2599 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2599 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2012,2013 - ARM Ltd
 | |
|  * Author: Marc Zyngier <marc.zyngier@arm.com>
 | |
|  *
 | |
|  * Derived from arch/arm/kvm/coproc.c:
 | |
|  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 | |
|  * Authors: Rusty Russell <rusty@rustcorp.com.au>
 | |
|  *          Christoffer Dall <c.dall@virtualopensystems.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License, version 2, as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <linux/bsearch.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/printk.h>
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/debug-monitors.h>
 | |
| #include <asm/esr.h>
 | |
| #include <asm/kvm_arm.h>
 | |
| #include <asm/kvm_coproc.h>
 | |
| #include <asm/kvm_emulate.h>
 | |
| #include <asm/kvm_host.h>
 | |
| #include <asm/kvm_hyp.h>
 | |
| #include <asm/kvm_mmu.h>
 | |
| #include <asm/perf_event.h>
 | |
| #include <asm/sysreg.h>
 | |
| 
 | |
| #include <trace/events/kvm.h>
 | |
| 
 | |
| #include "sys_regs.h"
 | |
| 
 | |
| #include "trace.h"
 | |
| 
 | |
| /*
 | |
|  * All of this file is extremly similar to the ARM coproc.c, but the
 | |
|  * types are different. My gut feeling is that it should be pretty
 | |
|  * easy to merge, but that would be an ABI breakage -- again. VFP
 | |
|  * would also need to be abstracted.
 | |
|  *
 | |
|  * For AArch32, we only take care of what is being trapped. Anything
 | |
|  * that has to do with init and userspace access has to go via the
 | |
|  * 64bit interface.
 | |
|  */
 | |
| 
 | |
| static bool read_from_write_only(struct kvm_vcpu *vcpu,
 | |
| 				 struct sys_reg_params *params,
 | |
| 				 const struct sys_reg_desc *r)
 | |
| {
 | |
| 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
 | |
| 	print_sys_reg_instr(params);
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool write_to_read_only(struct kvm_vcpu *vcpu,
 | |
| 			       struct sys_reg_params *params,
 | |
| 			       const struct sys_reg_desc *r)
 | |
| {
 | |
| 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
 | |
| 	print_sys_reg_instr(params);
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
 | |
| {
 | |
| 	if (!vcpu->arch.sysregs_loaded_on_cpu)
 | |
| 		goto immediate_read;
 | |
| 
 | |
| 	/*
 | |
| 	 * System registers listed in the switch are not saved on every
 | |
| 	 * exit from the guest but are only saved on vcpu_put.
 | |
| 	 *
 | |
| 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
 | |
| 	 * should never be listed below, because the guest cannot modify its
 | |
| 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
 | |
| 	 * thread when emulating cross-VCPU communication.
 | |
| 	 */
 | |
| 	switch (reg) {
 | |
| 	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
 | |
| 	case SCTLR_EL1:		return read_sysreg_s(sctlr_EL12);
 | |
| 	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
 | |
| 	case CPACR_EL1:		return read_sysreg_s(cpacr_EL12);
 | |
| 	case TTBR0_EL1:		return read_sysreg_s(ttbr0_EL12);
 | |
| 	case TTBR1_EL1:		return read_sysreg_s(ttbr1_EL12);
 | |
| 	case TCR_EL1:		return read_sysreg_s(tcr_EL12);
 | |
| 	case ESR_EL1:		return read_sysreg_s(esr_EL12);
 | |
| 	case AFSR0_EL1:		return read_sysreg_s(afsr0_EL12);
 | |
| 	case AFSR1_EL1:		return read_sysreg_s(afsr1_EL12);
 | |
| 	case FAR_EL1:		return read_sysreg_s(far_EL12);
 | |
| 	case MAIR_EL1:		return read_sysreg_s(mair_EL12);
 | |
| 	case VBAR_EL1:		return read_sysreg_s(vbar_EL12);
 | |
| 	case CONTEXTIDR_EL1:	return read_sysreg_s(contextidr_EL12);
 | |
| 	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
 | |
| 	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
 | |
| 	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
 | |
| 	case AMAIR_EL1:		return read_sysreg_s(amair_EL12);
 | |
| 	case CNTKCTL_EL1:	return read_sysreg_s(cntkctl_EL12);
 | |
| 	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
 | |
| 	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
 | |
| 	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
 | |
| 	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
 | |
| 	}
 | |
| 
 | |
| immediate_read:
 | |
| 	return __vcpu_sys_reg(vcpu, reg);
 | |
| }
 | |
| 
 | |
| void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
 | |
| {
 | |
| 	if (!vcpu->arch.sysregs_loaded_on_cpu)
 | |
| 		goto immediate_write;
 | |
| 
 | |
| 	/*
 | |
| 	 * System registers listed in the switch are not restored on every
 | |
| 	 * entry to the guest but are only restored on vcpu_load.
 | |
| 	 *
 | |
| 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
 | |
| 	 * should never be listed below, because the the MPIDR should only be
 | |
| 	 * set once, before running the VCPU, and never changed later.
 | |
| 	 */
 | |
| 	switch (reg) {
 | |
| 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
 | |
| 	case SCTLR_EL1:		write_sysreg_s(val, sctlr_EL12);	return;
 | |
| 	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
 | |
| 	case CPACR_EL1:		write_sysreg_s(val, cpacr_EL12);	return;
 | |
| 	case TTBR0_EL1:		write_sysreg_s(val, ttbr0_EL12);	return;
 | |
| 	case TTBR1_EL1:		write_sysreg_s(val, ttbr1_EL12);	return;
 | |
| 	case TCR_EL1:		write_sysreg_s(val, tcr_EL12);		return;
 | |
| 	case ESR_EL1:		write_sysreg_s(val, esr_EL12);		return;
 | |
| 	case AFSR0_EL1:		write_sysreg_s(val, afsr0_EL12);	return;
 | |
| 	case AFSR1_EL1:		write_sysreg_s(val, afsr1_EL12);	return;
 | |
| 	case FAR_EL1:		write_sysreg_s(val, far_EL12);		return;
 | |
| 	case MAIR_EL1:		write_sysreg_s(val, mair_EL12);		return;
 | |
| 	case VBAR_EL1:		write_sysreg_s(val, vbar_EL12);		return;
 | |
| 	case CONTEXTIDR_EL1:	write_sysreg_s(val, contextidr_EL12);	return;
 | |
| 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
 | |
| 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
 | |
| 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
 | |
| 	case AMAIR_EL1:		write_sysreg_s(val, amair_EL12);	return;
 | |
| 	case CNTKCTL_EL1:	write_sysreg_s(val, cntkctl_EL12);	return;
 | |
| 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
 | |
| 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
 | |
| 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
 | |
| 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
 | |
| 	}
 | |
| 
 | |
| immediate_write:
 | |
| 	 __vcpu_sys_reg(vcpu, reg) = val;
 | |
| }
 | |
| 
 | |
| /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
 | |
| static u32 cache_levels;
 | |
| 
 | |
| /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
 | |
| #define CSSELR_MAX 12
 | |
| 
 | |
| /* Which cache CCSIDR represents depends on CSSELR value. */
 | |
| static u32 get_ccsidr(u32 csselr)
 | |
| {
 | |
| 	u32 ccsidr;
 | |
| 
 | |
| 	/* Make sure noone else changes CSSELR during this! */
 | |
| 	local_irq_disable();
 | |
| 	write_sysreg(csselr, csselr_el1);
 | |
| 	isb();
 | |
| 	ccsidr = read_sysreg(ccsidr_el1);
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	return ccsidr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 | |
|  */
 | |
| static bool access_dcsw(struct kvm_vcpu *vcpu,
 | |
| 			struct sys_reg_params *p,
 | |
| 			const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (!p->is_write)
 | |
| 		return read_from_write_only(vcpu, p, r);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only track S/W ops if we don't have FWB. It still indicates
 | |
| 	 * that the guest is a bit broken (S/W operations should only
 | |
| 	 * be done by firmware, knowing that there is only a single
 | |
| 	 * CPU left in the system, and certainly not from non-secure
 | |
| 	 * software).
 | |
| 	 */
 | |
| 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
 | |
| 		kvm_set_way_flush(vcpu);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic accessor for VM registers. Only called as long as HCR_TVM
 | |
|  * is set. If the guest enables the MMU, we stop trapping the VM
 | |
|  * sys_regs and leave it in complete control of the caches.
 | |
|  */
 | |
| static bool access_vm_reg(struct kvm_vcpu *vcpu,
 | |
| 			  struct sys_reg_params *p,
 | |
| 			  const struct sys_reg_desc *r)
 | |
| {
 | |
| 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
 | |
| 	u64 val;
 | |
| 	int reg = r->reg;
 | |
| 
 | |
| 	BUG_ON(!p->is_write);
 | |
| 
 | |
| 	/* See the 32bit mapping in kvm_host.h */
 | |
| 	if (p->is_aarch32)
 | |
| 		reg = r->reg / 2;
 | |
| 
 | |
| 	if (!p->is_aarch32 || !p->is_32bit) {
 | |
| 		val = p->regval;
 | |
| 	} else {
 | |
| 		val = vcpu_read_sys_reg(vcpu, reg);
 | |
| 		if (r->reg % 2)
 | |
| 			val = (p->regval << 32) | (u64)lower_32_bits(val);
 | |
| 		else
 | |
| 			val = ((u64)upper_32_bits(val) << 32) |
 | |
| 				lower_32_bits(p->regval);
 | |
| 	}
 | |
| 	vcpu_write_sys_reg(vcpu, val, reg);
 | |
| 
 | |
| 	kvm_toggle_cache(vcpu, was_enabled);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trap handler for the GICv3 SGI generation system register.
 | |
|  * Forward the request to the VGIC emulation.
