9889 lines
		
	
	
		
			271 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			9889 lines
		
	
	
		
			271 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *    Disk Array driver for HP Smart Array SAS controllers
 | |
|  *    Copyright 2016 Microsemi Corporation
 | |
|  *    Copyright 2014-2015 PMC-Sierra, Inc.
 | |
|  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
 | |
|  *
 | |
|  *    This program is free software; you can redistribute it and/or modify
 | |
|  *    it under the terms of the GNU General Public License as published by
 | |
|  *    the Free Software Foundation; version 2 of the License.
 | |
|  *
 | |
|  *    This program is distributed in the hope that it will be useful,
 | |
|  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 | |
|  *
 | |
|  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci-aspm.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/blktrace_api.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <scsi/scsi.h>
 | |
| #include <scsi/scsi_cmnd.h>
 | |
| #include <scsi/scsi_device.h>
 | |
| #include <scsi/scsi_host.h>
 | |
| #include <scsi/scsi_tcq.h>
 | |
| #include <scsi/scsi_eh.h>
 | |
| #include <scsi/scsi_transport_sas.h>
 | |
| #include <scsi/scsi_dbg.h>
 | |
| #include <linux/cciss_ioctl.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/percpu-defs.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include <asm/div64.h>
 | |
| #include "hpsa_cmd.h"
 | |
| #include "hpsa.h"
 | |
| 
 | |
| /*
 | |
|  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
 | |
|  * with an optional trailing '-' followed by a byte value (0-255).
 | |
|  */
 | |
| #define HPSA_DRIVER_VERSION "3.4.20-125"
 | |
| #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
 | |
| #define HPSA "hpsa"
 | |
| 
 | |
| /* How long to wait for CISS doorbell communication */
 | |
| #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
 | |
| #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
 | |
| #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
 | |
| #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
 | |
| #define MAX_IOCTL_CONFIG_WAIT 1000
 | |
| 
 | |
| /*define how many times we will try a command because of bus resets */
 | |
| #define MAX_CMD_RETRIES 3
 | |
| 
 | |
| /* Embedded module documentation macros - see modules.h */
 | |
| MODULE_AUTHOR("Hewlett-Packard Company");
 | |
| MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
 | |
| 	HPSA_DRIVER_VERSION);
 | |
| MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
 | |
| MODULE_VERSION(HPSA_DRIVER_VERSION);
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("cciss");
 | |
| 
 | |
| static int hpsa_simple_mode;
 | |
| module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
 | |
| MODULE_PARM_DESC(hpsa_simple_mode,
 | |
| 	"Use 'simple mode' rather than 'performant mode'");
 | |
| 
 | |
| /* define the PCI info for the cards we can control */
 | |
| static const struct pci_device_id hpsa_pci_device_id[] = {
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 | |
| 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 | |
| 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 | |
| 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 | |
| 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 | |
| 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 | |
| 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 | |
| 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 | |
| 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 | |
| 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 | |
| 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 | |
| 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 | |
| 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
 | |
| 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 | |
