool thr0_done;
 | 
						|
	unsigned long cmd_bit, stat_bit;
 | 
						|
	int pcpu, thr;
 | 
						|
	int target_threads;
 | 
						|
	int controlled_threads;
 | 
						|
	int trap;
 | 
						|
	bool is_power8;
 | 
						|
	bool hpt_on_radix;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Remove from the list any threads that have a signal pending
 | 
						|
	 * or need a VPA update done
 | 
						|
	 */
 | 
						|
	prepare_threads(vc);
 | 
						|
 | 
						|
	/* if the runner is no longer runnable, let the caller pick a new one */
 | 
						|
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize *vc.
 | 
						|
	 */
 | 
						|
	init_vcore_to_run(vc);
 | 
						|
	vc->preempt_tb = TB_NIL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Number of threads that we will be controlling: the same as
 | 
						|
	 * the number of threads per subcore, except on POWER9,
 | 
						|
	 * where it's 1 because the threads are (mostly) independent.
 | 
						|
	 */
 | 
						|
	controlled_threads = threads_per_vcore(vc->kvm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure we are running on primary threads, and that secondary
 | 
						|
	 * threads are offline.  Also check if the number of threads in this
 | 
						|
	 * guest are greater than the current system threads per guest.
 | 
						|
	 * On POWER9, we need to be not in independent-threads mode if
 | 
						|
	 * this is a HPT guest on a radix host machine where the
 | 
						|
	 * CPU threads may not be in different MMU modes.
 | 
						|
	 */
 | 
						|
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
 | 
						|
		!kvm_is_radix(vc->kvm);
 | 
						|
	if (((controlled_threads > 1) &&
 | 
						|
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
 | 
						|
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
 | 
						|
		for_each_runnable_thread(i, vcpu, vc) {
 | 
						|
			vcpu->arch.ret = -EBUSY;
 | 
						|
			kvmppc_remove_runnable(vc, vcpu);
 | 
						|
			wake_up(&vcpu->arch.cpu_run);
 | 
						|
		}
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * See if we could run any other vcores on the physical core
 | 
						|
	 * along with this one.
 | 
						|
	 */
 | 
						|
	init_core_info(&core_info, vc);
 | 
						|
	pcpu = smp_processor_id();
 | 
						|
	target_threads = controlled_threads;
 | 
						|
	if (target_smt_mode && target_smt_mode < target_threads)
 | 
						|
		target_threads = target_smt_mode;
 | 
						|
	if (vc->num_threads < target_threads)
 | 
						|
		collect_piggybacks(&core_info, target_threads);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On radix, arrange for TLB flushing if necessary.
 | 
						|
	 * This has to be done before disabling interrupts since
 | 
						|
	 * it uses smp_call_function().
 | 
						|
	 */
 | 
						|
	pcpu = smp_processor_id();
 | 
						|
	if (kvm_is_radix(vc->kvm)) {
 | 
						|
		for (sub = 0; sub < core_info.n_subcores; ++sub)
 | 
						|
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
 | 
						|
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Hard-disable interrupts, and check resched flag and signals.
 | 
						|
	 * If we need to reschedule or deliver a signal, clean up
 | 
						|
	 * and return without going into the guest(s).
 | 
						|
	 * If the mmu_ready flag has been cleared, don't go into the
 | 
						|
	 * guest because that means a HPT resize operation is in progress.
 | 
						|
	 */
 | 
						|
	local_irq_disable();
 | 
						|
	hard_irq_disable();
 | 
						|
	if (lazy_irq_pending() || need_resched() ||
 | 
						|
	    recheck_signals_and_mmu(&core_info)) {
 | 
						|
		local_irq_enable();
 | 
						|
		vc->vcore_state = VCORE_INACTIVE;
 | 
						|
		/* Unlock all except the primary vcore */
 | 
						|
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
 | 
						|
			pvc = core_info.vc[sub];
 | 
						|
			/* Put back on to the preempted vcores list */
 | 
						|
			kvmppc_vcore_preempt(pvc);
 | 
						|
			spin_unlock(&pvc->lock);
 | 
						|
		}
 | 
						|
		for (i = 0; i < controlled_threads; ++i)
 | 
						|
			kvmppc_release_hwthread(pcpu + i);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	kvmppc_clear_host_core(pcpu);
 | 
						|
 | 
						|
	/* Decide on micro-threading (split-core) mode */
 | 
						|
	subcore_size = threads_per_subcore;
 | 
						|
	cmd_bit = stat_bit = 0;
 | 
						|
	split = core_info.n_subcores;
 | 
						|
	sip = NULL;
 | 
						|
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
 | 
						|
		&& !cpu_has_feature(CPU_FTR_ARCH_300);
 | 
						|
 | 
						|
	if (split > 1 || hpt_on_radix) {
 | 
						|
		sip = &split_info;
 | 
						|
		memset(&split_info, 0, sizeof(split_info));
 | 
						|
		for (sub = 0; sub < core_info.n_subcores; ++sub)
 | 
						|
			split_info.vc[sub] = core_info.vc[sub];
 | 
						|
 | 
						|
		if (is_power8) {
 | 
						|
			if (split == 2 && (dynamic_mt_modes & 2)) {
 | 
						|
				cmd_bit = HID0_POWER8_1TO2LPAR;
 | 
						|
				stat_bit = HID0_POWER8_2LPARMODE;
 | 
						|
			} else {
 | 
						|
				split = 4;
 | 
						|
				cmd_bit = HID0_POWER8_1TO4LPAR;
 | 
						|
				stat_bit = HID0_POWER8_4LPARMODE;
 | 
						|
			}
 | 
						|
			subcore_size = MAX_SMT_THREADS / split;
 | 
						|
			split_info.rpr = mfspr(SPRN_RPR);
 | 
						|
			split_info.pmmar = mfspr(SPRN_PMMAR);
 | 
						|
			split_info.ldbar = mfspr(SPRN_LDBAR);
 | 
						|
			split_info.subcore_size = subcore_size;
 | 
						|
		} else {
 | 
						|
			split_info.subcore_size = 1;
 | 
						|
			if (hpt_on_radix) {
 | 
						|
				/* Use the split_info for LPCR/LPIDR changes */
 | 
						|
				split_info.lpcr_req = vc->lpcr;
 | 
						|
				split_info.lpidr_req = vc->kvm->arch.lpid;
 | 
						|
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
 | 
						|
				split_info.do_set = 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* order writes to split_info before kvm_split_mode pointer */
 | 
						|
		smp_wmb();
 | 
						|
	}
 | 
						|
 | 
						|
	for (thr = 0; thr < controlled_threads; ++thr) {
 | 
						|
		struct paca_struct *paca = paca_ptrs[pcpu + thr];
 | 
						|
 | 
						|
		paca->kvm_hstate.tid = thr;
 | 
						|
		paca->kvm_hstate.napping = 0;
 | 
						|
		paca->kvm_hstate.kvm_split_mode = sip;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Initiate micro-threading (split-core) on POWER8 if required */
 | 
						|
	if (cmd_bit) {
 | 
						|
		unsigned long hid0 = mfspr(SPRN_HID0);
 | 
						|
 | 
						|
		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
 | 
						|
		mb();
 | 
						|
		mtspr(SPRN_HID0, hid0);
 | 
						|
		isync();
 | 
						|
		for (;;) {
 | 
						|
			hid0 = mfspr(SPRN_HID0);
 | 
						|
			if (hid0 & stat_bit)
 | 
						|
				break;
 | 
						|
			cpu_relax();
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On POWER8, set RWMR register.
 | 
						|
	 * Since it only affects PURR and SPURR, it doesn't affect
 | 
						|
	 * the host, so we don't save/restore the host value.
 | 
						|
	 */
 | 
						|
	if (is_power8) {
 | 
						|
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
 | 
						|
		int n_online = atomic_read(&vc->online_count);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Use the 8-thread value if we're doing split-core
 | 
						|
		 * or if the vcore's online count looks bogus.
 | 
						|
		 */
 | 
						|
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
 | 
						|
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
 | 
						|
			rwmr_val = p8_rwmr_values[n_online];
 | 
						|
		mtspr(SPRN_RWMR, rwmr_val);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Start all the threads */
 | 
						|
	active = 0;
 | 
						|
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
 | 
						|
		thr = is_power8 ? subcore_thread_map[sub] : sub;
 | 
						|
		thr0_done = false;
 | 
						|
		active |= 1 << thr;
 | 
						|
		pvc = core_info.vc[sub];
 | 
						|
		pvc->pcpu = pcpu + thr;
 | 
						|
		for_each_runnable_thread(i, vcpu, pvc) {
 | 
						|
			kvmppc_start_thread(vcpu, pvc);
 | 
						|
			kvmppc_create_dtl_entry(vcpu, pvc);
 | 
						|
			trace_kvm_guest_enter(vcpu);
 | 
						|
			if (!vcpu->arch.ptid)
 | 
						|
				thr0_done = true;
 | 
						|
			active |= 1 << (thr + vcpu->arch.ptid);
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * We need to start the first thread of each subcore
 | 
						|
		 * even if it doesn't have a vcpu.