 | |
|  * The cp15_64 code makes sure this automatically works
 | |
|  * for both AArch64 and AArch32 accesses.
 | |
|  */
 | |
| static bool access_gic_sgi(struct kvm_vcpu *vcpu,
 | |
| 			   struct sys_reg_params *p,
 | |
| 			   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	bool g1;
 | |
| 
 | |
| 	if (!p->is_write)
 | |
| 		return read_from_write_only(vcpu, p, r);
 | |
| 
 | |
| 	/*
 | |
| 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
 | |
| 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
 | |
| 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
 | |
| 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
 | |
| 	 * group.
 | |
| 	 */
 | |
| 	if (p->is_aarch32) {
 | |
| 		switch (p->Op1) {
 | |
| 		default:		/* Keep GCC quiet */
 | |
| 		case 0:			/* ICC_SGI1R */
 | |
| 			g1 = true;
 | |
| 			break;
 | |
| 		case 1:			/* ICC_ASGI1R */
 | |
| 		case 2:			/* ICC_SGI0R */
 | |
| 			g1 = false;
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (p->Op2) {
 | |
| 		default:		/* Keep GCC quiet */
 | |
| 		case 5:			/* ICC_SGI1R_EL1 */
 | |
| 			g1 = true;
 | |
| 			break;
 | |
| 		case 6:			/* ICC_ASGI1R_EL1 */
 | |
| 		case 7:			/* ICC_SGI0R_EL1 */
 | |
| 			g1 = false;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_gic_sre(struct kvm_vcpu *vcpu,
 | |
| 			   struct sys_reg_params *p,
 | |
| 			   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return ignore_write(vcpu, p);
 | |
| 
 | |
| 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 | |
| 			struct sys_reg_params *p,
 | |
| 			const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return ignore_write(vcpu, p);
 | |
| 	else
 | |
| 		return read_zero(vcpu, p);
 | |
| }
 | |
| 
 | |
| static bool trap_undef(struct kvm_vcpu *vcpu,
 | |
| 		       struct sys_reg_params *p,
 | |
| 		       const struct sys_reg_desc *r)
 | |
| {
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
 | |
| 			   struct sys_reg_params *p,
 | |
| 			   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		return ignore_write(vcpu, p);
 | |
| 	} else {
 | |
| 		p->regval = (1 << 3);
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
 | |
| 				   struct sys_reg_params *p,
 | |
| 				   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		return ignore_write(vcpu, p);
 | |
| 	} else {
 | |
| 		p->regval = read_sysreg(dbgauthstatus_el1);
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want to avoid world-switching all the DBG registers all the
 | |
|  * time:
 | |
|  * 
 | |
|  * - If we've touched any debug register, it is likely that we're
 | |
|  *   going to touch more of them. It then makes sense to disable the
 | |
|  *   traps and start doing the save/restore dance
 | |
|  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 | |
|  *   then mandatory to save/restore the registers, as the guest
 | |
|  *   depends on them.
 | |
|  * 
 | |
|  * For this, we use a DIRTY bit, indicating the guest has modified the
 | |
|  * debug registers, used as follow:
 | |
|  *
 | |
|  * On guest entry:
 | |
|  * - If the dirty bit is set (because we're coming back from trapping),
 | |
|  *   disable the traps, save host registers, restore guest registers.
 | |
|  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 | |
|  *   set the dirty bit, disable the traps, save host registers,
 | |
|  *   restore guest registers.
 | |
|  * - Otherwise, enable the traps
 | |
|  *
 | |
|  * On guest exit:
 | |
|  * - If the dirty bit is set, save guest registers, restore host
 | |
|  *   registers and clear the dirty bit. This ensure that the host can
 | |
|  *   now use the debug registers.
 | |
|  */
 | |
| static bool trap_debug_regs(struct kvm_vcpu *vcpu,
 | |
| 			    struct sys_reg_params *p,
 | |
| 			    const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
 | |
| 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 | |
| 	} else {
 | |
| 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
 | |
| 	}
 | |
| 
 | |
| 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * reg_to_dbg/dbg_to_reg
 | |
|  *
 | |
|  * A 32 bit write to a debug register leave top bits alone
 | |
|  * A 32 bit read from a debug register only returns the bottom bits
 | |
|  *
 | |
|  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 | |
|  * hyp.S code switches between host and guest values in future.
 | |
|  */
 | |
| static void reg_to_dbg(struct kvm_vcpu *vcpu,
 | |
| 		       struct sys_reg_params *p,
 | |
| 		       u64 *dbg_reg)
 | |
| {
 | |
| 	u64 val = p->regval;
 | |
| 
 | |
| 	if (p->is_32bit) {
 | |
| 		val &= 0xffffffffUL;
 | |
| 		val |= ((*dbg_reg >> 32) << 32);
 | |
| 	}
 | |
| 
 | |
| 	*dbg_reg = val;
 | |
| 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 | |
| }
 | |
| 
 | |
| static void dbg_to_reg(struct kvm_vcpu *vcpu,
 | |
| 		       struct sys_reg_params *p,
 | |
| 		       u64 *dbg_reg)
 | |
| {
 | |
| 	p->regval = *dbg_reg;
 | |
| 	if (p->is_32bit)
 | |
| 		p->regval &= 0xffffffffUL;
 | |
| }
 | |
| 
 | |
| static bool trap_bvr(struct kvm_vcpu *vcpu,
 | |
| 		     struct sys_reg_params *p,
 | |
| 		     const struct sys_reg_desc *rd)
 | |
| {
 | |
| 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 | |
| 
 | |
| 	if (p->is_write)
 | |
| 		reg_to_dbg(vcpu, p, dbg_reg);
 | |
| 	else
 | |
| 		dbg_to_reg(vcpu, p, dbg_reg);
 | |
| 
 | |
| 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 		const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 | |
| 
 | |
| 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 	const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 | |
| 
 | |
| 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void reset_bvr(struct kvm_vcpu *vcpu,
 | |
| 		      const struct sys_reg_desc *rd)
 | |
| {
 | |
| 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
 | |
| }
 | |
| 
 | |
| static bool trap_bcr(struct kvm_vcpu *vcpu,
 | |
| 		     struct sys_reg_params *p,
 | |
| 		     const struct sys_reg_desc *rd)
 | |
| {
 | |
| 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 | |
| 
 | |
| 	if (p->is_write)
 | |
| 		reg_to_dbg(vcpu, p, dbg_reg);
 | |
| 	else
 | |
| 		dbg_to_reg(vcpu, p, dbg_reg);
 | |
| 
 | |
| 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 		const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 | |
| 
 | |
| 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 	const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
 | |
| 
 | |
| 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void reset_bcr(struct kvm_vcpu *vcpu,
 | |
| 		      const struct sys_reg_desc *rd)
 | |
| {
 | |
| 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
 | |
| }
 | |
| 
 | |
| static bool trap_wvr(struct kvm_vcpu *vcpu,
 | |
| 		     struct sys_reg_params *p,
 | |
| 		     const struct sys_reg_desc *rd)
 | |
| {
 | |
| 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 | |
| 
 | |
| 	if (p->is_write)
 | |
| 		reg_to_dbg(vcpu, p, dbg_reg);
 | |
| 	else
 | |
| 		dbg_to_reg(vcpu, p, dbg_reg);
 | |
| 
 | |
| 	trace_trap_reg(__func__, rd->reg, p->is_write,
 | |
| 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 		const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 | |
| 
 | |
| 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 	const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
 | |
| 
 | |
| 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void reset_wvr(struct kvm_vcpu *vcpu,
 | |
| 		      const struct sys_reg_desc *rd)
 | |
| {
 | |
| 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
 | |
| }
 | |
| 
 | |
| static bool trap_wcr(struct kvm_vcpu *vcpu,
 | |
| 		     struct sys_reg_params *p,
 | |
| 		     const struct sys_reg_desc *rd)
 | |
| {
 | |
| 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 | |
| 
 | |
| 	if (p->is_write)
 | |
| 		reg_to_dbg(vcpu, p, dbg_reg);
 | |
| 	else
 | |
| 		dbg_to_reg(vcpu, p, dbg_reg);
 | |
| 
 | |
| 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 		const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 | |
| 
 | |
| 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 	const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
 | |
| 
 | |
| 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void reset_wcr(struct kvm_vcpu *vcpu,
 | |
| 		      const struct sys_reg_desc *rd)
 | |
| {
 | |
| 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
 | |
| }
 | |
| 
 | |
| static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 amair = read_sysreg(amair_el1);
 | |
| 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
 | |
| }
 | |
| 
 | |
| static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 mpidr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map the vcpu_id into the first three affinity level fields of
 | |
| 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
 | |
| 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
 | |
| 	 * of the GICv3 to be able to address each CPU directly when
 | |
| 	 * sending IPIs.
 | |
| 	 */
 | |
| 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
 | |
| 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
 | |
| 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
 | |
| 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
 | |
| }
 | |
| 
 | |
| static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 pmcr, val;
 | |
| 
 | |
| 	pmcr = read_sysreg(pmcr_el0);
 | |
| 	/*
 | |
| 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
 | |
| 	 * except PMCR.E resetting to zero.
