262 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/elf.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sort.h>
 | |
| 
 | |
| #include <asm/cache.h>
 | |
| #include <asm/opcodes.h>
 | |
| 
 | |
| #define PLT_ENT_STRIDE		L1_CACHE_BYTES
 | |
| #define PLT_ENT_COUNT		(PLT_ENT_STRIDE / sizeof(u32))
 | |
| #define PLT_ENT_SIZE		(sizeof(struct plt_entries) / PLT_ENT_COUNT)
 | |
| 
 | |
| #ifdef CONFIG_THUMB2_KERNEL
 | |
| #define PLT_ENT_LDR		__opcode_to_mem_thumb32(0xf8dff000 | \
 | |
| 							(PLT_ENT_STRIDE - 4))
 | |
| #else
 | |
| #define PLT_ENT_LDR		__opcode_to_mem_arm(0xe59ff000 | \
 | |
| 						    (PLT_ENT_STRIDE - 8))
 | |
| #endif
 | |
| 
 | |
| struct plt_entries {
 | |
| 	u32	ldr[PLT_ENT_COUNT];
 | |
| 	u32	lit[PLT_ENT_COUNT];
 | |
| };
 | |
| 
 | |
| static bool in_init(const struct module *mod, unsigned long loc)
 | |
| {
 | |
| 	return loc - (u32)mod->init_layout.base < mod->init_layout.size;
 | |
| }
 | |
| 
 | |
| u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val)
 | |
| {
 | |
| 	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
 | |
| 							  &mod->arch.init;
 | |
| 
 | |
| 	struct plt_entries *plt = (struct plt_entries *)pltsec->plt->sh_addr;
 | |
| 	int idx = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Look for an existing entry pointing to 'val'. Given that the
 | |
| 	 * relocations are sorted, this will be the last entry we allocated.
 | |
| 	 * (if one exists).
 | |
| 	 */
 | |
| 	if (pltsec->plt_count > 0) {
 | |
| 		plt += (pltsec->plt_count - 1) / PLT_ENT_COUNT;
 | |
| 		idx = (pltsec->plt_count - 1) % PLT_ENT_COUNT;
 | |
| 
 | |
| 		if (plt->lit[idx] == val)
 | |
| 			return (u32)&plt->ldr[idx];
 | |
| 
 | |
| 		idx = (idx + 1) % PLT_ENT_COUNT;
 | |
| 		if (!idx)
 | |
| 			plt++;
 | |
| 	}
 | |
| 
 | |
| 	pltsec->plt_count++;
 | |
| 	BUG_ON(pltsec->plt_count * PLT_ENT_SIZE > pltsec->plt->sh_size);
 | |
| 
 | |
| 	if (!idx)
 | |
| 		/* Populate a new set of entries */
 | |
| 		*plt = (struct plt_entries){
 | |
| 			{ [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, },
 | |
| 			{ val, }
 | |
| 		};
 | |
| 	else
 | |
| 		plt->lit[idx] = val;
 | |
| 
 | |
| 	return (u32)&plt->ldr[idx];
 | |
| }
 | |
| 
 | |
| #define cmp_3way(a,b)	((a) < (b) ? -1 : (a) > (b))
 | |
| 
 | |
| static int cmp_rel(const void *a, const void *b)
 | |
| {
 | |
| 	const Elf32_Rel *x = a, *y = b;
 | |
| 	int i;
 | |
| 
 | |
| 	/* sort by type and symbol index */
 | |
| 	i = cmp_3way(ELF32_R_TYPE(x->r_info), ELF32_R_TYPE(y->r_info));
 | |
| 	if (i == 0)
 | |
| 		i = cmp_3way(ELF32_R_SYM(x->r_info), ELF32_R_SYM(y->r_info));
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static bool is_zero_addend_relocation(Elf32_Addr base, const Elf32_Rel *rel)
 | |
| {
 | |
| 	u32 *tval = (u32 *)(base + rel->r_offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do a bitwise compare on the raw addend rather than fully decoding
 | |
| 	 * the offset and doing an arithmetic comparison.