 | 
						|
		 */
 | 
						|
		if (!thr0_done)
 | 
						|
			kvmppc_start_thread(NULL, pvc);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that split_info.do_nap is set after setting
 | 
						|
	 * the vcore pointer in the PACA of the secondaries.
 | 
						|
	 */
 | 
						|
	smp_mb();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When doing micro-threading, poke the inactive threads as well.
 | 
						|
	 * This gets them to the nap instruction after kvm_do_nap,
 | 
						|
	 * which reduces the time taken to unsplit later.
 | 
						|
	 * For POWER9 HPT guest on radix host, we need all the secondary
 | 
						|
	 * threads woken up so they can do the LPCR/LPIDR change.
 | 
						|
	 */
 | 
						|
	if (cmd_bit || hpt_on_radix) {
 | 
						|
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
 | 
						|
		for (thr = 1; thr < threads_per_subcore; ++thr)
 | 
						|
			if (!(active & (1 << thr)))
 | 
						|
				kvmppc_ipi_thread(pcpu + thr);
 | 
						|
	}
 | 
						|
 | 
						|
	vc->vcore_state = VCORE_RUNNING;
 | 
						|
	preempt_disable();
 | 
						|
 | 
						|
	trace_kvmppc_run_core(vc, 0);
 | 
						|
 | 
						|
	for (sub = 0; sub < core_info.n_subcores; ++sub)
 | 
						|
		spin_unlock(&core_info.vc[sub]->lock);
 | 
						|
 | 
						|
	if (kvm_is_radix(vc->kvm)) {
 | 
						|
		int tmp = pcpu;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Do we need to flush the process scoped TLB for the LPAR?
 | 
						|
		 *
 | 
						|
		 * On POWER9, individual threads can come in here, but the
 | 
						|
		 * TLB is shared between the 4 threads in a core, hence
 | 
						|
		 * invalidating on one thread invalidates for all.
 | 
						|
		 * Thus we make all 4 threads use the same bit here.
 | 
						|
		 *
 | 
						|
		 * Hash must be flushed in realmode in order to use tlbiel.
 | 
						|
		 */
 | 
						|
		mtspr(SPRN_LPID, vc->kvm->arch.lpid);
 | 
						|
		isync();
 | 
						|
 | 
						|
		if (cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
			tmp &= ~0x3UL;
 | 
						|
 | 
						|
		if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
 | 
						|
			radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
 | 
						|
			/* Clear the bit after the TLB flush */
 | 
						|
			cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Interrupts will be enabled once we get into the guest,
 | 
						|
	 * so tell lockdep that we're about to enable interrupts.
 | 
						|
	 */
 | 
						|
	trace_hardirqs_on();
 | 
						|
 | 
						|
	guest_enter_irqoff();
 | 
						|
 | 
						|
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
 | 
						|
 | 
						|
	this_cpu_disable_ftrace();
 | 
						|
 | 
						|
	trap = __kvmppc_vcore_entry();
 | 
						|
 | 
						|
	this_cpu_enable_ftrace();
 | 
						|
 | 
						|
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
 | 
						|
 | 
						|
	trace_hardirqs_off();
 | 
						|
	set_irq_happened(trap);
 | 
						|
 | 
						|
	spin_lock(&vc->lock);
 | 
						|
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
 | 
						|
	vc->vcore_state = VCORE_EXITING;
 | 
						|
 | 
						|
	/* wait for secondary threads to finish writing their state to memory */
 | 
						|
	kvmppc_wait_for_nap(controlled_threads);
 | 
						|
 | 
						|
	/* Return to whole-core mode if we split the core earlier */
 | 
						|
	if (cmd_bit) {
 | 
						|
		unsigned long hid0 = mfspr(SPRN_HID0);
 | 
						|
		unsigned long loops = 0;
 | 
						|
 | 
						|
		hid0 &= ~HID0_POWER8_DYNLPARDIS;
 | 
						|
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
 | 
						|
		mb();
 | 
						|
		mtspr(SPRN_HID0, hid0);
 | 
						|
		isync();
 | 
						|
		for (;;) {
 | 
						|
			hid0 = mfspr(SPRN_HID0);
 | 
						|
			if (!(hid0 & stat_bit))
 | 
						|
				break;
 | 
						|
			cpu_relax();
 | 
						|
			++loops;
 | 
						|
		}
 | 
						|
	} else if (hpt_on_radix) {
 | 
						|
		/* Wait for all threads to have seen final sync */
 | 
						|
		for (thr = 1; thr < controlled_threads; ++thr) {
 | 
						|
			struct paca_struct *paca = paca_ptrs[pcpu + thr];
 | 
						|
 | 
						|
			while (paca->kvm_hstate.kvm_split_mode) {
 | 
						|
				HMT_low();
 | 
						|
				barrier();
 | 
						|
			}
 | 
						|
			HMT_medium();
 | 
						|
		}
 | 
						|
	}
 | 
						|
	split_info.do_nap = 0;
 | 
						|
 | 
						|
	kvmppc_set_host_core(pcpu);
 | 
						|
 | 
						|
	local_irq_enable();
 | 
						|
	guest_exit();
 | 
						|
 | 
						|
	/* Let secondaries go back to the offline loop */
 | 
						|
	for (i = 0; i < controlled_threads; ++i) {
 | 
						|
		kvmppc_release_hwthread(pcpu + i);
 | 
						|
		if (sip && sip->napped[i])
 | 
						|
			kvmppc_ipi_thread(pcpu + i);
 | 
						|
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&vc->lock);
 | 
						|
 | 
						|
	/* make sure updates to secondary vcpu structs are visible now */
 | 
						|
	smp_mb();
 | 
						|
 | 
						|
	preempt_enable();
 | 
						|
 | 
						|
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
 | 
						|
		pvc = core_info.vc[sub];
 | 
						|
		post_guest_process(pvc, pvc == vc);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&vc->lock);
 | 
						|
 | 
						|
 out:
 | 
						|
	vc->vcore_state = VCORE_INACTIVE;
 | 
						|
	trace_kvmppc_run_core(vc, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wait for some other vcpu thread to execute us, and
 | 
						|
 * wake us up when we need to handle something in the host.
 | 
						|
 */
 | 
						|
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
 | 
						|
				 struct kvm_vcpu *vcpu, int wait_state)
 | 
						|
{
 | 
						|
	DEFINE_WAIT(wait);
 | 
						|
 | 
						|
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
 | 
						|
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
 | 
						|
		spin_unlock(&vc->lock);
 | 
						|
		schedule();
 | 
						|
		spin_lock(&vc->lock);
 | 
						|
	}
 | 
						|
	finish_wait(&vcpu->arch.cpu_run, &wait);
 | 
						|
}
 | 
						|
 | 
						|
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	/* 10us base */
 | 
						|
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
 | 
						|
		vc->halt_poll_ns = 10000;
 | 
						|
	else
 | 
						|
		vc->halt_poll_ns *= halt_poll_ns_grow;
 | 
						|
}
 | 
						|
 | 
						|
static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	if (halt_poll_ns_shrink == 0)
 | 
						|
		vc->halt_poll_ns = 0;
 | 
						|
	else
 | 
						|
		vc->halt_poll_ns /= halt_poll_ns_shrink;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_KVM_XICS
 | 
						|
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	if (!xive_enabled())
 | 
						|
		return false;
 | 
						|
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
 | 
						|
		vcpu->arch.xive_saved_state.cppr;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
#endif /* CONFIG_KVM_XICS */
 | 
						|
 | 
						|
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
 | 
						|
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if any of the runnable vcpus on the vcore have pending
 | 
						|
 * exceptions or are no longer ceded
 | 
						|
 */
 | 
						|
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	struct kvm_vcpu *vcpu;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for_each_runnable_thread(i, vcpu, vc) {
 | 
						|
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * All the vcpus in this vcore are idle, so wait for a decrementer
 | 
						|
 * or external interrupt to one of the vcpus.  vc->lock is held.