 | |
| 	 */
 | |
| 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
 | |
| 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
 | |
| 	__vcpu_sys_reg(vcpu, r->reg) = val;
 | |
| }
 | |
| 
 | |
| static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
 | |
| {
 | |
| 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
 | |
| 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
 | |
| 
 | |
| 	if (!enabled)
 | |
| 		kvm_inject_undefined(vcpu);
 | |
| 
 | |
| 	return !enabled;
 | |
| }
 | |
| 
 | |
| static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
 | |
| }
 | |
| 
 | |
| static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
 | |
| }
 | |
| 
 | |
| static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
 | |
| }
 | |
| 
 | |
| static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
 | |
| }
 | |
| 
 | |
| static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 | |
| 			const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	if (pmu_access_el0_disabled(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		/* Only update writeable bits of PMCR */
 | |
| 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
 | |
| 		val &= ~ARMV8_PMU_PMCR_MASK;
 | |
| 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
 | |
| 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
 | |
| 		kvm_pmu_handle_pmcr(vcpu, val);
 | |
| 	} else {
 | |
| 		/* PMCR.P & PMCR.C are RAZ */
 | |
| 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
 | |
| 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
 | |
| 		p->regval = val;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 | |
| 			  const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	if (pmu_access_event_counter_el0_disabled(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (p->is_write)
 | |
| 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
 | |
| 	else
 | |
| 		/* return PMSELR.SEL field */
 | |
| 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 | |
| 			    & ARMV8_PMU_COUNTER_MASK;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 | |
| 			  const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 pmceid;
 | |
| 
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	BUG_ON(p->is_write);
 | |
| 
 | |
| 	if (pmu_access_el0_disabled(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!(p->Op2 & 1))
 | |
| 		pmceid = read_sysreg(pmceid0_el0);
 | |
| 	else
 | |
| 		pmceid = read_sysreg(pmceid1_el0);
 | |
| 
 | |
| 	p->regval = pmceid;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
 | |
| {
 | |
| 	u64 pmcr, val;
 | |
| 
 | |
| 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
 | |
| 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
 | |
| 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
 | |
| 		kvm_inject_undefined(vcpu);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
 | |
| 			      struct sys_reg_params *p,
 | |
| 			      const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 idx;
 | |
| 
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	if (r->CRn == 9 && r->CRm == 13) {
 | |
| 		if (r->Op2 == 2) {
 | |
| 			/* PMXEVCNTR_EL0 */
 | |
| 			if (pmu_access_event_counter_el0_disabled(vcpu))
 | |
| 				return false;
 | |
| 
 | |
| 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 | |
| 			      & ARMV8_PMU_COUNTER_MASK;
 | |
| 		} else if (r->Op2 == 0) {
 | |
| 			/* PMCCNTR_EL0 */
 | |
| 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
 | |
| 				return false;
 | |
| 
 | |
| 			idx = ARMV8_PMU_CYCLE_IDX;
 | |
| 		} else {
 | |
| 			return false;
 | |
| 		}
 | |
| 	} else if (r->CRn == 0 && r->CRm == 9) {
 | |
| 		/* PMCCNTR */
 | |
| 		if (pmu_access_event_counter_el0_disabled(vcpu))
 | |
| 			return false;
 | |
| 
 | |
| 		idx = ARMV8_PMU_CYCLE_IDX;
 | |
| 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
 | |
| 		/* PMEVCNTRn_EL0 */
 | |
| 		if (pmu_access_event_counter_el0_disabled(vcpu))
 | |
| 			return false;
 | |
| 
 | |
| 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 | |
| 	} else {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu_counter_idx_valid(vcpu, idx))
 | |
| 		return false;
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		if (pmu_access_el0_disabled(vcpu))
 | |
| 			return false;
 | |
| 
 | |
| 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
 | |
| 	} else {
 | |
| 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 | |
| 			       const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 idx, reg;
 | |
| 
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	if (pmu_access_el0_disabled(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
 | |
| 		/* PMXEVTYPER_EL0 */
 | |
| 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
 | |
| 		reg = PMEVTYPER0_EL0 + idx;
 | |
| 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
 | |
| 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 | |
| 		if (idx == ARMV8_PMU_CYCLE_IDX)
 | |
| 			reg = PMCCFILTR_EL0;
 | |
| 		else
 | |
| 			/* PMEVTYPERn_EL0 */
 | |
| 			reg = PMEVTYPER0_EL0 + idx;
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu_counter_idx_valid(vcpu, idx))
 | |
| 		return false;
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
 | |
| 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
 | |
| 	} else {
 | |
| 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 | |
| 			   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 val, mask;
 | |
| 
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	if (pmu_access_el0_disabled(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	mask = kvm_pmu_valid_counter_mask(vcpu);
 | |
| 	if (p->is_write) {
 | |
| 		val = p->regval & mask;
 | |
| 		if (r->Op2 & 0x1) {
 | |
| 			/* accessing PMCNTENSET_EL0 */
 | |
| 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
 | |
| 			kvm_pmu_enable_counter(vcpu, val);
 | |
| 		} else {
 | |
| 			/* accessing PMCNTENCLR_EL0 */
 | |
| 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
 | |
| 			kvm_pmu_disable_counter(vcpu, val);
 | |
| 		}
 | |
| 	} else {
 | |
| 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 | |
| 			   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 | |
| 
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	if (!vcpu_mode_priv(vcpu)) {
 | |
| 		kvm_inject_undefined(vcpu);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		u64 val = p->regval & mask;
 | |
| 
 | |
| 		if (r->Op2 & 0x1)
 | |
| 			/* accessing PMINTENSET_EL1 */
 | |
| 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
 | |
| 		else
 | |
| 			/* accessing PMINTENCLR_EL1 */
 | |
| 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
 | |
| 	} else {
 | |
| 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 | |
| 			 const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 | |
| 
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	if (pmu_access_el0_disabled(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		if (r->CRm & 0x2)
 | |
| 			/* accessing PMOVSSET_EL0 */
 | |
| 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
 | |
| 		else
 | |
| 			/* accessing PMOVSCLR_EL0 */
 | |
| 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
 | |
| 	} else {
 | |
| 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 | |
| 			   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 mask;
 | |
| 
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	if (!p->is_write)
 | |
| 		return read_from_write_only(vcpu, p, r);
 | |
| 
 | |
| 	if (pmu_write_swinc_el0_disabled(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	mask = kvm_pmu_valid_counter_mask(vcpu);
 | |
| 	kvm_pmu_software_increment(vcpu, p->regval & mask);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 | |
| 			     const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (!kvm_arm_pmu_v3_ready(vcpu))
 | |
| 		return trap_raz_wi(vcpu, p, r);
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		if (!vcpu_mode_priv(vcpu)) {
 | |
| 			kvm_inject_undefined(vcpu);
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
 | |
| 			       p->regval & ARMV8_PMU_USERENR_MASK;
 | |
| 	} else {
 | |
| 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
 | |
| 			    & ARMV8_PMU_USERENR_MASK;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
 | |
| #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
 | |
| 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
 | |
| 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
 | |
| 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
 | |
| 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
 | |
| 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
 | |
| 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
 | |
| 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
 | |
| 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
 | |
| 
 | |
| /* Macro to expand the PMEVCNTRn_EL0 register */
 | |
| #define PMU_PMEVCNTR_EL0(n)						\
 | |
| 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
 | |
| 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
 | |
| 
 | |
| /* Macro to expand the PMEVTYPERn_EL0 register */
 | |
| #define PMU_PMEVTYPER_EL0(n)						\
 | |
| 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
 | |
| 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
 | |
| 
 | |
| static bool access_cntp_tval(struct kvm_vcpu *vcpu,
 | |
| 		struct sys_reg_params *p,
 | |
| 		const struct sys_reg_desc *r)
 | |
| {
 | |
| 	u64 now = kvm_phys_timer_read();
 | |
| 	u64 cval;
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
 | |
| 				      p->regval + now);
 | |
| 	} else {
 | |
| 		cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
 | |
| 		p->regval = cval - now;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
 | |
| 		struct sys_reg_params *p,
 | |
| 		const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
 | |
| 	else
 | |
| 		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_cntp_cval(struct kvm_vcpu *vcpu,
 | |
| 		struct sys_reg_params *p,
 | |
| 		const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
 | |
| 	else
 | |
| 		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Read a sanitised cpufeature ID register by sys_reg_desc */
 | |
| static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
 | |
| {
 | |
| 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
 | |
| 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
 | |
| 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
 | |
| 
 | |
| 	if (id == SYS_ID_AA64PFR0_EL1) {
 | |
| 		if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
 | |
| 			kvm_debug("SVE unsupported for guests, suppressing\n");
 | |
| 
 | |
| 		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
 | |
| 	} else if (id == SYS_ID_AA64MMFR1_EL1) {
 | |
| 		if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
 | |
| 			kvm_debug("LORegions unsupported for guests, suppressing\n");
 | |
| 
 | |
| 		val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /* cpufeature ID register access trap handlers */
 | |
| 
 | |
| static bool __access_id_reg(struct kvm_vcpu *vcpu,
 | |
| 			    struct sys_reg_params *p,
 | |
| 			    const struct sys_reg_desc *r,
 | |
| 			    bool raz)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return write_to_read_only(vcpu, p, r);
 | |
| 
 | |
| 	p->regval = read_id_reg(r, raz);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_id_reg(struct kvm_vcpu *vcpu,
 | |
| 			  struct sys_reg_params *p,
 | |
| 			  const struct sys_reg_desc *r)
 | |
| {
 | |
| 	return __access_id_reg(vcpu, p, r, false);
 | |
| }
 | |
| 
 | |
| static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
 | |
| 			      struct sys_reg_params *p,
 | |
| 			      const struct sys_reg_desc *r)
 | |
| {
 | |
| 	return __access_id_reg(vcpu, p, r, true);
 | |
| }
 | |
| 
 | |
| static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
 | |
| static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
 | |
| static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
 | |
| 
 | |
| /*
 | |
|  * cpufeature ID register user accessors
 | |
|  *
 | |
|  * For now, these registers are immutable for userspace, so no values
 | |
|  * are stored, and for set_id_reg() we don't allow the effective value
 | |
|  * to be changed.