 | |
| 	 * Note that a zero-addend jump/call relocation is encoded taking the
 | |
| 	 * PC bias into account, i.e., -8 for ARM and -4 for Thumb2.
 | |
| 	 */
 | |
| 	switch (ELF32_R_TYPE(rel->r_info)) {
 | |
| 		u16 upper, lower;
 | |
| 
 | |
| 	case R_ARM_THM_CALL:
 | |
| 	case R_ARM_THM_JUMP24:
 | |
| 		upper = __mem_to_opcode_thumb16(((u16 *)tval)[0]);
 | |
| 		lower = __mem_to_opcode_thumb16(((u16 *)tval)[1]);
 | |
| 
 | |
| 		return (upper & 0x7ff) == 0x7ff && (lower & 0x2fff) == 0x2ffe;
 | |
| 
 | |
| 	case R_ARM_CALL:
 | |
| 	case R_ARM_PC24:
 | |
| 	case R_ARM_JUMP24:
 | |
| 		return (__mem_to_opcode_arm(*tval) & 0xffffff) == 0xfffffe;
 | |
| 	}
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| static bool duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num)
 | |
| {
 | |
| 	const Elf32_Rel *prev;
 | |
| 
 | |
| 	/*
 | |
| 	 * Entries are sorted by type and symbol index. That means that,
 | |
| 	 * if a duplicate entry exists, it must be in the preceding
 | |
| 	 * slot.
 | |
| 	 */
 | |
| 	if (!num)
 | |
| 		return false;
 | |
| 
 | |
| 	prev = rel + num - 1;
 | |
| 	return cmp_rel(rel + num, prev) == 0 &&
 | |
| 	       is_zero_addend_relocation(base, prev);
 | |
| }
 | |
| 
 | |
| /* Count how many PLT entries we may need */
 | |
| static unsigned int count_plts(const Elf32_Sym *syms, Elf32_Addr base,
 | |
| 			       const Elf32_Rel *rel, int num, Elf32_Word dstidx)
 | |
| {
 | |
| 	unsigned int ret = 0;
 | |
| 	const Elf32_Sym *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		switch (ELF32_R_TYPE(rel[i].r_info)) {
 | |
| 		case R_ARM_CALL:
 | |
| 		case R_ARM_PC24:
 | |
| 		case R_ARM_JUMP24:
 | |
| 		case R_ARM_THM_CALL:
 | |
| 		case R_ARM_THM_JUMP24:
 | |
| 			/*
 | |
| 			 * We only have to consider branch targets that resolve
 | |
| 			 * to symbols that are defined in a different section.
 | |
| 			 * This is not simply a heuristic, it is a fundamental
 | |
| 			 * limitation, since there is no guaranteed way to emit
 | |
| 			 * PLT entries sufficiently close to the branch if the
 | |
| 			 * section size exceeds the range of a branch
 | |
| 			 * instruction. So ignore relocations against defined
 | |
| 			 * symbols if they live in the same section as the
 | |
| 			 * relocation target.
 | |
| 			 */
 | |
| 			s = syms + ELF32_R_SYM(rel[i].r_info);
 | |
| 			if (s->st_shndx == dstidx)
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * Jump relocations with non-zero addends against
 | |
| 			 * undefined symbols are supported by the ELF spec, but
 | |
| 			 * do not occur in practice (e.g., 'jump n bytes past
 | |
| 			 * the entry point of undefined function symbol f').
 | |
| 			 * So we need to support them, but there is no need to
 | |
| 			 * take them into consideration when trying to optimize
 | |
| 			 * this code. So let's only check for duplicates when
 | |
| 			 * the addend is zero. (Note that calls into the core
 | |
| 			 * module via init PLT entries could involve section
 | |
| 			 * relative symbol references with non-zero addends, for
 | |
| 			 * which we may end up emitting duplicates, but the init
 | |
| 			 * PLT is released along with the rest of the .init
 | |
| 			 * region as soon as module loading completes.)