 | 
						|
 */
 | 
						|
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
 | 
						|
{
 | 
						|
	ktime_t cur, start_poll, start_wait;
 | 
						|
	int do_sleep = 1;
 | 
						|
	u64 block_ns;
 | 
						|
	DECLARE_SWAITQUEUE(wait);
 | 
						|
 | 
						|
	/* Poll for pending exceptions and ceded state */
 | 
						|
	cur = start_poll = ktime_get();
 | 
						|
	if (vc->halt_poll_ns) {
 | 
						|
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
 | 
						|
		++vc->runner->stat.halt_attempted_poll;
 | 
						|
 | 
						|
		vc->vcore_state = VCORE_POLLING;
 | 
						|
		spin_unlock(&vc->lock);
 | 
						|
 | 
						|
		do {
 | 
						|
			if (kvmppc_vcore_check_block(vc)) {
 | 
						|
				do_sleep = 0;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			cur = ktime_get();
 | 
						|
		} while (single_task_running() && ktime_before(cur, stop));
 | 
						|
 | 
						|
		spin_lock(&vc->lock);
 | 
						|
		vc->vcore_state = VCORE_INACTIVE;
 | 
						|
 | 
						|
		if (!do_sleep) {
 | 
						|
			++vc->runner->stat.halt_successful_poll;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
 | 
						|
 | 
						|
	if (kvmppc_vcore_check_block(vc)) {
 | 
						|
		finish_swait(&vc->wq, &wait);
 | 
						|
		do_sleep = 0;
 | 
						|
		/* If we polled, count this as a successful poll */
 | 
						|
		if (vc->halt_poll_ns)
 | 
						|
			++vc->runner->stat.halt_successful_poll;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	start_wait = ktime_get();
 | 
						|
 | 
						|
	vc->vcore_state = VCORE_SLEEPING;
 | 
						|
	trace_kvmppc_vcore_blocked(vc, 0);
 | 
						|
	spin_unlock(&vc->lock);
 | 
						|
	schedule();
 | 
						|
	finish_swait(&vc->wq, &wait);
 | 
						|
	spin_lock(&vc->lock);
 | 
						|
	vc->vcore_state = VCORE_INACTIVE;
 | 
						|
	trace_kvmppc_vcore_blocked(vc, 1);
 | 
						|
	++vc->runner->stat.halt_successful_wait;
 | 
						|
 | 
						|
	cur = ktime_get();
 | 
						|
 | 
						|
out:
 | 
						|
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
 | 
						|
 | 
						|
	/* Attribute wait time */
 | 
						|
	if (do_sleep) {
 | 
						|
		vc->runner->stat.halt_wait_ns +=
 | 
						|
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
 | 
						|
		/* Attribute failed poll time */
 | 
						|
		if (vc->halt_poll_ns)
 | 
						|
			vc->runner->stat.halt_poll_fail_ns +=
 | 
						|
				ktime_to_ns(start_wait) -
 | 
						|
				ktime_to_ns(start_poll);
 | 
						|
	} else {
 | 
						|
		/* Attribute successful poll time */
 | 
						|
		if (vc->halt_poll_ns)
 | 
						|
			vc->runner->stat.halt_poll_success_ns +=
 | 
						|
				ktime_to_ns(cur) -
 | 
						|
				ktime_to_ns(start_poll);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Adjust poll time */
 | 
						|
	if (halt_poll_ns) {
 | 
						|
		if (block_ns <= vc->halt_poll_ns)
 | 
						|
			;
 | 
						|
		/* We slept and blocked for longer than the max halt time */
 | 
						|
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
 | 
						|
			shrink_halt_poll_ns(vc);
 | 
						|
		/* We slept and our poll time is too small */
 | 
						|
		else if (vc->halt_poll_ns < halt_poll_ns &&
 | 
						|
				block_ns < halt_poll_ns)
 | 
						|
			grow_halt_poll_ns(vc);
 | 
						|
		if (vc->halt_poll_ns > halt_poll_ns)
 | 
						|
			vc->halt_poll_ns = halt_poll_ns;
 | 
						|
	} else
 | 
						|
		vc->halt_poll_ns = 0;
 | 
						|
 | 
						|
	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
 | 
						|
}
 | 
						|
 | 
						|
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int r = 0;
 | 
						|
	struct kvm *kvm = vcpu->kvm;
 | 
						|
 | 
						|
	mutex_lock(&kvm->lock);
 | 
						|
	if (!kvm->arch.mmu_ready) {
 | 
						|
		if (!kvm_is_radix(kvm))
 | 
						|
			r = kvmppc_hv_setup_htab_rma(vcpu);
 | 
						|
		if (!r) {
 | 
						|
			if (cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
				kvmppc_setup_partition_table(kvm);
 | 
						|
			kvm->arch.mmu_ready = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mutex_unlock(&kvm->lock);
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int n_ceded, i, r;
 | 
						|
	struct kvmppc_vcore *vc;
 | 
						|
	struct kvm_vcpu *v;
 | 
						|
 | 
						|
	trace_kvmppc_run_vcpu_enter(vcpu);
 | 
						|
 | 
						|
	kvm_run->exit_reason = 0;
 | 
						|
	vcpu->arch.ret = RESUME_GUEST;
 | 
						|
	vcpu->arch.trap = 0;
 | 
						|
	kvmppc_update_vpas(vcpu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Synchronize with other threads in this virtual core
 | 
						|
	 */
 | 
						|
	vc = vcpu->arch.vcore;
 | 
						|
	spin_lock(&vc->lock);
 | 
						|
	vcpu->arch.ceded = 0;
 | 
						|
	vcpu->arch.run_task = current;
 | 
						|
	vcpu->arch.kvm_run = kvm_run;
 | 
						|
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
 | 
						|
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
 | 
						|
	vcpu->arch.busy_preempt = TB_NIL;
 | 
						|
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
 | 
						|
	++vc->n_runnable;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This happens the first time this is called for a vcpu.
 | 
						|
	 * If the vcore is already running, we may be able to start
 | 
						|
	 * this thread straight away and have it join in.
 | 
						|
	 */
 | 
						|
	if (!signal_pending(current)) {
 | 
						|
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
 | 
						|
		     vc->vcore_state == VCORE_RUNNING) &&
 | 
						|
			   !VCORE_IS_EXITING(vc)) {
 | 
						|
			kvmppc_create_dtl_entry(vcpu, vc);
 | 
						|
			kvmppc_start_thread(vcpu, vc);
 | 
						|
			trace_kvm_guest_enter(vcpu);
 | 
						|
		} else if (vc->vcore_state == VCORE_SLEEPING) {
 | 
						|
			swake_up_one(&vc->wq);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
 | 
						|
	       !signal_pending(current)) {
 | 
						|
		/* See if the MMU is ready to go */
 | 
						|
		if (!vcpu->kvm->arch.mmu_ready) {
 | 
						|
			spin_unlock(&vc->lock);
 | 
						|
			r = kvmhv_setup_mmu(vcpu);
 | 
						|
			spin_lock(&vc->lock);
 | 
						|
			if (r) {
 | 
						|
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 | 
						|
				kvm_run->fail_entry.
 | 
						|
					hardware_entry_failure_reason = 0;
 | 
						|
				vcpu->arch.ret = r;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
 | 
						|
			kvmppc_vcore_end_preempt(vc);
 | 
						|
 | 
						|
		if (vc->vcore_state != VCORE_INACTIVE) {
 | 
						|
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		for_each_runnable_thread(i, v, vc) {
 | 
						|
			kvmppc_core_prepare_to_enter(v);
 | 
						|
			if (signal_pending(v->arch.run_task)) {
 | 
						|
				kvmppc_remove_runnable(vc, v);
 | 
						|
				v->stat.signal_exits++;
 | 
						|
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
 | 
						|
				v->arch.ret = -EINTR;
 | 
						|
				wake_up(&v->arch.cpu_run);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
 | 
						|
			break;
 | 
						|
		n_ceded = 0;
 | 
						|
		for_each_runnable_thread(i, v, vc) {
 | 
						|
			if (!kvmppc_vcpu_woken(v))
 | 
						|
				n_ceded += v->arch.ceded;
 | 
						|
			else
 | 
						|
				v->arch.ceded = 0;
 | 
						|
		}
 | 
						|
		vc->runner = vcpu;
 | 
						|
		if (n_ceded == vc->n_runnable) {
 | 
						|
			kvmppc_vcore_blocked(vc);
 | 
						|
		} else if (need_resched()) {
 | 
						|
			kvmppc_vcore_preempt(vc);
 | 
						|
			/* Let something else run */
 | 
						|
			cond_resched_lock(&vc->lock);
 | 
						|
			if (vc->vcore_state == VCORE_PREEMPT)
 | 
						|
				kvmppc_vcore_end_preempt(vc);
 | 
						|
		} else {
 | 
						|
			kvmppc_run_core(vc);
 | 
						|
		}
 | 
						|
		vc->runner = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
 | 
						|
	       (vc->vcore_state == VCORE_RUNNING ||
 | 
						|
		vc->vcore_state == VCORE_EXITING ||
 | 
						|
		vc->vcore_state == VCORE_PIGGYBACK))
 | 
						|
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
 | 
						|
 | 
						|
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
 | 
						|
		kvmppc_vcore_end_preempt(vc);
 | 
						|
 | 
						|
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
 | 
						|
		kvmppc_remove_runnable(vc, vcpu);
 | 
						|
		vcpu->stat.signal_exits++;
 | 
						|
		kvm_run->exit_reason = KVM_EXIT_INTR;
 | 
						|
		vcpu->arch.ret = -EINTR;
 | 
						|
	}
 | 
						|
 | 
						|
	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
 | 
						|
		/* Wake up some vcpu to run the core */
 | 
						|
		i = -1;
 | 
						|
		v = next_runnable_thread(vc, &i);
 | 
						|
		wake_up(&v->arch.cpu_run);
 | 
						|
	}
 | 
						|
 | 
						|
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
 | 
						|
	spin_unlock(&vc->lock);
 | 
						|
	return vcpu->arch.ret;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int r;
 | 
						|
	int srcu_idx;
 | 
						|
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
 | 
						|
	unsigned long user_tar = 0;
 | 
						|
	unsigned int user_vrsave;
 | 
						|
	struct kvm *kvm;
 | 
						|
 | 
						|
	if (!vcpu->arch.sane) {
 | 
						|
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't allow entry with a suspended transaction, because
 | 
						|
	 * the guest entry/exit code will lose it.