 | |
|  */
 | |
| static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
 | |
| 			bool raz)
 | |
| {
 | |
| 	const u64 id = sys_reg_to_index(rd);
 | |
| 	const u64 val = read_id_reg(rd, raz);
 | |
| 
 | |
| 	return reg_to_user(uaddr, &val, id);
 | |
| }
 | |
| 
 | |
| static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
 | |
| 			bool raz)
 | |
| {
 | |
| 	const u64 id = sys_reg_to_index(rd);
 | |
| 	int err;
 | |
| 	u64 val;
 | |
| 
 | |
| 	err = reg_from_user(&val, uaddr, id);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* This is what we mean by invariant: you can't change it. */
 | |
| 	if (val != read_id_reg(rd, raz))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 		      const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	return __get_id_reg(rd, uaddr, false);
 | |
| }
 | |
| 
 | |
| static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 		      const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	return __set_id_reg(rd, uaddr, false);
 | |
| }
 | |
| 
 | |
| static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 			  const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	return __get_id_reg(rd, uaddr, true);
 | |
| }
 | |
| 
 | |
| static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 | |
| 			  const struct kvm_one_reg *reg, void __user *uaddr)
 | |
| {
 | |
| 	return __set_id_reg(rd, uaddr, true);
 | |
| }
 | |
| 
 | |
| /* sys_reg_desc initialiser for known cpufeature ID registers */
 | |
| #define ID_SANITISED(name) {			\
 | |
| 	SYS_DESC(SYS_##name),			\
 | |
| 	.access	= access_id_reg,		\
 | |
| 	.get_user = get_id_reg,			\
 | |
| 	.set_user = set_id_reg,			\
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
 | |
|  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
 | |
|  * (1 <= crm < 8, 0 <= Op2 < 8).
 | |
|  */
 | |
| #define ID_UNALLOCATED(crm, op2) {			\
 | |
| 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
 | |
| 	.access = access_raz_id_reg,			\
 | |
| 	.get_user = get_raz_id_reg,			\
 | |
| 	.set_user = set_raz_id_reg,			\
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sys_reg_desc initialiser for known ID registers that we hide from guests.
 | |
|  * For now, these are exposed just like unallocated ID regs: they appear
 | |
|  * RAZ for the guest.
 | |
|  */
 | |
| #define ID_HIDDEN(name) {			\
 | |
| 	SYS_DESC(SYS_##name),			\
 | |
| 	.access = access_raz_id_reg,		\
 | |
| 	.get_user = get_raz_id_reg,		\
 | |
| 	.set_user = set_raz_id_reg,		\
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Architected system registers.
 | |
|  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
 | |
|  *
 | |
|  * Debug handling: We do trap most, if not all debug related system
 | |
|  * registers. The implementation is good enough to ensure that a guest
 | |
|  * can use these with minimal performance degradation. The drawback is
 | |
|  * that we don't implement any of the external debug, none of the
 | |
|  * OSlock protocol. This should be revisited if we ever encounter a
 | |
|  * more demanding guest...
 | |
|  */
 | |
| static const struct sys_reg_desc sys_reg_descs[] = {
 | |
| 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
 | |
| 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
 | |
| 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
 | |
| 
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(0),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(1),
 | |
| 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
 | |
| 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(2),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(3),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(4),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(5),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(6),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(7),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(8),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(9),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(10),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(11),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(12),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(13),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(14),
 | |
| 	DBG_BCR_BVR_WCR_WVR_EL1(15),
 | |
| 
 | |
| 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
 | |
| 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
 | |
| 	// DBGDTR[TR]X_EL0 share the same encoding
 | |
| 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
 | |
| 
 | |
| 	/*
 | |
| 	 * ID regs: all ID_SANITISED() entries here must have corresponding
 | |
| 	 * entries in arm64_ftr_regs[].
 | |
| 	 */
 | |
| 
 | |
| 	/* AArch64 mappings of the AArch32 ID registers */
 | |
| 	/* CRm=1 */
 | |
| 	ID_SANITISED(ID_PFR0_EL1),
 | |
| 	ID_SANITISED(ID_PFR1_EL1),
 | |
| 	ID_SANITISED(ID_DFR0_EL1),
 | |
| 	ID_HIDDEN(ID_AFR0_EL1),
 | |
| 	ID_SANITISED(ID_MMFR0_EL1),
 | |
| 	ID_SANITISED(ID_MMFR1_EL1),
 | |
| 	ID_SANITISED(ID_MMFR2_EL1),
 | |
| 	ID_SANITISED(ID_MMFR3_EL1),
 | |
| 
 | |
| 	/* CRm=2 */
 | |
| 	ID_SANITISED(ID_ISAR0_EL1),
 | |
| 	ID_SANITISED(ID_ISAR1_EL1),
 | |
| 	ID_SANITISED(ID_ISAR2_EL1),
 | |
| 	ID_SANITISED(ID_ISAR3_EL1),
 | |
| 	ID_SANITISED(ID_ISAR4_EL1),
 | |
| 	ID_SANITISED(ID_ISAR5_EL1),
 | |
| 	ID_SANITISED(ID_MMFR4_EL1),
 | |
| 	ID_UNALLOCATED(2,7),
 | |
| 
 | |
| 	/* CRm=3 */
 | |
| 	ID_SANITISED(MVFR0_EL1),
 | |
| 	ID_SANITISED(MVFR1_EL1),
 | |
| 	ID_SANITISED(MVFR2_EL1),
 | |
| 	ID_UNALLOCATED(3,3),
 | |
| 	ID_UNALLOCATED(3,4),
 | |
| 	ID_UNALLOCATED(3,5),
 | |
| 	ID_UNALLOCATED(3,6),
 | |
| 	ID_UNALLOCATED(3,7),
 | |
| 
 | |
| 	/* AArch64 ID registers */
 | |
| 	/* CRm=4 */
 | |
| 	ID_SANITISED(ID_AA64PFR0_EL1),
 | |
| 	ID_SANITISED(ID_AA64PFR1_EL1),
 | |
| 	ID_UNALLOCATED(4,2),
 | |
| 	ID_UNALLOCATED(4,3),
 | |
| 	ID_UNALLOCATED(4,4),
 | |
| 	ID_UNALLOCATED(4,5),
 | |
| 	ID_UNALLOCATED(4,6),
 | |
| 	ID_UNALLOCATED(4,7),
 | |
| 
 | |
| 	/* CRm=5 */
 | |
| 	ID_SANITISED(ID_AA64DFR0_EL1),
 | |
| 	ID_SANITISED(ID_AA64DFR1_EL1),
 | |
| 	ID_UNALLOCATED(5,2),
 | |
| 	ID_UNALLOCATED(5,3),
 | |
| 	ID_HIDDEN(ID_AA64AFR0_EL1),
 | |
| 	ID_HIDDEN(ID_AA64AFR1_EL1),
 | |
| 	ID_UNALLOCATED(5,6),
 | |
| 	ID_UNALLOCATED(5,7),
 | |
| 
 | |
| 	/* CRm=6 */
 | |
| 	ID_SANITISED(ID_AA64ISAR0_EL1),
 | |
| 	ID_SANITISED(ID_AA64ISAR1_EL1),
 | |
| 	ID_UNALLOCATED(6,2),
 | |
| 	ID_UNALLOCATED(6,3),
 | |
| 	ID_UNALLOCATED(6,4),
 | |
| 	ID_UNALLOCATED(6,5),
 | |
| 	ID_UNALLOCATED(6,6),
 | |
| 	ID_UNALLOCATED(6,7),
 | |
| 
 | |
| 	/* CRm=7 */
 | |
| 	ID_SANITISED(ID_AA64MMFR0_EL1),
 | |
| 	ID_SANITISED(ID_AA64MMFR1_EL1),
 | |
| 	ID_SANITISED(ID_AA64MMFR2_EL1),
 | |
| 	ID_UNALLOCATED(7,3),
 | |
| 	ID_UNALLOCATED(7,4),
 | |
| 	ID_UNALLOCATED(7,5),
 | |
| 	ID_UNALLOCATED(7,6),
 | |
| 	ID_UNALLOCATED(7,7),
 | |
| 
 | |
| 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
 | |
| 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
 | |
| 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
 | |
| 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
 | |
| 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
 | |
| 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
 | |
| 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
 | |
| 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
 | |
| 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
 | |
| 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
 | |
| 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_LORSA_EL1), trap_undef },
 | |
| 	{ SYS_DESC(SYS_LOREA_EL1), trap_undef },
 | |
| 	{ SYS_DESC(SYS_LORN_EL1), trap_undef },
 | |
| 	{ SYS_DESC(SYS_LORC_EL1), trap_undef },
 | |
| 	{ SYS_DESC(SYS_LORID_EL1), trap_undef },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
 | |
| 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
 | |
| 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
 | |
| 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
 | |
| 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
 | |
| 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
 | |
| 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
 | |
| 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
 | |
| 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
 | |
| 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
 | |
| 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
 | |
| 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
 | |
| 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
 | |
| 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
 | |
| 
 | |
| 	{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
 | |
| 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
 | |
| 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
 | |
| 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
 | |
| 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
 | |
| 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
 | |
| 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
 | |
| 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
 | |
| 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
 | |
| 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
 | |
| 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
