276 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: MIT OR BSD-3-Clause
 | |
| /*
 | |
|  * Copyright (C) 2016 The Android Open Source Project
 | |
|  */
 | |
| 
 | |
| /* Implementation of RSA signature verification which uses a pre-processed
 | |
|  * key for computation. The code extends libmincrypt RSA verification code to
 | |
|  * support multiple RSA key lengths and hash digest algorithms.
 | |
|  */
 | |
| 
 | |
| #include "avb_rsa.h"
 | |
| #include "avb_sha.h"
 | |
| #include "avb_util.h"
 | |
| #include "avb_vbmeta_image.h"
 | |
| 
 | |
| typedef struct IAvbKey {
 | |
|   unsigned int len; /* Length of n[] in number of uint32_t */
 | |
|   uint32_t n0inv;   /* -1 / n[0] mod 2^32 */
 | |
|   uint32_t* n;      /* modulus as array (host-byte order) */
 | |
|   uint32_t* rr;     /* R^2 as array (host-byte order) */
 | |
| } IAvbKey;
 | |
| 
 | |
| static IAvbKey* iavb_parse_key_data(const uint8_t* data, size_t length) {
 | |
|   AvbRSAPublicKeyHeader h;
 | |
|   IAvbKey* key = NULL;
 | |
|   size_t expected_length;
 | |
|   unsigned int i;
 | |
|   const uint8_t* n;
 | |
|   const uint8_t* rr;
 | |
| 
 | |
|   if (!avb_rsa_public_key_header_validate_and_byteswap(
 | |
|           (const AvbRSAPublicKeyHeader*)data, &h)) {
 | |
|     avb_error("Invalid key.\n");
 | |
|     goto fail;
 | |
|   }
 | |
| 
 | |
|   if (!(h.key_num_bits == 2048 || h.key_num_bits == 4096 ||
 | |
|         h.key_num_bits == 8192)) {
 | |
|     avb_error("Unexpected key length.\n");
 | |
|     goto fail;
 | |
|   }
 | |
| 
 | |
|   expected_length = sizeof(AvbRSAPublicKeyHeader) + 2 * h.key_num_bits / 8;
 | |
|   if (length != expected_length) {
 | |
|     avb_error("Key does not match expected length.\n");
 | |
|     goto fail;
 | |
|   }
 | |
| 
 | |
|   n = data + sizeof(AvbRSAPublicKeyHeader);
 | |
|   rr = data + sizeof(AvbRSAPublicKeyHeader) + h.key_num_bits / 8;
 | |
| 
 | |
|   /* Store n and rr following the key header so we only have to do one
 | |
|    * allocation.
 | |
|    */
 | |
|   key = (IAvbKey*)(avb_malloc(sizeof(IAvbKey) + 2 * h.key_num_bits / 8));
 | |
|   if (key == NULL) {
 | |
|     goto fail;
 | |
|   }
 | |
| 
 | |
|   key->len = h.key_num_bits / 32;
 | |
|   key->n0inv = h.n0inv;
 | |
|   key->n = (uint32_t*)(key + 1); /* Skip ahead sizeof(IAvbKey) bytes. */
 | |
|   key->rr = key->n + key->len;
 | |
| 
 | |
|   /* Crypto-code below (modpowF4() and friends) expects the key in
 | |
|    * little-endian format (rather than the format we're storing the
 | |
|    * key in), so convert it.