 | 
						|
	 * If the guest has TM enabled, save away their TM-related SPRs
 | 
						|
	 * (they will get restored by the TM unavailable interrupt).
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 | 
						|
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
 | 
						|
	    (current->thread.regs->msr & MSR_TM)) {
 | 
						|
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
 | 
						|
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 | 
						|
			run->fail_entry.hardware_entry_failure_reason = 0;
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		/* Enable TM so we can read the TM SPRs */
 | 
						|
		mtmsr(mfmsr() | MSR_TM);
 | 
						|
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
 | 
						|
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
 | 
						|
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
 | 
						|
		current->thread.regs->msr &= ~MSR_TM;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Force online to 1 for the sake of old userspace which doesn't
 | 
						|
	 * set it.
 | 
						|
	 */
 | 
						|
	if (!vcpu->arch.online) {
 | 
						|
		atomic_inc(&vcpu->arch.vcore->online_count);
 | 
						|
		vcpu->arch.online = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	kvmppc_core_prepare_to_enter(vcpu);
 | 
						|
 | 
						|
	/* No need to go into the guest when all we'll do is come back out */
 | 
						|
	if (signal_pending(current)) {
 | 
						|
		run->exit_reason = KVM_EXIT_INTR;
 | 
						|
		return -EINTR;
 | 
						|
	}
 | 
						|
 | 
						|
	kvm = vcpu->kvm;
 | 
						|
	atomic_inc(&kvm->arch.vcpus_running);
 | 
						|
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
 | 
						|
	smp_mb();
 | 
						|
 | 
						|
	flush_all_to_thread(current);
 | 
						|
 | 
						|
	/* Save userspace EBB and other register values */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 | 
						|
		ebb_regs[0] = mfspr(SPRN_EBBHR);
 | 
						|
		ebb_regs[1] = mfspr(SPRN_EBBRR);
 | 
						|
		ebb_regs[2] = mfspr(SPRN_BESCR);
 | 
						|
		user_tar = mfspr(SPRN_TAR);
 | 
						|
	}
 | 
						|
	user_vrsave = mfspr(SPRN_VRSAVE);
 | 
						|
 | 
						|
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
 | 
						|
	vcpu->arch.pgdir = current->mm->pgd;
 | 
						|
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
 | 
						|
 | 
						|
	do {
 | 
						|
		r = kvmppc_run_vcpu(run, vcpu);
 | 
						|
 | 
						|
		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
 | 
						|
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
 | 
						|
			trace_kvm_hcall_enter(vcpu);
 | 
						|
			r = kvmppc_pseries_do_hcall(vcpu);
 | 
						|
			trace_kvm_hcall_exit(vcpu, r);
 | 
						|
			kvmppc_core_prepare_to_enter(vcpu);
 | 
						|
		} else if (r == RESUME_PAGE_FAULT) {
 | 
						|
			srcu_idx = srcu_read_lock(&kvm->srcu);
 | 
						|
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
 | 
						|
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 | 
						|
			srcu_read_unlock(&kvm->srcu, srcu_idx);
 | 
						|
		} else if (r == RESUME_PASSTHROUGH) {
 | 
						|
			if (WARN_ON(xive_enabled()))
 | 
						|
				r = H_SUCCESS;
 | 
						|
			else
 | 
						|
				r = kvmppc_xics_rm_complete(vcpu, 0);
 | 
						|
		}
 | 
						|
	} while (is_kvmppc_resume_guest(r));
 | 
						|
 | 
						|
	/* Restore userspace EBB and other register values */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 | 
						|
		mtspr(SPRN_EBBHR, ebb_regs[0]);
 | 
						|
		mtspr(SPRN_EBBRR, ebb_regs[1]);
 | 
						|
		mtspr(SPRN_BESCR, ebb_regs[2]);
 | 
						|
		mtspr(SPRN_TAR, user_tar);
 | 
						|
		mtspr(SPRN_FSCR, current->thread.fscr);
 | 
						|
	}
 | 
						|
	mtspr(SPRN_VRSAVE, user_vrsave);
 | 
						|
 | 
						|
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
 | 
						|
	atomic_dec(&kvm->arch.vcpus_running);
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
 | 
						|
				     int shift, int sllp)
 | 
						|
{
 | 
						|
	(*sps)->page_shift = shift;
 | 
						|
	(*sps)->slb_enc = sllp;
 | 
						|
	(*sps)->enc[0].page_shift = shift;
 | 
						|
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
 | 
						|
	/*
 | 
						|
	 * Add 16MB MPSS support (may get filtered out by userspace)
 | 
						|
	 */
 | 
						|
	if (shift != 24) {
 | 
						|
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
 | 
						|
		if (penc != -1) {
 | 
						|
			(*sps)->enc[1].page_shift = 24;
 | 
						|
			(*sps)->enc[1].pte_enc = penc;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	(*sps)++;
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
 | 
						|
					 struct kvm_ppc_smmu_info *info)
 | 
						|
{
 | 
						|
	struct kvm_ppc_one_seg_page_size *sps;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
 | 
						|
	 * POWER7 doesn't support keys for instruction accesses,
 | 
						|
	 * POWER8 and POWER9 do.
 | 
						|
	 */
 | 
						|
	info->data_keys = 32;
 | 
						|
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
 | 
						|
 | 
						|
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
 | 
						|
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
 | 
						|
	info->slb_size = 32;
 | 
						|
 | 
						|
	/* We only support these sizes for now, and no muti-size segments */
 | 
						|
	sps = &info->sps[0];
 | 
						|
	kvmppc_add_seg_page_size(&sps, 12, 0);
 | 
						|
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
 | 
						|
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get (and clear) the dirty memory log for a memory slot.
 | 
						|
 */
 | 
						|
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
 | 
						|
					 struct kvm_dirty_log *log)
 | 
						|
{
 | 
						|
	struct kvm_memslots *slots;
 | 
						|
	struct kvm_memory_slot *memslot;
 | 
						|
	int i, r;
 | 
						|
	unsigned long n;
 | 
						|
	unsigned long *buf, *p;
 | 
						|
	struct kvm_vcpu *vcpu;
 | 
						|
 | 
						|
	mutex_lock(&kvm->slots_lock);
 | 
						|
 | 
						|
	r = -EINVAL;
 | 
						|
	if (log->slot >= KVM_USER_MEM_SLOTS)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	slots = kvm_memslots(kvm);
 | 
						|
	memslot = id_to_memslot(slots, log->slot);
 | 
						|
	r = -ENOENT;
 | 
						|
	if (!memslot->dirty_bitmap)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use second half of bitmap area because both HPT and radix
 | 
						|
	 * accumulate bits in the first half.
 | 
						|
	 */
 | 
						|
	n = kvm_dirty_bitmap_bytes(memslot);
 | 
						|
	buf = memslot->dirty_bitmap + n / sizeof(long);
 | 
						|
	memset(buf, 0, n);
 | 
						|
 | 
						|
	if (kvm_is_radix(kvm))
 | 
						|
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
 | 
						|
	else
 | 
						|
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
 | 
						|
	if (r)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We accumulate dirty bits in the first half of the
 | 
						|
	 * memslot's dirty_bitmap area, for when pages are paged
 | 
						|
	 * out or modified by the host directly.  Pick up these
 | 
						|
	 * bits and add them to the map.