 | |
| 	/*
 | |
| 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
 | |
| 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
 | |
| 	 */
 | |
| 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
 | |
| 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
 | |
| 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
 | |
| 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
 | |
| 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
 | |
| 
 | |
| 	/* PMEVCNTRn_EL0 */
 | |
| 	PMU_PMEVCNTR_EL0(0),
 | |
| 	PMU_PMEVCNTR_EL0(1),
 | |
| 	PMU_PMEVCNTR_EL0(2),
 | |
| 	PMU_PMEVCNTR_EL0(3),
 | |
| 	PMU_PMEVCNTR_EL0(4),
 | |
| 	PMU_PMEVCNTR_EL0(5),
 | |
| 	PMU_PMEVCNTR_EL0(6),
 | |
| 	PMU_PMEVCNTR_EL0(7),
 | |
| 	PMU_PMEVCNTR_EL0(8),
 | |
| 	PMU_PMEVCNTR_EL0(9),
 | |
| 	PMU_PMEVCNTR_EL0(10),
 | |
| 	PMU_PMEVCNTR_EL0(11),
 | |
| 	PMU_PMEVCNTR_EL0(12),
 | |
| 	PMU_PMEVCNTR_EL0(13),
 | |
| 	PMU_PMEVCNTR_EL0(14),
 | |
| 	PMU_PMEVCNTR_EL0(15),
 | |
| 	PMU_PMEVCNTR_EL0(16),
 | |
| 	PMU_PMEVCNTR_EL0(17),
 | |
| 	PMU_PMEVCNTR_EL0(18),
 | |
| 	PMU_PMEVCNTR_EL0(19),
 | |
| 	PMU_PMEVCNTR_EL0(20),
 | |
| 	PMU_PMEVCNTR_EL0(21),
 | |
| 	PMU_PMEVCNTR_EL0(22),
 | |
| 	PMU_PMEVCNTR_EL0(23),
 | |
| 	PMU_PMEVCNTR_EL0(24),
 | |
| 	PMU_PMEVCNTR_EL0(25),
 | |
| 	PMU_PMEVCNTR_EL0(26),
 | |
| 	PMU_PMEVCNTR_EL0(27),
 | |
| 	PMU_PMEVCNTR_EL0(28),
 | |
| 	PMU_PMEVCNTR_EL0(29),
 | |
| 	PMU_PMEVCNTR_EL0(30),
 | |
| 	/* PMEVTYPERn_EL0 */
 | |
| 	PMU_PMEVTYPER_EL0(0),
 | |
| 	PMU_PMEVTYPER_EL0(1),
 | |
| 	PMU_PMEVTYPER_EL0(2),
 | |
| 	PMU_PMEVTYPER_EL0(3),
 | |
| 	PMU_PMEVTYPER_EL0(4),
 | |
| 	PMU_PMEVTYPER_EL0(5),
 | |
| 	PMU_PMEVTYPER_EL0(6),
 | |
| 	PMU_PMEVTYPER_EL0(7),
 | |
| 	PMU_PMEVTYPER_EL0(8),
 | |
| 	PMU_PMEVTYPER_EL0(9),
 | |
| 	PMU_PMEVTYPER_EL0(10),
 | |
| 	PMU_PMEVTYPER_EL0(11),
 | |
| 	PMU_PMEVTYPER_EL0(12),
 | |
| 	PMU_PMEVTYPER_EL0(13),
 | |
| 	PMU_PMEVTYPER_EL0(14),
 | |
| 	PMU_PMEVTYPER_EL0(15),
 | |
| 	PMU_PMEVTYPER_EL0(16),
 | |
| 	PMU_PMEVTYPER_EL0(17),
 | |
| 	PMU_PMEVTYPER_EL0(18),
 | |
| 	PMU_PMEVTYPER_EL0(19),
 | |
| 	PMU_PMEVTYPER_EL0(20),
 | |
| 	PMU_PMEVTYPER_EL0(21),
 | |
| 	PMU_PMEVTYPER_EL0(22),
 | |
| 	PMU_PMEVTYPER_EL0(23),
 | |
| 	PMU_PMEVTYPER_EL0(24),
 | |
| 	PMU_PMEVTYPER_EL0(25),
 | |
| 	PMU_PMEVTYPER_EL0(26),
 | |
| 	PMU_PMEVTYPER_EL0(27),
 | |
| 	PMU_PMEVTYPER_EL0(28),
 | |
| 	PMU_PMEVTYPER_EL0(29),
 | |
| 	PMU_PMEVTYPER_EL0(30),
 | |
| 	/*
 | |
| 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
 | |
| 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
 | |
| 	 */
 | |
| 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
 | |
| 
 | |
| 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
 | |
| 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
 | |
| 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
 | |
| };
 | |
| 
 | |
| static bool trap_dbgidr(struct kvm_vcpu *vcpu,
 | |
| 			struct sys_reg_params *p,
 | |
| 			const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		return ignore_write(vcpu, p);
 | |
| 	} else {
 | |
| 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
 | |
| 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
 | |
| 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
 | |
| 
 | |
| 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
 | |
| 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
 | |
| 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
 | |
| 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool trap_debug32(struct kvm_vcpu *vcpu,
 | |
| 			 struct sys_reg_params *p,
 | |
| 			 const struct sys_reg_desc *r)
 | |
| {
 | |
| 	if (p->is_write) {
 | |
| 		vcpu_cp14(vcpu, r->reg) = p->regval;
 | |
| 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 | |
| 	} else {
 | |
| 		p->regval = vcpu_cp14(vcpu, r->reg);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* AArch32 debug register mappings
 | |
|  *
 | |
|  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
 | |
|  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
 | |
|  *
 | |
|  * All control registers and watchpoint value registers are mapped to
 | |
|  * the lower 32 bits of their AArch64 equivalents. We share the trap
 | |
|  * handlers with the above AArch64 code which checks what mode the
 | |
|  * system is in.
 | |
|  */
 | |
| 
 | |
| static bool trap_xvr(struct kvm_vcpu *vcpu,
 | |
| 		     struct sys_reg_params *p,
 | |
| 		     const struct sys_reg_desc *rd)
 | |
| {
 | |
| 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		u64 val = *dbg_reg;
 | |
| 
 | |
| 		val &= 0xffffffffUL;
 | |
| 		val |= p->regval << 32;
 | |
| 		*dbg_reg = val;
 | |
| 
 | |
| 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 | |
| 	} else {
 | |
| 		p->regval = *dbg_reg >> 32;
 | |
| 	}
 | |
| 
 | |
| 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define DBG_BCR_BVR_WCR_WVR(n)						\
 | |
| 	/* DBGBVRn */							\
 | |
| 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
 | |
| 	/* DBGBCRn */							\
 | |
| 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
 | |
| 	/* DBGWVRn */							\
 | |
| 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
 | |
| 	/* DBGWCRn */							\
 | |
| 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
 | |
| 
 | |
| #define DBGBXVR(n)							\
 | |
| 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
 | |
| 
 | |
| /*
 | |
|  * Trapped cp14 registers. We generally ignore most of the external
 | |
|  * debug, on the principle that they don't really make sense to a
 | |
|  * guest. Revisit this one day, would this principle change.
 | |
|  */
 | |
| static const struct sys_reg_desc cp14_regs[] = {
 | |
| 	/* DBGIDR */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
 | |
| 	/* DBGDTRRXext */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
 | |
| 
 | |
| 	DBG_BCR_BVR_WCR_WVR(0),
 | |
| 	/* DBGDSCRint */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
 | |
| 	DBG_BCR_BVR_WCR_WVR(1),
 | |
| 	/* DBGDCCINT */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
 | |
| 	/* DBGDSCRext */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
 | |
| 	DBG_BCR_BVR_WCR_WVR(2),
 | |
| 	/* DBGDTR[RT]Xint */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
 | |
| 	/* DBGDTR[RT]Xext */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
 | |
| 	DBG_BCR_BVR_WCR_WVR(3),
 | |
| 	DBG_BCR_BVR_WCR_WVR(4),
 | |
| 	DBG_BCR_BVR_WCR_WVR(5),
 | |
| 	/* DBGWFAR */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
 | |
| 	/* DBGOSECCR */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
 | |
| 	DBG_BCR_BVR_WCR_WVR(6),
 | |
| 	/* DBGVCR */
 | |
| 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
 | |
| 	DBG_BCR_BVR_WCR_WVR(7),
 | |
| 	DBG_BCR_BVR_WCR_WVR(8),
 | |
| 	DBG_BCR_BVR_WCR_WVR(9),
 | |
| 	DBG_BCR_BVR_WCR_WVR(10),
 | |
| 	DBG_BCR_BVR_WCR_WVR(11),
 | |
| 	DBG_BCR_BVR_WCR_WVR(12),
 | |
| 	DBG_BCR_BVR_WCR_WVR(13),
 | |
| 	DBG_BCR_BVR_WCR_WVR(14),
 | |
| 	DBG_BCR_BVR_WCR_WVR(15),
 | |
| 
 | |
| 	/* DBGDRAR (32bit) */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
 | |
| 
 | |
| 	DBGBXVR(0),
 | |
| 	/* DBGOSLAR */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
 | |
| 	DBGBXVR(1),
 | |
| 	/* DBGOSLSR */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
 | |
| 	DBGBXVR(2),
 | |
| 	DBGBXVR(3),
 | |
| 	/* DBGOSDLR */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
 | |
| 	DBGBXVR(4),
 | |
| 	/* DBGPRCR */
 | |
| 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
 | |
| 	DBGBXVR(5),
 | |
| 	DBGBXVR(6),
 | |
| 	DBGBXVR(7),
 | |
| 	DBGBXVR(8),
 | |
| 	DBGBXVR(9),
 | |
| 	DBGBXVR(10),
 | |
| 	DBGBXVR(11),
 | |
| 	DBGBXVR(12),
 | |
| 	DBGBXVR(13),
 | |
| 	DBGBXVR(14),
 | |
| 	DBGBXVR(15),
 | |
| 
 | |
| 	/* DBGDSAR (32bit) */
 | |
| 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
 | |
| 
 | |
| 	/* DBGDEVID2 */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
 | |
| 	/* DBGDEVID1 */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
 | |
| 	/* DBGDEVID */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
 | |
| 	/* DBGCLAIMSET */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
 | |
| 	/* DBGCLAIMCLR */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
 | |
| 	/* DBGAUTHSTATUS */
 | |
| 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
 | |
| };
 | |
| 
 | |
| /* Trapped cp14 64bit registers */
 | |
| static const struct sys_reg_desc cp14_64_regs[] = {
 | |
| 	/* DBGDRAR (64bit) */
 | |
| 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
 | |
| 
 | |
| 	/* DBGDSAR (64bit) */
 | |
| 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
 | |
| };
 | |
| 
 | |
| /* Macro to expand the PMEVCNTRn register */
 | |
| #define PMU_PMEVCNTR(n)							\
 | |
| 	/* PMEVCNTRn */							\
 | |
| 	{ Op1(0), CRn(0b1110),						\
 | |
| 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
 | |
| 	  access_pmu_evcntr }
 | |
| 
 | |
| /* Macro to expand the PMEVTYPERn register */
 | |
| #define PMU_PMEVTYPER(n)						\
 | |
| 	/* PMEVTYPERn */						\
 | |
| 	{ Op1(0), CRn(0b1110),						\
 | |
| 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
 | |
| 	  access_pmu_evtyper }
 | |
| 
 | |
| /*
 | |
|  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 | |
|  * depending on the way they are accessed (as a 32bit or a 64bit
 | |
|  * register).