| 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
 | |
| 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 | |
| 	{0,}
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 | |
| 
 | |
| /*  board_id = Subsystem Device ID & Vendor ID
 | |
|  *  product = Marketing Name for the board
 | |
|  *  access = Address of the struct of function pointers
 | |
|  */
 | |
| static struct board_type products[] = {
 | |
| 	{0x40700E11, "Smart Array 5300", &SA5A_access},
 | |
| 	{0x40800E11, "Smart Array 5i", &SA5B_access},
 | |
| 	{0x40820E11, "Smart Array 532", &SA5B_access},
 | |
| 	{0x40830E11, "Smart Array 5312", &SA5B_access},
 | |
| 	{0x409A0E11, "Smart Array 641", &SA5A_access},
 | |
| 	{0x409B0E11, "Smart Array 642", &SA5A_access},
 | |
| 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
 | |
| 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
 | |
| 	{0x40910E11, "Smart Array 6i", &SA5A_access},
 | |
| 	{0x3225103C, "Smart Array P600", &SA5A_access},
 | |
| 	{0x3223103C, "Smart Array P800", &SA5A_access},
 | |
| 	{0x3234103C, "Smart Array P400", &SA5A_access},
 | |
| 	{0x3235103C, "Smart Array P400i", &SA5A_access},
 | |
| 	{0x3211103C, "Smart Array E200i", &SA5A_access},
 | |
| 	{0x3212103C, "Smart Array E200", &SA5A_access},
 | |
| 	{0x3213103C, "Smart Array E200i", &SA5A_access},
 | |
| 	{0x3214103C, "Smart Array E200i", &SA5A_access},
 | |
| 	{0x3215103C, "Smart Array E200i", &SA5A_access},
 | |
| 	{0x3237103C, "Smart Array E500", &SA5A_access},
 | |
| 	{0x323D103C, "Smart Array P700m", &SA5A_access},
 | |
| 	{0x3241103C, "Smart Array P212", &SA5_access},
 | |
| 	{0x3243103C, "Smart Array P410", &SA5_access},
 | |
| 	{0x3245103C, "Smart Array P410i", &SA5_access},
 | |
| 	{0x3247103C, "Smart Array P411", &SA5_access},
 | |
| 	{0x3249103C, "Smart Array P812", &SA5_access},
 | |
| 	{0x324A103C, "Smart Array P712m", &SA5_access},
 | |
| 	{0x324B103C, "Smart Array P711m", &SA5_access},
 | |
| 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 | |
| 	{0x3350103C, "Smart Array P222", &SA5_access},
 | |
| 	{0x3351103C, "Smart Array P420", &SA5_access},
 | |
| 	{0x3352103C, "Smart Array P421", &SA5_access},
 | |
| 	{0x3353103C, "Smart Array P822", &SA5_access},
 | |
| 	{0x3354103C, "Smart Array P420i", &SA5_access},
 | |
| 	{0x3355103C, "Smart Array P220i", &SA5_access},
 | |
| 	{0x3356103C, "Smart Array P721m", &SA5_access},
 | |
| 	{0x1920103C, "Smart Array P430i", &SA5_access},
 | |
| 	{0x1921103C, "Smart Array P830i", &SA5_access},
 | |
| 	{0x1922103C, "Smart Array P430", &SA5_access},
 | |
| 	{0x1923103C, "Smart Array P431", &SA5_access},
 | |
| 	{0x1924103C, "Smart Array P830", &SA5_access},
 | |
| 	{0x1925103C, "Smart Array P831", &SA5_access},
 | |
| 	{0x1926103C, "Smart Array P731m", &SA5_access},
 | |
| 	{0x1928103C, "Smart Array P230i", &SA5_access},
 | |
| 	{0x1929103C, "Smart Array P530", &SA5_access},
 | |
| 	{0x21BD103C, "Smart Array P244br", &SA5_access},
 | |
| 	{0x21BE103C, "Smart Array P741m", &SA5_access},
 | |
| 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
 | |
| 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
 | |
| 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
 | |
| 	{0x21C2103C, "Smart Array P440", &SA5_access},
 | |
| 	{0x21C3103C, "Smart Array P441", &SA5_access},
 | |
| 	{0x21C4103C, "Smart Array", &SA5_access},
 | |
| 	{0x21C5103C, "Smart Array P841", &SA5_access},
 | |
| 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
 | |
| 	{0x21C7103C, "Smart HBA H240", &SA5_access},
 | |
| 	{0x21C8103C, "Smart HBA H241", &SA5_access},
 | |
| 	{0x21C9103C, "Smart Array", &SA5_access},
 | |
| 	{0x21CA103C, "Smart Array P246br", &SA5_access},
 | |
| 	{0x21CB103C, "Smart Array P840", &SA5_access},
 | |
| 	{0x21CC103C, "Smart Array", &SA5_access},
 | |
| 	{0x21CD103C, "Smart Array", &SA5_access},
 | |
| 	{0x21CE103C, "Smart HBA", &SA5_access},