 | 
						|
	 */
 | 
						|
	p = memslot->dirty_bitmap;
 | 
						|
	for (i = 0; i < n / sizeof(long); ++i)
 | 
						|
		buf[i] |= xchg(&p[i], 0);
 | 
						|
 | 
						|
	/* Harvest dirty bits from VPA and DTL updates */
 | 
						|
	/* Note: we never modify the SLB shadow buffer areas */
 | 
						|
	kvm_for_each_vcpu(i, vcpu, kvm) {
 | 
						|
		spin_lock(&vcpu->arch.vpa_update_lock);
 | 
						|
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
 | 
						|
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
 | 
						|
		spin_unlock(&vcpu->arch.vpa_update_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	r = -EFAULT;
 | 
						|
	if (copy_to_user(log->dirty_bitmap, buf, n))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	r = 0;
 | 
						|
out:
 | 
						|
	mutex_unlock(&kvm->slots_lock);
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
 | 
						|
					struct kvm_memory_slot *dont)
 | 
						|
{
 | 
						|
	if (!dont || free->arch.rmap != dont->arch.rmap) {
 | 
						|
		vfree(free->arch.rmap);
 | 
						|
		free->arch.rmap = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
 | 
						|
					 unsigned long npages)
 | 
						|
{
 | 
						|
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
 | 
						|
	if (!slot->arch.rmap)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
 | 
						|
					struct kvm_memory_slot *memslot,
 | 
						|
					const struct kvm_userspace_memory_region *mem)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
 | 
						|
				const struct kvm_userspace_memory_region *mem,
 | 
						|
				const struct kvm_memory_slot *old,
 | 
						|
				const struct kvm_memory_slot *new)
 | 
						|
{
 | 
						|
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are making a new memslot, it might make
 | 
						|
	 * some address that was previously cached as emulated
 | 
						|
	 * MMIO be no longer emulated MMIO, so invalidate
 | 
						|
	 * all the caches of emulated MMIO translations.
 | 
						|
	 */
 | 
						|
	if (npages)
 | 
						|
		atomic64_inc(&kvm->arch.mmio_update);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update LPCR values in kvm->arch and in vcores.
 | 
						|
 * Caller must hold kvm->lock.
 | 
						|
 */
 | 
						|
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
 | 
						|
{
 | 
						|
	long int i;
 | 
						|
	u32 cores_done = 0;
 | 
						|
 | 
						|
	if ((kvm->arch.lpcr & mask) == lpcr)
 | 
						|
		return;
 | 
						|
 | 
						|
	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
 | 
						|
 | 
						|
	for (i = 0; i < KVM_MAX_VCORES; ++i) {
 | 
						|
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
 | 
						|
		if (!vc)
 | 
						|
			continue;
 | 
						|
		spin_lock(&vc->lock);
 | 
						|
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
 | 
						|
		spin_unlock(&vc->lock);
 | 
						|
		if (++cores_done >= kvm->arch.online_vcores)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
void kvmppc_setup_partition_table(struct kvm *kvm)
 | 
						|
{
 | 
						|
	unsigned long dw0, dw1;
 | 
						|
 | 
						|
	if (!kvm_is_radix(kvm)) {
 | 
						|
		/* PS field - page size for VRMA */
 | 
						|
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
 | 
						|
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
 | 
						|
		/* HTABSIZE and HTABORG fields */
 | 
						|
		dw0 |= kvm->arch.sdr1;
 | 
						|
 | 
						|
		/* Second dword as set by userspace */
 | 
						|
		dw1 = kvm->arch.process_table;
 | 
						|
	} else {
 | 
						|
		dw0 = PATB_HR | radix__get_tree_size() |
 | 
						|
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
 | 
						|
		dw1 = PATB_GR | kvm->arch.process_table;
 | 
						|
	}
 | 
						|
 | 
						|
	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up HPT (hashed page table) and RMA (real-mode area).
 | 
						|
 * Must be called with kvm->lock held.
 | 
						|
 */
 | 
						|
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
	struct kvm *kvm = vcpu->kvm;
 | 
						|
	unsigned long hva;
 | 
						|
	struct kvm_memory_slot *memslot;
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	unsigned long lpcr = 0, senc;
 | 
						|
	unsigned long psize, porder;
 | 
						|
	int srcu_idx;
 | 
						|
 | 
						|
	/* Allocate hashed page table (if not done already) and reset it */
 | 
						|
	if (!kvm->arch.hpt.virt) {
 | 
						|
		int order = KVM_DEFAULT_HPT_ORDER;
 | 
						|
		struct kvm_hpt_info info;
 | 
						|
 | 
						|
		err = kvmppc_allocate_hpt(&info, order);
 | 
						|
		/* If we get here, it means userspace didn't specify a
 | 
						|
		 * size explicitly.  So, try successively smaller
 | 
						|
		 * sizes if the default failed. */
 | 
						|
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
 | 
						|
			err  = kvmppc_allocate_hpt(&info, order);
 | 
						|
 | 
						|
		if (err < 0) {
 | 
						|
			pr_err("KVM: Couldn't alloc HPT\n");
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		kvmppc_set_hpt(kvm, &info);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Look up the memslot for guest physical address 0 */
 | 
						|
	srcu_idx = srcu_read_lock(&kvm->srcu);
 | 
						|
	memslot = gfn_to_memslot(kvm, 0);
 | 
						|
 | 
						|
	/* We must have some memory at 0 by now */
 | 
						|
	err = -EINVAL;
 | 
						|
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
 | 
						|
		goto out_srcu;
 | 
						|
 | 
						|
	/* Look up the VMA for the start of this memory slot */
 | 
						|
	hva = memslot->userspace_addr;
 | 
						|
	down_read(¤t->mm->mmap_sem);
 | 
						|
	vma = find_vma(current->mm, hva);
 | 
						|
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
 | 
						|
		goto up_out;
 | 
						|
 | 
						|
	psize = vma_kernel_pagesize(vma);
 | 
						|
 | 
						|
	up_read(¤t->mm->mmap_sem);
 | 
						|
 | 
						|
	/* We can handle 4k, 64k or 16M pages in the VRMA */
 | 
						|
	if (psize >= 0x1000000)
 | 
						|
		psize = 0x1000000;
 | 
						|
	else if (psize >= 0x10000)
 | 
						|
		psize = 0x10000;
 | 
						|
	else
 | 
						|
		psize = 0x1000;
 | 
						|
	porder = __ilog2(psize);
 | 
						|
 | 
						|
	senc = slb_pgsize_encoding(psize);
 | 
						|
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
 | 
						|
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
 | 
						|
	/* Create HPTEs in the hash page table for the VRMA */
 | 
						|
	kvmppc_map_vrma(vcpu, memslot, porder);
 | 
						|
 | 
						|
	/* Update VRMASD field in the LPCR */
 | 
						|
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
 | 
						|
		/* the -4 is to account for senc values starting at 0x10 */
 | 
						|
		lpcr = senc << (LPCR_VRMASD_SH - 4);
 | 
						|
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
 | 
						|
	smp_wmb();
 | 
						|
	err = 0;
 | 
						|
 out_srcu:
 | 
						|
	srcu_read_unlock(&kvm->srcu, srcu_idx);
 | 
						|
 out:
 | 
						|
	return err;
 | 
						|
 | 
						|
 up_out:
 | 
						|
	up_read(¤t->mm->mmap_sem);
 | 
						|
	goto out_srcu;
 | 
						|
}
 | 
						|
 | 
						|
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
 | 
						|
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
 | 
						|
{
 | 
						|
	kvmppc_rmap_reset(kvm);
 | 
						|
	kvm->arch.process_table = 0;
 | 
						|
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
 | 
						|
	spin_lock(&kvm->mmu_lock);
 | 
						|
	kvm->arch.radix = 0;
 | 
						|
	spin_unlock(&kvm->mmu_lock);
 | 
						|
	kvmppc_free_radix(kvm);
 | 
						|
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
 | 
						|
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
 | 
						|
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = kvmppc_init_vm_radix(kvm);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	kvmppc_rmap_reset(kvm);
 | 
						|
	/* Mutual exclusion with kvm_unmap_hva_range etc. */
 | 
						|
	spin_lock(&kvm->mmu_lock);
 | 
						|
	kvm->arch.radix = 1;
 | 
						|
	spin_unlock(&kvm->mmu_lock);
 | 
						|
	kvmppc_free_hpt(&kvm->arch.hpt);
 | 
						|
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
 | 
						|
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_KVM_XICS
 | 
						|
/*
 | 
						|
 * Allocate a per-core structure for managing state about which cores are
 | 
						|
 * running in the host versus the guest and for exchanging data between
 | 
						|
 * real mode KVM and CPU running in the host.