 | |
|  */
 | |
| static const struct sys_reg_desc cp15_regs[] = {
 | |
| 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
 | |
| 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
 | |
| 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
 | |
| 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
 | |
| 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
 | |
| 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
 | |
| 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
 | |
| 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
 | |
| 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
 | |
| 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
 | |
| 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
 | |
| 
 | |
| 	/*
 | |
| 	 * DC{C,I,CI}SW operations:
 | |
| 	 */
 | |
| 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
 | |
| 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
 | |
| 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
 | |
| 
 | |
| 	/* PMU */
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
 | |
| 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
 | |
| 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
 | |
| 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
 | |
| 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
 | |
| 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
 | |
| 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
 | |
| 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
 | |
| 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
 | |
| 
 | |
| 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
 | |
| 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
 | |
| 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
 | |
| 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
 | |
| 
 | |
| 	/* ICC_SRE */
 | |
| 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
 | |
| 
 | |
| 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
 | |
| 
 | |
| 	/* CNTP_TVAL */
 | |
| 	{ Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
 | |
| 	/* CNTP_CTL */
 | |
| 	{ Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
 | |
| 
 | |
| 	/* PMEVCNTRn */
 | |
| 	PMU_PMEVCNTR(0),
 | |
| 	PMU_PMEVCNTR(1),
 | |
| 	PMU_PMEVCNTR(2),
 | |
| 	PMU_PMEVCNTR(3),
 | |
| 	PMU_PMEVCNTR(4),
 | |
| 	PMU_PMEVCNTR(5),
 | |
| 	PMU_PMEVCNTR(6),
 | |
| 	PMU_PMEVCNTR(7),
 | |
| 	PMU_PMEVCNTR(8),
 | |
| 	PMU_PMEVCNTR(9),
 | |
| 	PMU_PMEVCNTR(10),
 | |
| 	PMU_PMEVCNTR(11),
 | |
| 	PMU_PMEVCNTR(12),
 | |
| 	PMU_PMEVCNTR(13),
 | |
| 	PMU_PMEVCNTR(14),
 | |
| 	PMU_PMEVCNTR(15),
 | |
| 	PMU_PMEVCNTR(16),
 | |
| 	PMU_PMEVCNTR(17),
 | |
| 	PMU_PMEVCNTR(18),
 | |
| 	PMU_PMEVCNTR(19),
 | |
| 	PMU_PMEVCNTR(20),
 | |
| 	PMU_PMEVCNTR(21),
 | |
| 	PMU_PMEVCNTR(22),
 | |
| 	PMU_PMEVCNTR(23),
 | |
| 	PMU_PMEVCNTR(24),
 | |
| 	PMU_PMEVCNTR(25),
 | |
| 	PMU_PMEVCNTR(26),
 | |
| 	PMU_PMEVCNTR(27),
 | |
| 	PMU_PMEVCNTR(28),
 | |
| 	PMU_PMEVCNTR(29),
 | |
| 	PMU_PMEVCNTR(30),
 | |
| 	/* PMEVTYPERn */
 | |
| 	PMU_PMEVTYPER(0),
 | |
| 	PMU_PMEVTYPER(1),
 | |
| 	PMU_PMEVTYPER(2),
 | |
| 	PMU_PMEVTYPER(3),
 | |
| 	PMU_PMEVTYPER(4),
 | |
| 	PMU_PMEVTYPER(5),
 | |
| 	PMU_PMEVTYPER(6),
 | |
| 	PMU_PMEVTYPER(7),
 | |
| 	PMU_PMEVTYPER(8),
 | |
| 	PMU_PMEVTYPER(9),
 | |
| 	PMU_PMEVTYPER(10),
 | |
| 	PMU_PMEVTYPER(11),
 | |
| 	PMU_PMEVTYPER(12),
 | |
| 	PMU_PMEVTYPER(13),
 | |
| 	PMU_PMEVTYPER(14),
 | |
| 	PMU_PMEVTYPER(15),
 | |
| 	PMU_PMEVTYPER(16),
 | |
| 	PMU_PMEVTYPER(17),
 | |
| 	PMU_PMEVTYPER(18),
 | |
| 	PMU_PMEVTYPER(19),
 | |
| 	PMU_PMEVTYPER(20),
 | |
| 	PMU_PMEVTYPER(21),
 | |
| 	PMU_PMEVTYPER(22),
 | |
| 	PMU_PMEVTYPER(23),
 | |
| 	PMU_PMEVTYPER(24),
 | |
| 	PMU_PMEVTYPER(25),
 | |
| 	PMU_PMEVTYPER(26),
 | |
| 	PMU_PMEVTYPER(27),
 | |
| 	PMU_PMEVTYPER(28),
 | |
| 	PMU_PMEVTYPER(29),
 | |
| 	PMU_PMEVTYPER(30),
 | |
| 	/* PMCCFILTR */
 | |
| 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
 | |
| };
 | |
| 
 | |
| static const struct sys_reg_desc cp15_64_regs[] = {
 | |
| 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
 | |
| 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
 | |
| 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
 | |
| 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
 | |
| 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
 | |
| 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
 | |
| 	{ Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
 | |
| };
 | |
| 
 | |
| /* Target specific emulation tables */
 | |
| static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
 | |
| 
 | |
| void kvm_register_target_sys_reg_table(unsigned int target,
 | |
| 				       struct kvm_sys_reg_target_table *table)
 | |
| {
 | |
| 	target_tables[target] = table;
 | |
| }
 | |
| 
 | |
| /* Get specific register table for this target. */
 | |
| static const struct sys_reg_desc *get_target_table(unsigned target,
 | |
| 						   bool mode_is_64,
 | |
| 						   size_t *num)
 | |
| {
 | |
| 	struct kvm_sys_reg_target_table *table;
 | |
| 
 | |
| 	table = target_tables[target];
 | |
| 	if (mode_is_64) {
 | |
| 		*num = table->table64.num;
 | |
| 		return table->table64.table;
 | |
| 	} else {
 | |
| 		*num = table->table32.num;
 | |
| 		return table->table32.table;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define reg_to_match_value(x)						\
 | |
| 	({								\
 | |
| 		unsigned long val;					\
 | |
| 		val  = (x)->Op0 << 14;					\
 | |
| 		val |= (x)->Op1 << 11;					\
 | |
| 		val |= (x)->CRn << 7;					\
 | |
| 		val |= (x)->CRm << 3;					\
 | |
| 		val |= (x)->Op2;					\
 | |
| 		val;							\
 | |
| 	 })
 | |
| 
 | |
| static int match_sys_reg(const void *key, const void *elt)
 | |
| {
 | |
| 	const unsigned long pval = (unsigned long)key;
 | |
| 	const struct sys_reg_desc *r = elt;
 | |
| 
 | |
| 	return pval - reg_to_match_value(r);
 | |
| }
 | |
| 
 | |
| static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
 | |
| 					 const struct sys_reg_desc table[],
 | |
| 					 unsigned int num)
 | |
| {
 | |
| 	unsigned long pval = reg_to_match_value(params);
 | |
| 
 | |
| 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void perform_access(struct kvm_vcpu *vcpu,
 | |
| 			   struct sys_reg_params *params,
 | |
| 			   const struct sys_reg_desc *r)
 | |
| {
 | |
| 	/*
 | |
| 	 * Not having an accessor means that we have configured a trap
 | |
| 	 * that we don't know how to handle. This certainly qualifies
 | |
| 	 * as a gross bug that should be fixed right away.
 | |
| 	 */
 | |
| 	BUG_ON(!r->access);
 | |
| 
 | |
| 	/* Skip instruction if instructed so */
 | |
| 	if (likely(r->access(vcpu, params, r)))
 | |
| 		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * emulate_cp --  tries to match a sys_reg access in a handling table, and
 | |
|  *                call the corresponding trap handler.
 | |
|  *
 | |
|  * @params: pointer to the descriptor of the access
 | |
|  * @table: array of trap descriptors
 | |
|  * @num: size of the trap descriptor array
 | |
|  *
 | |
|  * Return 0 if the access has been handled, and -1 if not.