 | |
| 	{0x05809005, "SmartHBA-SA", &SA5_access},
 | |
| 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
 | |
| 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 | |
| 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
 | |
| 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
 | |
| 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 | |
| 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 | |
| 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 | |
| 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 | |
| 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 | |
| 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 | |
| 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
 | |
| };
 | |
| 
 | |
| static struct scsi_transport_template *hpsa_sas_transport_template;
 | |
| static int hpsa_add_sas_host(struct ctlr_info *h);
 | |
| static void hpsa_delete_sas_host(struct ctlr_info *h);
 | |
| static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 | |
| 			struct hpsa_scsi_dev_t *device);
 | |
| static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 | |
| static struct hpsa_scsi_dev_t
 | |
| 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 | |
| 		struct sas_rphy *rphy);
 | |
| 
 | |
| #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 | |
| static const struct scsi_cmnd hpsa_cmd_busy;
 | |
| #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 | |
| static const struct scsi_cmnd hpsa_cmd_idle;
 | |
| static int number_of_controllers;
 | |
| 
 | |
| static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 | |
| static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 | |
| static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
 | |
| 	void __user *arg);
 | |
| #endif
 | |
| 
 | |
| static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 | |
| static struct CommandList *cmd_alloc(struct ctlr_info *h);
 | |
| static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 | |
| static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 | |
| 					    struct scsi_cmnd *scmd);
 | |
| static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 | |
| 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 | |
| 	int cmd_type);
 | |
| static void hpsa_free_cmd_pool(struct ctlr_info *h);
 | |
| #define VPD_PAGE (1 << 8)
 | |
| #define HPSA_SIMPLE_ERROR_BITS 0x03
 | |
| 
 | |
| static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 | |
| static void hpsa_scan_start(struct Scsi_Host *);
 | |
| static int hpsa_scan_finished(struct Scsi_Host *sh,
 | |
| 	unsigned long elapsed_time);
 | |
| static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 | |
| 
 | |
| static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 | |
| static int hpsa_slave_alloc(struct scsi_device *sdev);
 | |
| static int hpsa_slave_configure(struct scsi_device *sdev);
 | |
| static void hpsa_slave_destroy(struct scsi_device *sdev);
 | |
| 
 | |
| static void hpsa_update_scsi_devices(struct ctlr_info *h);
 | |
| static int check_for_unit_attention(struct ctlr_info *h,
 | |
| 	struct CommandList *c);
 | |
| static void check_ioctl_unit_attention(struct ctlr_info *h,
 | |
| 	struct CommandList *c);
 | |
| /* performant mode helper functions */
 | |
| static void calc_bucket_map(int *bucket, int num_buckets,
 | |
| 	int nsgs, int min_blocks, u32 *bucket_map);
 | |
| static void hpsa_free_performant_mode(struct ctlr_info *h);
 | |
| static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 | |
| static inline u32 next_command(struct ctlr_info *h, u8 q);
 | |
| static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 | |
| 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 | |
| 			       u64 *cfg_offset);
 | |
| static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 | |
| 				    unsigned long *memory_bar);
 | |