 | |
|    */
 | |
|   for (i = 0; i < key->len; i++) {
 | |
|     key->n[i] = avb_be32toh(((uint32_t*)n)[key->len - i - 1]);
 | |
|     key->rr[i] = avb_be32toh(((uint32_t*)rr)[key->len - i - 1]);
 | |
|   }
 | |
|   return key;
 | |
| 
 | |
| fail:
 | |
|   if (key != NULL) {
 | |
|     avb_free(key);
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| static void iavb_free_parsed_key(IAvbKey* key) {
 | |
|   avb_free(key);
 | |
| }
 | |
| 
 | |
| /* a[] -= mod */
 | |
| static void subM(const IAvbKey* key, uint32_t* a) {
 | |
|   int64_t A = 0;
 | |
|   uint32_t i;
 | |
|   for (i = 0; i < key->len; ++i) {
 | |
|     A += (uint64_t)a[i] - key->n[i];
 | |
|     a[i] = (uint32_t)A;
 | |
|     A >>= 32;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* return a[] >= mod */
 | |
| static int geM(const IAvbKey* key, uint32_t* a) {
 | |
|   uint32_t i;
 | |
|   for (i = key->len; i;) {
 | |
|     --i;
 | |
|     if (a[i] < key->n[i]) {
 | |
|       return 0;
 | |
|     }
 | |
|     if (a[i] > key->n[i]) {
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 1; /* equal */
 | |
| }
 | |
| 
 | |
| /* montgomery c[] += a * b[] / R % mod */
 | |
| static void montMulAdd(const IAvbKey* key,
 | |
|                        uint32_t* c,
 | |
|                        const uint32_t a,
 | |
|                        const uint32_t* b) {
 | |
|   uint64_t A = (uint64_t)a * b[0] + c[0];
 | |
|   uint32_t d0 = (uint32_t)A * key->n0inv;
 | |
|   uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
 | |
|   uint32_t i;
 | |
| 
 | |
|   for (i = 1; i < key->len; ++i) {
 | |
|     A = (A >> 32) + (uint64_t)a * b[i] + c[i];
 | |
|     B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
 | |
|     c[i - 1] = (uint32_t)B;
 | |
|   }
 | |
| 
 | |
|   A = (A >> 32) + (B >> 32);
 | |
| 
 | |
|   c[i - 1] = (uint32_t)A;
 | |
| 
 | |
|   if (A >> 32) {
 | |
|     subM(key, c);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* montgomery c[] = a[] * b[] / R % mod */
 | |
| static void montMul(const IAvbKey* key, uint32_t* c, uint32_t* a, uint32_t* b) {
 | |
|   uint32_t i;
 | |
|   for (i = 0; i < key->len; ++i) {
 | |
|     c[i] = 0;
 | |
|   }
 | |
|   for (i = 0; i < key->len; ++i) {
 | |
|     montMulAdd(key, c, a[i], b);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* In-place public exponentiation. (65537}
 | |
|  * Input and output big-endian byte array in inout.
 | |
|  */
 | |
| static void modpowF4(const IAvbKey* key, uint8_t* inout) {
 | |
|   uint32_t* a = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
 | |
|   uint32_t* aR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
 | |
|   uint32_t* aaR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
 | |
|   if (a == NULL || aR == NULL || aaR == NULL) {
 | |
|     goto out;
 | |
|   }
 | |
| 
 | |
|   uint32_t* aaa = aaR; /* Re-use location. */
 | |
|   int i;
 | |
| 
 | |
|   /* Convert from big endian byte array to little endian word array. */
 | |
|   for (i = 0; i < (int)key->len; ++i) {
 | |
|     uint32_t tmp = (inout[((key->len - 1 - i) * 4) + 0] << 24) |
 | |
|                    (inout[((key->len - 1 - i) * 4) + 1] << 16) |
 | |
|                    (inout[((key->len - 1 - i) * 4) + 2] << 8) |
 | |
|                    (inout[((key->len - 1 - i) * 4) + 3] << 0);
 | |
|     a[i] = tmp;
 | |
|   }
 | |
| 
 | |
|   montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M   */
 | |
|   for (i = 0; i < 16; i += 2) {
 | |
|     montMul(key, aaR, aR, aR);  /* aaR = aR * aR / R mod M */
 | |
|     montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
 | |
|   }
 | |
|   montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
 | |
| 
 | |
|   /* Make sure aaa < mod; aaa is at most 1x mod too large. */
 | |
|   if (geM(key, aaa)) {
 | |
|     subM(key, aaa);
 | |
|   }
 | |
| 
 | |
|   /* Convert to bigendian byte array */
 | |
|   for (i = (int)key->len - 1; i >= 0; --i) {
 | |
|     uint32_t tmp = aaa[i];
 | |
|     *inout++ = (uint8_t)(tmp >> 24);
 | |
|     *inout++ = (uint8_t)(tmp >> 16);
 | |
|     *inout++ = (uint8_t)(tmp >> 8);
 | |
|     *inout++ = (uint8_t)(tmp >> 0);
 | |
|   }
 | |
| 
 | |
| out:
 | |
|   if (a != NULL) {
 | |
|     avb_free(a);
 | |
|   }
 | |
|   if (aR != NULL) {
 | |
|     avb_free(aR);
 | |
|   }
 | |
|   if (aaR != NULL) {
 | |
|     avb_free(aaR);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Verify a RSA PKCS1.5 signature against an expected hash.