 | |
| 			 */
 | |
| 			if (!is_zero_addend_relocation(base, rel + i) ||
 | |
| 			    !duplicate_rel(base, rel, i))
 | |
| 				ret++;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 | |
| 			      char *secstrings, struct module *mod)
 | |
| {
 | |
| 	unsigned long core_plts = 0;
 | |
| 	unsigned long init_plts = 0;
 | |
| 	Elf32_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum;
 | |
| 	Elf32_Sym *syms = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * To store the PLTs, we expand the .text section for core module code
 | |
| 	 * and for initialization code.
 | |
| 	 */
 | |
| 	for (s = sechdrs; s < sechdrs_end; ++s) {
 | |
| 		if (strcmp(".plt", secstrings + s->sh_name) == 0)
 | |
| 			mod->arch.core.plt = s;
 | |
| 		else if (strcmp(".init.plt", secstrings + s->sh_name) == 0)
 | |
| 			mod->arch.init.plt = s;
 | |
| 		else if (s->sh_type == SHT_SYMTAB)
 | |
| 			syms = (Elf32_Sym *)s->sh_addr;
 | |
| 	}
 | |
| 
 | |
| 	if (!mod->arch.core.plt || !mod->arch.init.plt) {
 | |
| 		pr_err("%s: module PLT section(s) missing\n", mod->name);
 | |
| 		return -ENOEXEC;
 | |
| 	}
 | |
| 	if (!syms) {
 | |
| 		pr_err("%s: module symtab section missing\n", mod->name);
 | |
| 		return -ENOEXEC;
 | |
| 	}
 | |
| 
 | |
| 	for (s = sechdrs + 1; s < sechdrs_end; ++s) {
 | |
| 		Elf32_Rel *rels = (void *)ehdr + s->sh_offset;
 | |
| 		int numrels = s->sh_size / sizeof(Elf32_Rel);
 | |
| 		Elf32_Shdr *dstsec = sechdrs + s->sh_info;
 | |
| 
 | |
| 		if (s->sh_type != SHT_REL)
 | |
| 			continue;
 | |
| 
 | |
| 		/* ignore relocations that operate on non-exec sections */
 | |
| 		if (!(dstsec->sh_flags & SHF_EXECINSTR))
 | |
| 			continue;
 | |
| 
 | |
| 		/* sort by type and symbol index */
 | |
| 		sort(rels, numrels, sizeof(Elf32_Rel), cmp_rel, NULL);
 | |
| 
 | |
| 		if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
 | |
| 			core_plts += count_plts(syms, dstsec->sh_addr, rels,
 | |
| 						numrels, s->sh_info);
 | |
| 		else
 | |
| 			init_plts += count_plts(syms, dstsec->sh_addr, rels,
 | |
| 						numrels, s->sh_info);
 | |
| 	}
 | |
| 
 | |
| 	mod->arch.core.plt->sh_type = SHT_NOBITS;
 | |
| 	mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
 | |
| 	mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES;
 | |
| 	mod->arch.core.plt->sh_size = round_up(core_plts * PLT_ENT_SIZE,
 | |
| 					       sizeof(struct plt_entries));
 | |
| 	mod->arch.core.plt_count = 0;
 | |
| 
 | |
| 	mod->arch.init.plt->sh_type = SHT_NOBITS;
 | |
| 	mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
 | |
| 	mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES;
 | |
| 	mod->arch.init.plt->sh_size = round_up(init_plts * PLT_ENT_SIZE,
 | |
| 					       sizeof(struct plt_entries));
 | |
| 	mod->arch.init.plt_count = 0;
 | |
| 
 | |
| 	pr_debug("%s: plt=%x, init.plt=%x\n", __func__,
 | |
| 		 mod->arch.core.plt->sh_size, mod->arch.init.plt->sh_size);
 | |
| 	return 0;
 | |
| }
 | 