| static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 | |
| 				bool *legacy_board);
 | |
| static int wait_for_device_to_become_ready(struct ctlr_info *h,
 | |
| 					   unsigned char lunaddr[],
 | |
| 					   int reply_queue);
 | |
| static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 | |
| 				     int wait_for_ready);
 | |
| static inline void finish_cmd(struct CommandList *c);
 | |
| static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 | |
| #define BOARD_NOT_READY 0
 | |
| #define BOARD_READY 1
 | |
| static void hpsa_drain_accel_commands(struct ctlr_info *h);
 | |
| static void hpsa_flush_cache(struct ctlr_info *h);
 | |
| static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 | |
| 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 | |
| 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 | |
| static void hpsa_command_resubmit_worker(struct work_struct *work);
 | |
| static u32 lockup_detected(struct ctlr_info *h);
 | |
| static int detect_controller_lockup(struct ctlr_info *h);
 | |
| static void hpsa_disable_rld_caching(struct ctlr_info *h);
 | |
| static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 | |
| 	struct ReportExtendedLUNdata *buf, int bufsize);
 | |
| static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 | |
| 	unsigned char scsi3addr[], u8 page);
 | |
| static int hpsa_luns_changed(struct ctlr_info *h);
 | |
| static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 | |
| 			       struct hpsa_scsi_dev_t *dev,
 | |
| 			       unsigned char *scsi3addr);
 | |
| 
 | |
| static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 | |
| {
 | |
| 	unsigned long *priv = shost_priv(sdev->host);
 | |
| 	return (struct ctlr_info *) *priv;
 | |
| }
 | |
| 
 | |
| static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 | |
| {
 | |
| 	unsigned long *priv = shost_priv(sh);
 | |
| 	return (struct ctlr_info *) *priv;
 | |
| }
 | |
| 
 | |
| static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 | |
| {
 | |
| 	return c->scsi_cmd == SCSI_CMD_IDLE;
 | |
| }
 | |
| 
 | |
| static inline bool hpsa_is_pending_event(struct CommandList *c)
 | |
| {
 | |
| 	return c->reset_pending;
 | |
| }
 | |
| 
 | |
| /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 | |
| static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 | |
| 			u8 *sense_key, u8 *asc, u8 *ascq)
 | |
| {
 | |
| 	struct scsi_sense_hdr sshdr;
 | |
| 	bool rc;
 | |
| 
 | |
| 	*sense_key = -1;
 | |
| 	*asc = -1;
 | |
| 	*ascq = -1;
 | |
| 
 | |
| 	if (sense_data_len < 1)
 | |
| 		return;
 | |
| 
 | |
| 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 | |
| 	if (rc) {
 | |
| 		*sense_key = sshdr.sense_key;
 | |
| 		*asc = sshdr.asc;
 | |
| 		*ascq = sshdr.ascq;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int check_for_unit_attention(struct ctlr_info *h,
 | |
| 	struct CommandList *c)
 | |
| {
 | |
| 	u8 sense_key, asc, ascq;
 | |
| 	int sense_len;
 | |
| 
 | |
| 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 | |
| 		sense_len = sizeof(c->err_info->SenseInfo);
 | |
| 	else
 | |
| 		sense_len = c->err_info->SenseLen;
 | |
| 
 | |
| 	decode_sense_data(c->err_info->SenseInfo, sense_len,
 | |
| 				&sense_key, &asc, &ascq);
 | |
| 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (asc) {
 | |
| 	case STATE_CHANGED:
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"%s: a state change detected, command retried\n",
 | |
| 			h->devname);
 | |
| 		break;
 | |
| 	case LUN_FAILED:
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"%s: LUN failure detected\n", h->devname);
 | |
| 		break;
 | |
| 	case REPORT_LUNS_CHANGED:
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"%s: report LUN data changed\n", h->devname);
 | |
| 	/*
 | |
| 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 | |
| 	 * target (array) devices.