 | |
|  * Returns false on failure, true on success.
 | |
|  */
 | |
| bool avb_rsa_verify(const uint8_t* key,
 | |
|                     size_t key_num_bytes,
 | |
|                     const uint8_t* sig,
 | |
|                     size_t sig_num_bytes,
 | |
|                     const uint8_t* hash,
 | |
|                     size_t hash_num_bytes,
 | |
|                     const uint8_t* padding,
 | |
|                     size_t padding_num_bytes) {
 | |
|   uint8_t* buf = NULL;
 | |
|   IAvbKey* parsed_key = NULL;
 | |
|   bool success = false;
 | |
| 
 | |
|   if (key == NULL || sig == NULL || hash == NULL || padding == NULL) {
 | |
|     avb_error("Invalid input.\n");
 | |
|     goto out;
 | |
|   }
 | |
| 
 | |
|   parsed_key = iavb_parse_key_data(key, key_num_bytes);
 | |
|   if (parsed_key == NULL) {
 | |
|     avb_error("Error parsing key.\n");
 | |
|     goto out;
 | |
|   }
 | |
| 
 | |
|   if (sig_num_bytes != (parsed_key->len * sizeof(uint32_t))) {
 | |
|     avb_error("Signature length does not match key length.\n");
 | |
|     goto out;
 | |
|   }
 | |
| 
 | |
|   if (padding_num_bytes != sig_num_bytes - hash_num_bytes) {
 | |
|     avb_error("Padding length does not match hash and signature lengths.\n");
 | |
|     goto out;
 | |
|   }
 | |
| 
 | |
|   buf = (uint8_t*)avb_malloc(sig_num_bytes);
 | |
|   if (buf == NULL) {
 | |
|     avb_error("Error allocating memory.\n");
 | |
|     goto out;
 | |
|   }
 | |
|   avb_memcpy(buf, sig, sig_num_bytes);
 | |
| 
 | |
|   modpowF4(parsed_key, buf);
 | |
| 
 | |
|   /* Check padding bytes.
 | |
|    *
 | |
|    * Even though there are probably no timing issues here, we use
 | |
|    * avb_safe_memcmp() just to be on the safe side.
 | |
|    */
 | |
|   if (avb_safe_memcmp(buf, padding, padding_num_bytes)) {
 | |
|     avb_error("Padding check failed.\n");
 | |
|     goto out;
 | |
|   }
 | |
| 
 | |
|   /* Check hash. */
 | |
|   if (avb_safe_memcmp(buf + padding_num_bytes, hash, hash_num_bytes)) {
 | |
|     avb_error("Hash check failed.\n");
 | |
|     goto out;
 | |
|   }
 | |
| 
 | |
|   success = true;
 | |
| 
 | |
| out:
 | |
|   if (parsed_key != NULL) {
 | |
|     iavb_free_parsed_key(parsed_key);
 | |
|   }
 | |
|   if (buf != NULL) {
 | |
|     avb_free(buf);
 | |
|   }
 | |
|   return success;
 | |
| }
 | 