 | |
|  */
 | |
| static int emulate_cp(struct kvm_vcpu *vcpu,
 | |
| 		      struct sys_reg_params *params,
 | |
| 		      const struct sys_reg_desc *table,
 | |
| 		      size_t num)
 | |
| {
 | |
| 	const struct sys_reg_desc *r;
 | |
| 
 | |
| 	if (!table)
 | |
| 		return -1;	/* Not handled */
 | |
| 
 | |
| 	r = find_reg(params, table, num);
 | |
| 
 | |
| 	if (r) {
 | |
| 		perform_access(vcpu, params, r);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Not handled */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void unhandled_cp_access(struct kvm_vcpu *vcpu,
 | |
| 				struct sys_reg_params *params)
 | |
| {
 | |
| 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
 | |
| 	int cp = -1;
 | |
| 
 | |
| 	switch(hsr_ec) {
 | |
| 	case ESR_ELx_EC_CP15_32:
 | |
| 	case ESR_ELx_EC_CP15_64:
 | |
| 		cp = 15;
 | |
| 		break;
 | |
| 	case ESR_ELx_EC_CP14_MR:
 | |
| 	case ESR_ELx_EC_CP14_64:
 | |
| 		cp = 14;
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	kvm_err("Unsupported guest CP%d access at: %08lx\n",
 | |
| 		cp, *vcpu_pc(vcpu));
 | |
| 	print_sys_reg_instr(params);
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
 | |
| 			    const struct sys_reg_desc *global,
 | |
| 			    size_t nr_global,
 | |
| 			    const struct sys_reg_desc *target_specific,
 | |
| 			    size_t nr_specific)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
 | |
| 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
 | |
| 	int Rt2 = (hsr >> 10) & 0x1f;
 | |
| 
 | |
| 	params.is_aarch32 = true;
 | |
| 	params.is_32bit = false;
 | |
| 	params.CRm = (hsr >> 1) & 0xf;
 | |
| 	params.is_write = ((hsr & 1) == 0);
 | |
| 
 | |
| 	params.Op0 = 0;
 | |
| 	params.Op1 = (hsr >> 16) & 0xf;
 | |
| 	params.Op2 = 0;
 | |
| 	params.CRn = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
 | |
| 	 * backends between AArch32 and AArch64, we get away with it.
 | |
| 	 */
 | |
| 	if (params.is_write) {
 | |
| 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
 | |
| 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to emulate the coprocessor access using the target
 | |
| 	 * specific table first, and using the global table afterwards.
 | |
| 	 * If either of the tables contains a handler, handle the
 | |
| 	 * potential register operation in the case of a read and return
 | |
| 	 * with success.
 | |
| 	 */
 | |
| 	if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
 | |
| 	    !emulate_cp(vcpu, ¶ms, global, nr_global)) {
 | |
| 		/* Split up the value between registers for the read side */
 | |
| 		if (!params.is_write) {
 | |
| 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
 | |
| 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
 | |
| 		}
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	unhandled_cp_access(vcpu, ¶ms);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
 | |
| 			    const struct sys_reg_desc *global,
 | |
| 			    size_t nr_global,
 | |
| 			    const struct sys_reg_desc *target_specific,
 | |
| 			    size_t nr_specific)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
 | |
| 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
 | |
| 
 | |
| 	params.is_aarch32 = true;
 | |
| 	params.is_32bit = true;
 | |
| 	params.CRm = (hsr >> 1) & 0xf;
 | |
| 	params.regval = vcpu_get_reg(vcpu, Rt);
 | |
| 	params.is_write = ((hsr & 1) == 0);
 | |
| 	params.CRn = (hsr >> 10) & 0xf;
 | |
| 	params.Op0 = 0;
 | |
| 	params.Op1 = (hsr >> 14) & 0x7;
 | |
| 	params.Op2 = (hsr >> 17) & 0x7;
 | |
| 
 | |
| 	if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
 | |
| 	    !emulate_cp(vcpu, ¶ms, global, nr_global)) {
 | |
| 		if (!params.is_write)
 | |
| 			vcpu_set_reg(vcpu, Rt, params.regval);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	unhandled_cp_access(vcpu, ¶ms);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	const struct sys_reg_desc *target_specific;
 | |
| 	size_t num;
 | |
| 
 | |
| 	target_specific = get_target_table(vcpu->arch.target, false, &num);
 | |
| 	return kvm_handle_cp_64(vcpu,
 | |
| 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
 | |
| 				target_specific, num);
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	const struct sys_reg_desc *target_specific;
 | |
| 	size_t num;
 | |
| 
 | |
| 	target_specific = get_target_table(vcpu->arch.target, false, &num);
 | |
| 	return kvm_handle_cp_32(vcpu,
 | |
| 				cp15_regs, ARRAY_SIZE(cp15_regs),
 | |
| 				target_specific, num);
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	return kvm_handle_cp_64(vcpu,
 | |
| 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
 | |
| 				NULL, 0);
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	return kvm_handle_cp_32(vcpu,
 | |
| 				cp14_regs, ARRAY_SIZE(cp14_regs),
 | |
| 				NULL, 0);
 | |
| }
 | |
| 
 | |
| static int emulate_sys_reg(struct kvm_vcpu *vcpu,
 | |
| 			   struct sys_reg_params *params)
 | |
| {
 | |
| 	size_t num;
 | |
| 	const struct sys_reg_desc *table, *r;
 | |
| 
 | |
| 	table = get_target_table(vcpu->arch.target, true, &num);
 | |
| 
 | |
| 	/* Search target-specific then generic table. */
 | |
| 	r = find_reg(params, table, num);
 | |
| 	if (!r)
 | |
| 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
 | |
| 
 | |
| 	if (likely(r)) {
 | |
| 		perform_access(vcpu, params, r);
 | |
| 	} else {
 | |
| 		kvm_err("Unsupported guest sys_reg access at: %lx\n",
 | |
| 			*vcpu_pc(vcpu));
 | |
| 		print_sys_reg_instr(params);
 | |
| 		kvm_inject_undefined(vcpu);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
 | |
| 				const struct sys_reg_desc *table, size_t num,
 | |
| 				unsigned long *bmap)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < num; i++)
 | |
| 		if (table[i].reset) {
 | |
| 			int reg = table[i].reg;
 | |
| 
 | |
| 			table[i].reset(vcpu, &table[i]);
 | |
| 			if (reg > 0 && reg < NR_SYS_REGS)
 | |
| 				set_bit(reg, bmap);
 | |
| 		}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
 | |
| 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
 | |
| 	int ret;
 | |
| 
 | |
| 	trace_kvm_handle_sys_reg(esr);
 | |
| 
 | |
| 	params.is_aarch32 = false;
 | |
| 	params.is_32bit = false;
 | |
| 	params.Op0 = (esr >> 20) & 3;
 | |
| 	params.Op1 = (esr >> 14) & 0x7;
 | |
| 	params.CRn = (esr >> 10) & 0xf;
 | |
| 	params.CRm = (esr >> 1) & 0xf;
 | |
| 	params.Op2 = (esr >> 17) & 0x7;
 | |
| 	params.regval = vcpu_get_reg(vcpu, Rt);
 | |
| 	params.is_write = !(esr & 1);
 | |
| 
 | |
| 	ret = emulate_sys_reg(vcpu, ¶ms);
 | |
| 
 | |
| 	if (!params.is_write)
 | |
| 		vcpu_set_reg(vcpu, Rt, params.regval);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Userspace API
 | |
|  *****************************************************************************/
 | |
| 
 | |
| static bool index_to_params(u64 id, struct sys_reg_params *params)
 | |
| {
 | |
| 	switch (id & KVM_REG_SIZE_MASK) {
 | |
| 	case KVM_REG_SIZE_U64:
 | |
| 		/* Any unused index bits means it's not valid. */
 | |
| 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
 | |
| 			      | KVM_REG_ARM_COPROC_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
 | |
| 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
 | |
| 			return false;
 | |
| 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
 | |
| 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
 | |
| 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
 | |
| 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
 | |
| 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
 | |
| 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| const struct sys_reg_desc *find_reg_by_id(u64 id,
 | |
| 					  struct sys_reg_params *params,
 | |
| 					  const struct sys_reg_desc table[],
 | |
| 					  unsigned int num)
 | |
| {
 | |
| 	if (!index_to_params(id, params))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return find_reg(params, table, num);
 | |
| }
 | |
| 
 | |
| /* Decode an index value, and find the sys_reg_desc entry. */
 | |
| static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
 | |
| 						    u64 id)
 | |
| {
 | |
| 	size_t num;
 | |
| 	const struct sys_reg_desc *table, *r;
 | |
| 	struct sys_reg_params params;
 | |
| 
 | |
| 	/* We only do sys_reg for now. */
 | |
| 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
 | |
| 		return NULL;
 | |
| 
 | |
| 	table = get_target_table(vcpu->arch.target, true, &num);
 | |
| 	r = find_reg_by_id(id, ¶ms, table, num);
 | |
| 	if (!r)
 | |
| 		r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
 | |
| 
 | |
| 	/* Not saved in the sys_reg array and not otherwise accessible? */
 | |
| 	if (r && !(r->reg || r->get_user))
 | |
| 		r = NULL;
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are the invariant sys_reg registers: we let the guest see the
 | |
|  * host versions of these, so they're part of the guest state.
 | |
|  *
 | |
|  * A future CPU may provide a mechanism to present different values to
 | |
|  * the guest, or a future kvm may trap them.