 | |
| 	 */
 | |
| 		break;
 | |
| 	case POWER_OR_RESET:
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"%s: a power on or device reset detected\n",
 | |
| 			h->devname);
 | |
| 		break;
 | |
| 	case UNIT_ATTENTION_CLEARED:
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"%s: unit attention cleared by another initiator\n",
 | |
| 			h->devname);
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"%s: unknown unit attention detected\n",
 | |
| 			h->devname);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 | |
| {
 | |
| 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 | |
| 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 | |
| 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 | |
| 		return 0;
 | |
| 	dev_warn(&h->pdev->dev, HPSA "device busy");
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static u32 lockup_detected(struct ctlr_info *h);
 | |
| static ssize_t host_show_lockup_detected(struct device *dev,
 | |
| 		struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int ld;
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 
 | |
| 	h = shost_to_hba(shost);
 | |
| 	ld = lockup_detected(h);
 | |
| 
 | |
| 	return sprintf(buf, "ld=%d\n", ld);
 | |
| }
 | |
| 
 | |
| static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 | |
| 					 struct device_attribute *attr,
 | |
| 					 const char *buf, size_t count)
 | |
| {
 | |
| 	int status, len;
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 	char tmpbuf[10];
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 | |
| 		return -EACCES;
 | |
| 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 | |
| 	strncpy(tmpbuf, buf, len);
 | |
| 	tmpbuf[len] = '\0';
 | |
| 	if (sscanf(tmpbuf, "%d", &status) != 1)
 | |
| 		return -EINVAL;
 | |
| 	h = shost_to_hba(shost);
 | |
| 	h->acciopath_status = !!status;
 | |
| 	dev_warn(&h->pdev->dev,
 | |
| 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
 | |
| 		h->acciopath_status ? "enabled" : "disabled");
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t host_store_raid_offload_debug(struct device *dev,
 | |
| 					 struct device_attribute *attr,
 | |
| 					 const char *buf, size_t count)
 | |
| {
 | |
| 	int debug_level, len;
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 	char tmpbuf[10];
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 | |
| 		return -EACCES;
 | |
| 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 | |
| 	strncpy(tmpbuf, buf, len);
 | |
| 	tmpbuf[len] = '\0';
 | |
| 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 | |
| 		return -EINVAL;
 | |
| 	if (debug_level < 0)
 | |
| 		debug_level = 0;
 | |
| 	h = shost_to_hba(shost);
 | |
| 	h->raid_offload_debug = debug_level;
 | |
| 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 | |
| 		h->raid_offload_debug);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t host_store_rescan(struct device *dev,
 | |
| 				 struct device_attribute *attr,
 | |
| 				 const char *buf, size_t count)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 	h = shost_to_hba(shost);
 | |
| 	hpsa_scan_start(h->scsi_host);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t host_show_firmware_revision(struct device *dev,
 | |
| 	     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 	unsigned char *fwrev;
 | |
| 
 | |
| 	h = shost_to_hba(shost);
 | |
| 	if (!h->hba_inquiry_data)
 | |
| 		return 0;
 | |
| 	fwrev = &h->hba_inquiry_data[32];
 | |
| 	return snprintf(buf, 20, "%c%c%c%c\n",
 | |
| 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 | |
| }
 | |
| 
 | |
| static ssize_t host_show_commands_outstanding(struct device *dev,
 | |
| 	     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 	struct ctlr_info *h = shost_to_hba(shost);
 | |
| 
 | |
| 	return snprintf(buf, 20, "%d\n",
 | |
| 			atomic_read(&h->commands_outstanding));
 | |
| }
 | |
| 
 | |
| static ssize_t host_show_transport_mode(struct device *dev,
 | |
| 	struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 