 | 
						|
 * This is only done for the first VM.
 | 
						|
 * The allocated structure stays even if all VMs have stopped.
 | 
						|
 * It is only freed when the kvm-hv module is unloaded.
 | 
						|
 * It's OK for this routine to fail, we just don't support host
 | 
						|
 * core operations like redirecting H_IPI wakeups.
 | 
						|
 */
 | 
						|
void kvmppc_alloc_host_rm_ops(void)
 | 
						|
{
 | 
						|
	struct kvmppc_host_rm_ops *ops;
 | 
						|
	unsigned long l_ops;
 | 
						|
	int cpu, core;
 | 
						|
	int size;
 | 
						|
 | 
						|
	/* Not the first time here ? */
 | 
						|
	if (kvmppc_host_rm_ops_hv != NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
 | 
						|
	if (!ops)
 | 
						|
		return;
 | 
						|
 | 
						|
	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
 | 
						|
	ops->rm_core = kzalloc(size, GFP_KERNEL);
 | 
						|
 | 
						|
	if (!ops->rm_core) {
 | 
						|
		kfree(ops);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	cpus_read_lock();
 | 
						|
 | 
						|
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
 | 
						|
		if (!cpu_online(cpu))
 | 
						|
			continue;
 | 
						|
 | 
						|
		core = cpu >> threads_shift;
 | 
						|
		ops->rm_core[core].rm_state.in_host = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make the contents of the kvmppc_host_rm_ops structure visible
 | 
						|
	 * to other CPUs before we assign it to the global variable.
 | 
						|
	 * Do an atomic assignment (no locks used here), but if someone
 | 
						|
	 * beats us to it, just free our copy and return.
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
	l_ops = (unsigned long) ops;
 | 
						|
 | 
						|
	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
 | 
						|
		cpus_read_unlock();
 | 
						|
		kfree(ops->rm_core);
 | 
						|
		kfree(ops);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
 | 
						|
					     "ppc/kvm_book3s:prepare",
 | 
						|
					     kvmppc_set_host_core,
 | 
						|
					     kvmppc_clear_host_core);
 | 
						|
	cpus_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
void kvmppc_free_host_rm_ops(void)
 | 
						|
{
 | 
						|
	if (kvmppc_host_rm_ops_hv) {
 | 
						|
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
 | 
						|
		kfree(kvmppc_host_rm_ops_hv->rm_core);
 | 
						|
		kfree(kvmppc_host_rm_ops_hv);
 | 
						|
		kvmppc_host_rm_ops_hv = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
 | 
						|
{
 | 
						|
	unsigned long lpcr, lpid;
 | 
						|
	char buf[32];
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Allocate the guest's logical partition ID */
 | 
						|
 | 
						|
	lpid = kvmppc_alloc_lpid();
 | 
						|
	if ((long)lpid < 0)
 | 
						|
		return -ENOMEM;
 | 
						|
	kvm->arch.lpid = lpid;
 | 
						|
 | 
						|
	kvmppc_alloc_host_rm_ops();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we don't flush the TLB when tearing down a VM,
 | 
						|
	 * and this lpid might have previously been used,
 | 
						|
	 * make sure we flush on each core before running the new VM.
 | 
						|
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
 | 
						|
	 * does this flush for us.
 | 
						|
	 */
 | 
						|
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		cpumask_setall(&kvm->arch.need_tlb_flush);
 | 
						|
 | 
						|
	/* Start out with the default set of hcalls enabled */
 | 
						|
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
 | 
						|
	       sizeof(kvm->arch.enabled_hcalls));
 | 
						|
 | 
						|
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
 | 
						|
 | 
						|
	/* Init LPCR for virtual RMA mode */
 | 
						|
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
 | 
						|
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
 | 
						|
	lpcr &= LPCR_PECE | LPCR_LPES;
 | 
						|
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
 | 
						|
		LPCR_VPM0 | LPCR_VPM1;
 | 
						|
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
 | 
						|
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
 | 
						|
	/* On POWER8 turn on online bit to enable PURR/SPURR */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
 | 
						|
		lpcr |= LPCR_ONL;
 | 
						|
	/*
 | 
						|
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
 | 
						|
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
 | 
						|
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
 | 
						|
	 * be unnecessary but better safe than sorry in case we re-enable
 | 
						|
	 * EE in HV mode with this LPCR still set)
 | 
						|
	 */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 | 
						|
		lpcr &= ~LPCR_VPM0;
 | 
						|
		lpcr |= LPCR_HVICE | LPCR_HEIC;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If xive is enabled, we route 0x500 interrupts directly
 | 
						|
		 * to the guest.
 | 
						|
		 */
 | 
						|
		if (xive_enabled())
 | 
						|
			lpcr |= LPCR_LPES;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the host uses radix, the guest starts out as radix.
 | 
						|
	 */
 | 
						|
	if (radix_enabled()) {
 | 
						|
		kvm->arch.radix = 1;
 | 
						|
		kvm->arch.mmu_ready = 1;
 | 
						|
		lpcr &= ~LPCR_VPM1;
 | 
						|
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
 | 
						|
		ret = kvmppc_init_vm_radix(kvm);
 | 
						|
		if (ret) {
 | 
						|
			kvmppc_free_lpid(kvm->arch.lpid);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
		kvmppc_setup_partition_table(kvm);
 | 
						|
	}
 | 
						|
 | 
						|
	kvm->arch.lpcr = lpcr;
 | 
						|
 | 
						|
	/* Initialization for future HPT resizes */
 | 
						|
	kvm->arch.resize_hpt = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Work out how many sets the TLB has, for the use of
 | 
						|
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
 | 
						|
	 */
 | 
						|
	if (radix_enabled())
 | 
						|
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
 | 
						|
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
 | 
						|
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
 | 
						|
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
 | 
						|
	else
 | 
						|
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Track that we now have a HV mode VM active. This blocks secondary
 | 
						|
	 * CPU threads from coming online.
 | 
						|
	 * On POWER9, we only need to do this if the "indep_threads_mode"
 | 
						|
	 * module parameter has been set to N.
 | 
						|
	 */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		kvm->arch.threads_indep = indep_threads_mode;
 | 
						|
	if (!kvm->arch.threads_indep)
 | 
						|
		kvm_hv_vm_activated();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize smt_mode depending on processor.
 | 
						|
	 * POWER8 and earlier have to use "strict" threading, where
 | 
						|
	 * all vCPUs in a vcore have to run on the same (sub)core,
 | 
						|
	 * whereas on POWER9 the threads can each run a different
 | 
						|
	 * guest.