 | |
|  */
 | |
| 
 | |
| #define FUNCTION_INVARIANT(reg)						\
 | |
| 	static void get_##reg(struct kvm_vcpu *v,			\
 | |
| 			      const struct sys_reg_desc *r)		\
 | |
| 	{								\
 | |
| 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
 | |
| 	}
 | |
| 
 | |
| FUNCTION_INVARIANT(midr_el1)
 | |
| FUNCTION_INVARIANT(ctr_el0)
 | |
| FUNCTION_INVARIANT(revidr_el1)
 | |
| FUNCTION_INVARIANT(clidr_el1)
 | |
| FUNCTION_INVARIANT(aidr_el1)
 | |
| 
 | |
| /* ->val is filled in by kvm_sys_reg_table_init() */
 | |
| static struct sys_reg_desc invariant_sys_regs[] = {
 | |
| 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
 | |
| 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
 | |
| 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
 | |
| 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
 | |
| 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
 | |
| };
 | |
| 
 | |
| static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
 | |
| {
 | |
| 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
 | |
| {
 | |
| 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_invariant_sys_reg(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	const struct sys_reg_desc *r;
 | |
| 
 | |
| 	r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
 | |
| 			   ARRAY_SIZE(invariant_sys_regs));
 | |
| 	if (!r)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return reg_to_user(uaddr, &r->val, id);
 | |
| }
 | |
| 
 | |
| static int set_invariant_sys_reg(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	struct sys_reg_params params;
 | |
| 	const struct sys_reg_desc *r;
 | |
| 	int err;
 | |
| 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
 | |
| 
 | |
| 	r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
 | |
| 			   ARRAY_SIZE(invariant_sys_regs));
 | |
| 	if (!r)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	err = reg_from_user(&val, uaddr, id);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* This is what we mean by invariant: you can't change it. */
 | |
| 	if (r->val != val)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool is_valid_cache(u32 val)
 | |
| {
 | |
| 	u32 level, ctype;
 | |
| 
 | |
| 	if (val >= CSSELR_MAX)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
 | |
| 	level = (val >> 1);
 | |
| 	ctype = (cache_levels >> (level * 3)) & 7;
 | |
| 
 | |
| 	switch (ctype) {
 | |
| 	case 0: /* No cache */
 | |
| 		return false;
 | |
| 	case 1: /* Instruction cache only */
 | |
| 		return (val & 1);
 | |
| 	case 2: /* Data cache only */
 | |
| 	case 4: /* Unified cache */
 | |
| 		return !(val & 1);
 | |
| 	case 3: /* Separate instruction and data caches */
 | |
| 		return true;
 | |
| 	default: /* Reserved: we can't know instruction or data. */
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int demux_c15_get(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	u32 val;
 | |
| 	u32 __user *uval = uaddr;
 | |
| 
 | |
| 	/* Fail if we have unknown bits set. */
 | |
| 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 | |
| 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
 | |
| 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
 | |
| 		if (KVM_REG_SIZE(id) != 4)
 | |
| 			return -ENOENT;
 | |
| 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
 | |
| 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
 | |
| 		if (!is_valid_cache(val))
 | |
| 			return -ENOENT;
 | |
| 
 | |
| 		return put_user(get_ccsidr(val), uval);
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int demux_c15_set(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	u32 val, newval;
 | |
| 	u32 __user *uval = uaddr;
 | |
| 
 | |
| 	/* Fail if we have unknown bits set. */
 | |
| 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 | |
| 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
 | |
| 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
 | |
| 		if (KVM_REG_SIZE(id) != 4)
 | |
| 			return -ENOENT;
 | |
| 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
 | |
| 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
 | |
| 		if (!is_valid_cache(val))
 | |
| 			return -ENOENT;
 | |
| 
 | |
| 		if (get_user(newval, uval))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		/* This is also invariant: you can't change it. */
 | |
| 		if (newval != get_ccsidr(val))
 | |
| 			return -EINVAL;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 | |
| {
 | |
| 	const struct sys_reg_desc *r;
 | |
| 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
 | |
| 
 | |
| 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
 | |
| 		return demux_c15_get(reg->id, uaddr);
 | |
| 
 | |
| 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	r = index_to_sys_reg_desc(vcpu, reg->id);
 | |
| 	if (!r)
 | |
| 		return get_invariant_sys_reg(reg->id, uaddr);
 | |
| 
 | |
| 	if (r->get_user)
 | |
| 		return (r->get_user)(vcpu, r, reg, uaddr);
 | |
| 
 | |
| 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
 | |
| }
 | |
| 
 | |
| int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 | |
| {
 | |
| 	const struct sys_reg_desc *r;
 | |
| 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
 | |
| 
 | |
| 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
 | |
| 		return demux_c15_set(reg->id, uaddr);
 | |
| 
 | |
| 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	r = index_to_sys_reg_desc(vcpu, reg->id);
 | |
| 	if (!r)
 | |
| 		return set_invariant_sys_reg(reg->id, uaddr);
 | |
| 
 | |
| 	if (r->set_user)
 | |
| 		return (r->set_user)(vcpu, r, reg, uaddr);
 | |
| 
 | |
| 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
 | |
| }
 | |
| 
 | |
| static unsigned int num_demux_regs(void)
 | |
| {
 | |
| 	unsigned int i, count = 0;
 | |
| 
 | |
| 	for (i = 0; i < CSSELR_MAX; i++)
 | |
| 		if (is_valid_cache(i))
 | |
| 			count++;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int write_demux_regids(u64 __user *uindices)
 | |
| {
 | |
| 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
 | |
| 	for (i = 0; i < CSSELR_MAX; i++) {
 | |
| 		if (!is_valid_cache(i))
 | |
| 			continue;
 | |
| 		if (put_user(val | i, uindices))
 | |
| 			return -EFAULT;
 | |
| 		uindices++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
 | |
| {
 | |
| 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
 | |
| 		KVM_REG_ARM64_SYSREG |
 | |
| 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
 | |
| 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
 | |
| 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
 | |
| 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
 | |
| 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
 | |
| }
 | |
| 
 | |
| static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
 | |
| {
 | |
| 	if (!*uind)
 | |
| 		return true;
 | |
| 
 | |
| 	if (put_user(sys_reg_to_index(reg), *uind))
 | |
| 		return false;
 | |
| 
 | |
| 	(*uind)++;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int walk_one_sys_reg(const struct sys_reg_desc *rd,
 | |
| 			    u64 __user **uind,
 | |
| 			    unsigned int *total)
 | |
| {
 | |
| 	/*
 | |
| 	 * Ignore registers we trap but don't save,
 | |
| 	 * and for which no custom user accessor is provided.
 | |
| 	 */
 | |
| 	if (!(rd->reg || rd->get_user))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!copy_reg_to_user(rd, uind))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	(*total)++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Assumed ordered tables, see kvm_sys_reg_table_init. */
 | |
| static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
 | |
| {
 | |
| 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
 | |
| 	unsigned int total = 0;
 | |
| 	size_t num;
 | |
| 	int err;
 | |
| 
 | |
| 	/* We check for duplicates here, to allow arch-specific overrides. */
 | |
| 	i1 = get_target_table(vcpu->arch.target, true, &num);
 | |
| 	end1 = i1 + num;
 | |
| 	i2 = sys_reg_descs;
 | |
| 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
 | |
| 
 | |
| 	BUG_ON(i1 == end1 || i2 == end2);
 | |
| 
 | |
| 	/* Walk carefully, as both tables may refer to the same register. */
 | |
| 	while (i1 || i2) {
 | |
| 		int cmp = cmp_sys_reg(i1, i2);
 | |
| 		/* target-specific overrides generic entry. */
 | |
| 		if (cmp <= 0)
 | |
| 			err = walk_one_sys_reg(i1, &uind, &total);
 | |
| 		else
 | |
| 			err = walk_one_sys_reg(i2, &uind, &total);
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if (cmp <= 0 && ++i1 == end1)
 | |
| 			i1 = NULL;
 | |
| 		if (cmp >= 0 && ++i2 == end2)
 | |
| 			i2 = NULL;
 | |
| 	}
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return ARRAY_SIZE(invariant_sys_regs)
 | |
| 		+ num_demux_regs()
 | |
| 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
 | |
| }
 | |
| 
 | |
| int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Then give them all the invariant registers' indices. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
 | |
| 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
 | |
| 			return -EFAULT;
 | |
| 		uindices++;
 | |
| 	}
 | |
| 
 | |
| 	err = walk_sys_regs(vcpu, uindices);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	uindices += err;
 | |
| 
 | |
| 	return write_demux_regids(uindices);
 | |
| }
 | |
| 
 | |
| static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 1; i < n; i++) {
 | |
| 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
 | |
| 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_sys_reg_table_init(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	struct sys_reg_desc clidr;
 | |
| 
 | |
| 	/* Make sure tables are unique and in order. */
 | |
| 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
 | |
| 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
 | |
| 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
 | |
| 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
 | |
| 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
 | |
| 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
 | |
| 
 | |
| 	/* We abuse the reset function to overwrite the table itself. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
 | |
| 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
 | |
| 
 | |
| 	/*
 | |
| 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
 | |
| 	 *
 | |
| 	 *   If software reads the Cache Type fields from Ctype1
 | |
| 	 *   upwards, once it has seen a value of 0b000, no caches
 | |
| 	 *   exist at further-out levels of the hierarchy. So, for
 | |
| 	 *   example, if Ctype3 is the first Cache Type field with a
 | |
| 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
 | |
| 	 *   ignored.
 | |
| 	 */
 | |
| 	get_clidr_el1(NULL, &clidr); /* Ugly... */
 | |
| 	cache_levels = clidr.val;
 | |
| 	for (i = 0; i < 7; i++)
 | |
| 		if (((cache_levels >> (i*3)) & 7) == 0)
 | |
| 			break;
 | |
| 	/* Clear all higher bits. */
 | |
| 	cache_levels &= (1 << (i*3))-1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_reset_sys_regs - sets system registers to reset value
 | |
|  * @vcpu: The VCPU pointer
 | |
|  *
 | |
|  * This function finds the right table above and sets the registers on the
 | |
|  * virtual CPU struct to their architecturally defined reset values.
 | |
|  */
 | |
| void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	size_t num;
 | |
| 	const struct sys_reg_desc *table;
 | |
| 	DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
 | |
| 
 | |
| 	/* Generic chip reset first (so target could override). */
 | |
| 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
 | |
| 
 | |
| 	table = get_target_table(vcpu->arch.target, true, &num);
 | |
| 	reset_sys_reg_descs(vcpu, table, num, bmap);
 | |
| 
 | |
| 	for (num = 1; num < NR_SYS_REGS; num++) {
 | |
| 		if (WARN(!test_bit(num, bmap),
 | |
| 			 "Didn't reset __vcpu_sys_reg(%zi)\n", num))
 | |
| 			break;
 | |
| 	}
 | |
| }
 | 