 | |
| 	h = shost_to_hba(shost);
 | |
| 	return snprintf(buf, 20, "%s\n",
 | |
| 		h->transMethod & CFGTBL_Trans_Performant ?
 | |
| 			"performant" : "simple");
 | |
| }
 | |
| 
 | |
| static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 | |
| 	struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 
 | |
| 	h = shost_to_hba(shost);
 | |
| 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 | |
| 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
 | |
| }
 | |
| 
 | |
| /* List of controllers which cannot be hard reset on kexec with reset_devices */
 | |
| static u32 unresettable_controller[] = {
 | |
| 	0x324a103C, /* Smart Array P712m */
 | |
| 	0x324b103C, /* Smart Array P711m */
 | |
| 	0x3223103C, /* Smart Array P800 */
 | |
| 	0x3234103C, /* Smart Array P400 */
 | |
| 	0x3235103C, /* Smart Array P400i */
 | |
| 	0x3211103C, /* Smart Array E200i */
 | |
| 	0x3212103C, /* Smart Array E200 */
 | |
| 	0x3213103C, /* Smart Array E200i */
 | |
| 	0x3214103C, /* Smart Array E200i */
 | |
| 	0x3215103C, /* Smart Array E200i */
 | |
| 	0x3237103C, /* Smart Array E500 */
 | |
| 	0x323D103C, /* Smart Array P700m */
 | |
| 	0x40800E11, /* Smart Array 5i */
 | |
| 	0x409C0E11, /* Smart Array 6400 */
 | |
| 	0x409D0E11, /* Smart Array 6400 EM */
 | |
| 	0x40700E11, /* Smart Array 5300 */
 | |
| 	0x40820E11, /* Smart Array 532 */
 | |
| 	0x40830E11, /* Smart Array 5312 */
 | |
| 	0x409A0E11, /* Smart Array 641 */
 | |
| 	0x409B0E11, /* Smart Array 642 */
 | |
| 	0x40910E11, /* Smart Array 6i */
 | |
| };
 | |
| 
 | |
| /* List of controllers which cannot even be soft reset */
 | |
| static u32 soft_unresettable_controller[] = {
 | |
| 	0x40800E11, /* Smart Array 5i */
 | |
| 	0x40700E11, /* Smart Array 5300 */
 | |
| 	0x40820E11, /* Smart Array 532 */
 | |
| 	0x40830E11, /* Smart Array 5312 */
 | |
| 	0x409A0E11, /* Smart Array 641 */
 | |
| 	0x409B0E11, /* Smart Array 642 */
 | |
| 	0x40910E11, /* Smart Array 6i */
 | |
| 	/* Exclude 640x boards.  These are two pci devices in one slot
 | |
| 	 * which share a battery backed cache module.  One controls the
 | |
| 	 * cache, the other accesses the cache through the one that controls
 | |
| 	 * it.  If we reset the one controlling the cache, the other will
 | |
| 	 * likely not be happy.  Just forbid resetting this conjoined mess.
 | |
| 	 * The 640x isn't really supported by hpsa anyway.
 | |
| 	 */
 | |
| 	0x409C0E11, /* Smart Array 6400 */
 | |
| 	0x409D0E11, /* Smart Array 6400 EM */
 | |
| };
 | |
| 
 | |
| static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nelems; i++)
 | |
| 		if (a[i] == board_id)
 | |
| 			return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ctlr_is_hard_resettable(u32 board_id)
 | |
| {
 | |
| 	return !board_id_in_array(unresettable_controller,
 | |
| 			ARRAY_SIZE(unresettable_controller), board_id);
 | |
| }
 | |
| 
 | |
| static int ctlr_is_soft_resettable(u32 board_id)
 | |
| {
 | |
| 	return !board_id_in_array(soft_unresettable_controller,
 | |
| 			ARRAY_SIZE(soft_unresettable_controller), board_id);
 | |
| }
 | |
| 
 | |
| static int ctlr_is_resettable(u32 board_id)
 | |
| {
 | |
| 	return ctlr_is_hard_resettable(board_id) ||
 | |
| 		ctlr_is_soft_resettable(board_id);
 | |
| }
 | |
| 
 | |
| static ssize_t host_show_resettable(struct device *dev,
 | |
| 	struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 
 | |
| 	h = shost_to_hba(shost);
 | |
| 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 | |
| }
 | |
| 
 | |
| static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 | |
| {
 | |
| 	return (scsi3addr[3] & 0xC0) == 0x40;
 | |
| }
 | |
| 
 | |
| static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 | |
| 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
 | |
| };
 | |
| #define HPSA_RAID_0	0
 | |
| #define HPSA_RAID_4	1
 | |
| #define HPSA_RAID_1	2	/* also used for RAID 10 */
 | |
| #define HPSA_RAID_5	3	/* also used for RAID 50 */
 | |