 | 
						|
	 */
 | 
						|
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		kvm->arch.smt_mode = threads_per_subcore;
 | 
						|
	else
 | 
						|
		kvm->arch.smt_mode = 1;
 | 
						|
	kvm->arch.emul_smt_mode = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Create a debugfs directory for the VM
 | 
						|
	 */
 | 
						|
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
 | 
						|
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
 | 
						|
	kvmppc_mmu_debugfs_init(kvm);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_free_vcores(struct kvm *kvm)
 | 
						|
{
 | 
						|
	long int i;
 | 
						|
 | 
						|
	for (i = 0; i < KVM_MAX_VCORES; ++i)
 | 
						|
		kfree(kvm->arch.vcores[i]);
 | 
						|
	kvm->arch.online_vcores = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
 | 
						|
{
 | 
						|
	debugfs_remove_recursive(kvm->arch.debugfs_dir);
 | 
						|
 | 
						|
	if (!kvm->arch.threads_indep)
 | 
						|
		kvm_hv_vm_deactivated();
 | 
						|
 | 
						|
	kvmppc_free_vcores(kvm);
 | 
						|
 | 
						|
	kvmppc_free_lpid(kvm->arch.lpid);
 | 
						|
 | 
						|
	if (kvm_is_radix(kvm))
 | 
						|
		kvmppc_free_radix(kvm);
 | 
						|
	else
 | 
						|
		kvmppc_free_hpt(&kvm->arch.hpt);
 | 
						|
 | 
						|
	kvmppc_free_pimap(kvm);
 | 
						|
}
 | 
						|
 | 
						|
/* We don't need to emulate any privileged instructions or dcbz */
 | 
						|
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
 | 
						|
				     unsigned int inst, int *advance)
 | 
						|
{
 | 
						|
	return EMULATE_FAIL;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
 | 
						|
					ulong spr_val)
 | 
						|
{
 | 
						|
	return EMULATE_FAIL;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
 | 
						|
					ulong *spr_val)
 | 
						|
{
 | 
						|
	return EMULATE_FAIL;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_core_check_processor_compat_hv(void)
 | 
						|
{
 | 
						|
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
 | 
						|
	    !cpu_has_feature(CPU_FTR_ARCH_206))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_KVM_XICS
 | 
						|
 | 
						|
void kvmppc_free_pimap(struct kvm *kvm)
 | 
						|
{
 | 
						|
	kfree(kvm->arch.pimap);
 | 
						|
}
 | 
						|
 | 
						|
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
 | 
						|
{
 | 
						|
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
 | 
						|
{
 | 
						|
	struct irq_desc *desc;
 | 
						|
	struct kvmppc_irq_map *irq_map;
 | 
						|
	struct kvmppc_passthru_irqmap *pimap;
 | 
						|
	struct irq_chip *chip;
 | 
						|
	int i, rc = 0;
 | 
						|
 | 
						|
	if (!kvm_irq_bypass)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	desc = irq_to_desc(host_irq);
 | 
						|
	if (!desc)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	mutex_lock(&kvm->lock);
 | 
						|
 | 
						|
	pimap = kvm->arch.pimap;
 | 
						|
	if (pimap == NULL) {
 | 
						|
		/* First call, allocate structure to hold IRQ map */
 | 
						|
		pimap = kvmppc_alloc_pimap();
 | 
						|
		if (pimap == NULL) {
 | 
						|
			mutex_unlock(&kvm->lock);
 | 
						|
			return -ENOMEM;
 | 
						|
		}
 | 
						|
		kvm->arch.pimap = pimap;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For now, we only support interrupts for which the EOI operation
 | 
						|
	 * is an OPAL call followed by a write to XIRR, since that's
 | 
						|
	 * what our real-mode EOI code does, or a XIVE interrupt
 | 
						|
	 */
 | 
						|
	chip = irq_data_get_irq_chip(&desc->irq_data);
 | 
						|
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
 | 
						|
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
 | 
						|
			host_irq, guest_gsi);
 | 
						|
		mutex_unlock(&kvm->lock);
 | 
						|
		return -ENOENT;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * See if we already have an entry for this guest IRQ number.
 | 
						|
	 * If it's mapped to a hardware IRQ number, that's an error,
 | 
						|
	 * otherwise re-use this entry.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < pimap->n_mapped; i++) {
 | 
						|
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
 | 
						|
			if (pimap->mapped[i].r_hwirq) {
 | 
						|
				mutex_unlock(&kvm->lock);
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (i == KVMPPC_PIRQ_MAPPED) {
 | 
						|
		mutex_unlock(&kvm->lock);
 | 
						|
		return -EAGAIN;		/* table is full */
 | 
						|
	}
 | 
						|
 | 
						|
	irq_map = &pimap->mapped[i];
 | 
						|
 | 
						|
	irq_map->v_hwirq = guest_gsi;
 | 
						|
	irq_map->desc = desc;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Order the above two stores before the next to serialize with
 | 
						|
	 * the KVM real mode handler.
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
	irq_map->r_hwirq = desc->irq_data.hwirq;
 | 
						|
 | 
						|
	if (i == pimap->n_mapped)
 | 
						|
		pimap->n_mapped++;
 | 
						|
 | 
						|
	if (xive_enabled())
 | 
						|
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
 | 
						|
	else
 | 
						|
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
 | 
						|
	if (rc)
 | 
						|
		irq_map->r_hwirq = 0;
 | 
						|
 | 
						|
	mutex_unlock(&kvm->lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
 | 
						|
{
 | 
						|
	struct irq_desc *desc;
 | 
						|
	struct kvmppc_passthru_irqmap *pimap;
 | 
						|
	int i, rc = 0;
 | 
						|
 | 
						|
	if (!kvm_irq_bypass)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	desc = irq_to_desc(host_irq);
 | 
						|
	if (!desc)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	mutex_lock(&kvm->lock);
 | 
						|
	if (!kvm->arch.pimap)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	pimap = kvm->arch.pimap;
 | 
						|
 | 
						|
	for (i = 0; i < pimap->n_mapped; i++) {
 | 
						|
		if (guest_gsi == pimap->mapped[i].v_hwirq)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (i == pimap->n_mapped) {
 | 
						|
		mutex_unlock(&kvm->lock);
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
 | 
						|
	if (xive_enabled())
 | 
						|
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
 | 
						|
	else
 | 
						|
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
 | 
						|
 | 
						|
	/* invalidate the entry (what do do on error from the above ?) */
 | 
						|
	pimap->mapped[i].r_hwirq = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't free this structure even when the count goes to
 | 
						|
	 * zero. The structure is freed when we destroy the VM.
 | 
						|
	 */
 | 
						|
 unlock:
 | 
						|
	mutex_unlock(&kvm->lock);
 | 
						|
	return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
 | 
						|
					     struct irq_bypass_producer *prod)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct kvm_kernel_irqfd *irqfd =
 | 
						|
		container_of(cons, struct kvm_kernel_irqfd, consumer);
 | 
						|
 | 
						|
	irqfd->producer = prod;
 | 
						|
 | 
						|
	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
 | 
						|
	if (ret)
 | 
						|
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
 | 
						|
			prod->irq, irqfd->gsi, ret);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
 | 
						|
					      struct irq_bypass_producer *prod)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct kvm_kernel_irqfd *irqfd =
 | 
						|
		container_of(cons, struct kvm_kernel_irqfd, consumer);
 | 
						|
 | 
						|
	irqfd->producer = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When producer of consumer is unregistered, we change back to
 | 
						|
	 * default external interrupt handling mode - KVM real mode
 | 
						|
	 * will switch back to host.
 | 
						|
	 */
 | 
						|
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
 | 
						|
	if (ret)
 | 
						|
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
 | 
						|
			prod->irq, irqfd->gsi, ret);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static long kvm_arch_vm_ioctl_hv(struct file *filp,
 | 
						|
				 unsigned int ioctl, unsigned long arg)
 | 
						|
{
 | 
						|
	struct kvm *kvm __maybe_unused = filp->private_data;
 | 
						|
	void __user *argp = (void __user *)arg;
 | 
						|
	long r;
 | 
						|
 | 
						|
	switch (ioctl) {
 | 
						|
 | 
						|
	case KVM_PPC_ALLOCATE_HTAB: {
 | 
						|
		u32 htab_order;
 | 
						|
 | 
						|
		r = -EFAULT;
 | 
						|
		if (get_user(htab_order, (u32 __user *)argp))
 | 
						|
			break;
 | 
						|
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
 | 
						|
		if (r)
 | 
						|
			break;
 | 
						|
		r = 0;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	case KVM_PPC_GET_HTAB_FD: {
 | 
						|
		struct kvm_get_htab_fd ghf;
 | 
						|
 | 
						|
		r = -EFAULT;
 | 
						|
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
 | 
						|
			break;
 | 
						|
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	case KVM_PPC_RESIZE_HPT_PREPARE: {
 | 
						|
		struct kvm_ppc_resize_hpt rhpt;
 | 
						|
 | 
						|
		r = -EFAULT;
 | 
						|
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
 | 
						|
			break;
 | 
						|
 | 
						|
		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	case KVM_PPC_RESIZE_HPT_COMMIT: {
 | 
						|
		struct kvm_ppc_resize_hpt rhpt;
 | 
						|
 | 
						|
		r = -EFAULT;
 | 
						|
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
 | 
						|
			break;
 | 
						|
 | 
						|
		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	default:
 | 
						|
		r = -ENOTTY;
 | 
						|
	}
 | 
						|
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * List of hcall numbers to enable by default.
 | 
						|
 * For compatibility with old userspace, we enable by default
 | 
						|
 * all hcalls that were implemented before the hcall-enabling
 | 
						|
 * facility was added.  Note this list should not include H_RTAS.