| #define HPSA_RAID_51	4
 | |
| #define HPSA_RAID_6	5	/* also used for RAID 60 */
 | |
| #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
 | |
| #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 | |
| #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 | |
| 
 | |
| static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 | |
| {
 | |
| 	return !device->physical_device;
 | |
| }
 | |
| 
 | |
| static ssize_t raid_level_show(struct device *dev,
 | |
| 	     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	ssize_t l = 0;
 | |
| 	unsigned char rlevel;
 | |
| 	struct ctlr_info *h;
 | |
| 	struct scsi_device *sdev;
 | |
| 	struct hpsa_scsi_dev_t *hdev;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	sdev = to_scsi_device(dev);
 | |
| 	h = sdev_to_hba(sdev);
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	hdev = sdev->hostdata;
 | |
| 	if (!hdev) {
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Is this even a logical drive? */
 | |
| 	if (!is_logical_device(hdev)) {
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
 | |
| 		return l;
 | |
| 	}
 | |
| 
 | |
| 	rlevel = hdev->raid_level;
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	if (rlevel > RAID_UNKNOWN)
 | |
| 		rlevel = RAID_UNKNOWN;
 | |
| 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 | |
| 	return l;
 | |
| }
 | |
| 
 | |
| static ssize_t lunid_show(struct device *dev,
 | |
| 	     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct scsi_device *sdev;
 | |
| 	struct hpsa_scsi_dev_t *hdev;
 | |
| 	unsigned long flags;
 | |
| 	unsigned char lunid[8];
 | |
| 
 | |
| 	sdev = to_scsi_device(dev);
 | |
| 	h = sdev_to_hba(sdev);
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	hdev = sdev->hostdata;
 | |
| 	if (!hdev) {
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	return snprintf(buf, 20, "0x%8phN\n", lunid);
 | |
| }
 | |
| 
 | |
| static ssize_t unique_id_show(struct device *dev,
 | |
| 	     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct scsi_device *sdev;
 | |
| 	struct hpsa_scsi_dev_t *hdev;
 | |
| 	unsigned long flags;
 | |
| 	unsigned char sn[16];
 | |
| 
 | |
| 	sdev = to_scsi_device(dev);
 | |
| 	h = sdev_to_hba(sdev);
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	hdev = sdev->hostdata;
 | |
| 	if (!hdev) {
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	memcpy(sn, hdev->device_id, sizeof(sn));
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	return snprintf(buf, 16 * 2 + 2,
 | |
| 			"%02X%02X%02X%02X%02X%02X%02X%02X"
 | |
| 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
 | |
| 			sn[0], sn[1], sn[2], sn[3],
 | |
| 			sn[4], sn[5], sn[6], sn[7],
 | |
| 			sn[8], sn[9], sn[10], sn[11],
 | |
| 			sn[12], sn[13], sn[14], sn[15]);
 | |
| }
 | |
| 
 | |
| static ssize_t sas_address_show(struct device *dev,
 | |
| 	      struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct scsi_device *sdev;
 | |
| 	struct hpsa_scsi_dev_t *hdev;
 | |
| 	unsigned long flags;
 | |
| 	u64 sas_address;
 | |
| 
 | |
| 	sdev = to_scsi_device(dev);
 | |
| 	h = sdev_to_hba(sdev);
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	hdev = sdev->hostdata;
 | |
| 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	sas_address = hdev->sas_address;
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 
 | |
| 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 | |
| }
 | |
| 
 | |
| static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 | |
| 	     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct scsi_device *sdev;
 | |
| 	struct hpsa_scsi_dev_t *hdev;
 | |
| 	unsigned long flags;
 | |
| 	int offload_enabled;
 | |
| 
 | |
| 	sdev = to_scsi_device(dev);
 | |
| 	h = sdev_to_hba(sdev);
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	hdev = sdev->hostdata;
 | |
| 	if (!hdev) {
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	offload_enabled = hdev->offload_enabled;
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 
 | |