 | 
						|
 */
 | 
						|
static unsigned int default_hcall_list[] = {
 | 
						|
	H_REMOVE,
 | 
						|
	H_ENTER,
 | 
						|
	H_READ,
 | 
						|
	H_PROTECT,
 | 
						|
	H_BULK_REMOVE,
 | 
						|
	H_GET_TCE,
 | 
						|
	H_PUT_TCE,
 | 
						|
	H_SET_DABR,
 | 
						|
	H_SET_XDABR,
 | 
						|
	H_CEDE,
 | 
						|
	H_PROD,
 | 
						|
	H_CONFER,
 | 
						|
	H_REGISTER_VPA,
 | 
						|
#ifdef CONFIG_KVM_XICS
 | 
						|
	H_EOI,
 | 
						|
	H_CPPR,
 | 
						|
	H_IPI,
 | 
						|
	H_IPOLL,
 | 
						|
	H_XIRR,
 | 
						|
	H_XIRR_X,
 | 
						|
#endif
 | 
						|
	0
 | 
						|
};
 | 
						|
 | 
						|
static void init_default_hcalls(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	unsigned int hcall;
 | 
						|
 | 
						|
	for (i = 0; default_hcall_list[i]; ++i) {
 | 
						|
		hcall = default_hcall_list[i];
 | 
						|
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
 | 
						|
		__set_bit(hcall / 4, default_enabled_hcalls);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
 | 
						|
{
 | 
						|
	unsigned long lpcr;
 | 
						|
	int radix;
 | 
						|
	int err;
 | 
						|
 | 
						|
	/* If not on a POWER9, reject it */
 | 
						|
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	/* If any unknown flags set, reject it */
 | 
						|
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* GR (guest radix) bit in process_table field must match */
 | 
						|
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
 | 
						|
	if (!!(cfg->process_table & PATB_GR) != radix)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Process table size field must be reasonable, i.e. <= 24 */
 | 
						|
	if ((cfg->process_table & PRTS_MASK) > 24)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* We can change a guest to/from radix now, if the host is radix */
 | 
						|
	if (radix && !radix_enabled())
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	mutex_lock(&kvm->lock);
 | 
						|
	if (radix != kvm_is_radix(kvm)) {
 | 
						|
		if (kvm->arch.mmu_ready) {
 | 
						|
			kvm->arch.mmu_ready = 0;
 | 
						|
			/* order mmu_ready vs. vcpus_running */
 | 
						|
			smp_mb();
 | 
						|
			if (atomic_read(&kvm->arch.vcpus_running)) {
 | 
						|
				kvm->arch.mmu_ready = 1;
 | 
						|
				err = -EBUSY;
 | 
						|
				goto out_unlock;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (radix)
 | 
						|
			err = kvmppc_switch_mmu_to_radix(kvm);
 | 
						|
		else
 | 
						|
			err = kvmppc_switch_mmu_to_hpt(kvm);
 | 
						|
		if (err)
 | 
						|
			goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	kvm->arch.process_table = cfg->process_table;
 | 
						|
	kvmppc_setup_partition_table(kvm);
 | 
						|
 | 
						|
	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
 | 
						|
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
 | 
						|
	err = 0;
 | 
						|
 | 
						|
 out_unlock:
 | 
						|
	mutex_unlock(&kvm->lock);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static struct kvmppc_ops kvm_ops_hv = {
 | 
						|
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
 | 
						|
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
 | 
						|
	.get_one_reg = kvmppc_get_one_reg_hv,
 | 
						|
	.set_one_reg = kvmppc_set_one_reg_hv,
 | 
						|
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
 | 
						|
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
 | 
						|
	.set_msr     = kvmppc_set_msr_hv,
 | 
						|
	.vcpu_run    = kvmppc_vcpu_run_hv,
 | 
						|
	.vcpu_create = kvmppc_core_vcpu_create_hv,
 | 
						|
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
 | 
						|
	.check_requests = kvmppc_core_check_requests_hv,
 | 
						|
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
 | 
						|
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
 | 
						|
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
 | 
						|
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
 | 
						|
	.unmap_hva_range = kvm_unmap_hva_range_hv,
 | 
						|
	.age_hva  = kvm_age_hva_hv,
 | 
						|
	.test_age_hva = kvm_test_age_hva_hv,
 | 
						|
	.set_spte_hva = kvm_set_spte_hva_hv,
 | 
						|
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
 | 
						|
	.free_memslot = kvmppc_core_free_memslot_hv,
 | 
						|
	.create_memslot = kvmppc_core_create_memslot_hv,
 | 
						|
	.init_vm =  kvmppc_core_init_vm_hv,
 | 
						|
	.destroy_vm = kvmppc_core_destroy_vm_hv,
 | 
						|
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
 | 
						|
	.emulate_op = kvmppc_core_emulate_op_hv,
 | 
						|
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
 | 
						|
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
 | 
						|
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
 | 
						|
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
 | 
						|
	.hcall_implemented = kvmppc_hcall_impl_hv,
 | 
						|
#ifdef CONFIG_KVM_XICS
 | 
						|
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
 | 
						|
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
 | 
						|
#endif
 | 
						|
	.configure_mmu = kvmhv_configure_mmu,
 | 
						|
	.get_rmmu_info = kvmhv_get_rmmu_info,
 | 
						|
	.set_smt_mode = kvmhv_set_smt_mode,
 | 
						|
};
 | 
						|
 | 
						|
static int kvm_init_subcore_bitmap(void)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	int nr_cores = cpu_nr_cores();
 | 
						|
	struct sibling_subcore_state *sibling_subcore_state;
 | 
						|
 | 
						|
	for (i = 0; i < nr_cores; i++) {
 | 
						|
		int first_cpu = i * threads_per_core;
 | 
						|
		int node = cpu_to_node(first_cpu);
 | 
						|
 | 
						|
		/* Ignore if it is already allocated. */
 | 
						|
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
 | 
						|
			continue;
 | 
						|
 | 
						|
		sibling_subcore_state =
 | 
						|
			kmalloc_node(sizeof(struct sibling_subcore_state),
 | 
						|
							GFP_KERNEL, node);
 | 
						|
		if (!sibling_subcore_state)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		memset(sibling_subcore_state, 0,
 | 
						|
				sizeof(struct sibling_subcore_state));
 | 
						|
 | 
						|
		for (j = 0; j < threads_per_core; j++) {
 | 
						|
			int cpu = first_cpu + j;
 | 
						|
 | 
						|
			paca_ptrs[cpu]->sibling_subcore_state =
 | 
						|
						sibling_subcore_state;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_radix_possible(void)
 | 
						|
{
 | 
						|
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
 | 
						|
}
 | 
						|
 | 
						|
static int kvmppc_book3s_init_hv(void)
 | 
						|
{
 | 
						|
	int r;
 | 
						|
	/*
 | 
						|
	 * FIXME!! Do we need to check on all cpus ?
 | 
						|
	 */
 | 
						|
	r = kvmppc_core_check_processor_compat_hv();
 | 
						|
	if (r < 0)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	r = kvm_init_subcore_bitmap();
 | 
						|
	if (r)
 | 
						|
		return r;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need a way of accessing the XICS interrupt controller,
 | 
						|
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
 | 
						|
	 * indirectly, via OPAL.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
 | 
						|
		struct device_node *np;
 | 
						|
 | 
						|
		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
 | 
						|
		if (!np) {
 | 
						|
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
 | 
						|
			return -ENODEV;
 | 
						|
		}
 | 
						|
		/* presence of intc confirmed - node can be dropped again */
 | 
						|
		of_node_put(np);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	kvm_ops_hv.owner = THIS_MODULE;
 | 
						|
	kvmppc_hv_ops = &kvm_ops_hv;
 | 
						|
 | 
						|
	init_default_hcalls();
 | 
						|
 | 
						|
	init_vcore_lists();
 | 
						|
 | 
						|
	r = kvmppc_mmu_hv_init();
 | 
						|
	if (r)
 | 
						|
		return r;
 | 
						|
 | 
						|
	if (kvmppc_radix_possible())
 | 
						|
		r = kvmppc_radix_init();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * POWER9 chips before version 2.02 can't have some threads in
 | 
						|
	 * HPT mode and some in radix mode on the same core.
 | 
						|
	 */
 | 
						|
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 | 
						|
		unsigned int pvr = mfspr(SPRN_PVR);
 | 
						|
		if ((pvr >> 16) == PVR_POWER9 &&
 | 
						|
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
 | 
						|
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
 | 
						|
			no_mixing_hpt_and_radix = true;
 | 
						|
	}
 | 
						|
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static void kvmppc_book3s_exit_hv(void)
 | 
						|
{
 | 
						|
	kvmppc_free_host_rm_ops();
 | 
						|
	if (kvmppc_radix_possible())
 | 
						|
		kvmppc_radix_exit();
 | 
						|
	kvmppc_hv_ops = NULL;
 | 
						|
}
 | 
						|
 | 
						|
module_init(kvmppc_book3s_init_hv);
 | 
						|
module_exit(kvmppc_book3s_exit_hv);
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_ALIAS_MISCDEV(KVM_MINOR);
 | 
						|
MODULE_ALIAS("devname:kvm");
 |