| 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
 | |
| 		return snprintf(buf, 20, "%d\n", offload_enabled);
 | |
| 	else
 | |
| 		return snprintf(buf, 40, "%s\n",
 | |
| 				"Not applicable for a controller");
 | |
| }
 | |
| 
 | |
| #define MAX_PATHS 8
 | |
| static ssize_t path_info_show(struct device *dev,
 | |
| 	     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct scsi_device *sdev;
 | |
| 	struct hpsa_scsi_dev_t *hdev;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 	int output_len = 0;
 | |
| 	u8 box;
 | |
| 	u8 bay;
 | |
| 	u8 path_map_index = 0;
 | |
| 	char *active;
 | |
| 	unsigned char phys_connector[2];
 | |
| 
 | |
| 	sdev = to_scsi_device(dev);
 | |
| 	h = sdev_to_hba(sdev);
 | |
| 	spin_lock_irqsave(&h->devlock, flags);
 | |
| 	hdev = sdev->hostdata;
 | |
| 	if (!hdev) {
 | |
| 		spin_unlock_irqrestore(&h->devlock, flags);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	bay = hdev->bay;
 | |
| 	for (i = 0; i < MAX_PATHS; i++) {
 | |
| 		path_map_index = 1<<i;
 | |
| 		if (i == hdev->active_path_index)
 | |
| 			active = "Active";
 | |
| 		else if (hdev->path_map & path_map_index)
 | |
| 			active = "Inactive";
 | |
| 		else
 | |
| 			continue;
 | |
| 
 | |
| 		output_len += scnprintf(buf + output_len,
 | |
| 				PAGE_SIZE - output_len,
 | |
| 				"[%d:%d:%d:%d] %20.20s ",
 | |
| 				h->scsi_host->host_no,
 | |
| 				hdev->bus, hdev->target, hdev->lun,
 | |
| 				scsi_device_type(hdev->devtype));
 | |
| 
 | |
| 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 | |
| 			output_len += scnprintf(buf + output_len,
 | |
| 						PAGE_SIZE - output_len,
 | |
| 						"%s\n", active);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		box = hdev->box[i];
 | |
| 		memcpy(&phys_connector, &hdev->phys_connector[i],
 | |
| 			sizeof(phys_connector));
 | |
| 		if (phys_connector[0] < '0')
 | |
| 			phys_connector[0] = '0';
 | |
| 		if (phys_connector[1] < '0')
 | |
| 			phys_connector[1] = '0';
 | |
| 		output_len += scnprintf(buf + output_len,
 | |
| 				PAGE_SIZE - output_len,
 | |
| 				"PORT: %.2s ",
 | |
| 				phys_connector);
 | |
| 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 | |
| 			hdev->expose_device) {
 | |
| 			if (box == 0 || box == 0xFF) {
 | |
| 				output_len += scnprintf(buf + output_len,
 | |
| 					PAGE_SIZE - output_len,
 | |
| 					"BAY: %hhu %s\n",
 | |
| 					bay, active);
 | |
| 			} else {
 | |
| 				output_len += scnprintf(buf + output_len,
 | |
| 					PAGE_SIZE - output_len,
 | |
| 					"BOX: %hhu BAY: %hhu %s\n",
 | |
| 					box, bay, active);
 | |
| 			}
 | |
| 		} else if (box != 0 && box != 0xFF) {
 | |
| 			output_len += scnprintf(buf + output_len,
 | |
| 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 | |
| 				box, active);
 | |
| 		} else
 | |
| 			output_len += scnprintf(buf + output_len,
 | |
| 				PAGE_SIZE - output_len, "%s\n", active);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&h->devlock, flags);
 | |
| 	return output_len;
 | |
| }
 | |
| 
 | |
| static ssize_t host_show_ctlr_num(struct device *dev,
 | |
| 	struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 
 | |
| 	h = shost_to_hba(shost);
 | |
| 	return snprintf(buf, 20, "%d\n", h->ctlr);
 | |
| }
 | |
| 
 | |
| static ssize_t host_show_legacy_board(struct device *dev,
 | |
| 	struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct Scsi_Host *shost = class_to_shost(dev);
 | |
| 
 | |
| 	h = shost_to_hba(shost);
 | |
| 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR_RO(raid_level);
 | |
| static DEVICE_ATTR_RO(lunid);
 | |
| static DEVICE_ATTR_RO(unique_id);
 | |
| static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 | |
| static DEVICE_ATTR_RO(sas_address);
 | |
| static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 | |
| 			host_show_hp_ssd_smart_path_enabled, NULL);
 | |
| static DEVICE_ATTR_RO(path_info);
 | |
| static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 | |
| 		host_show_hp_ssd_smart_path_status,
 | |
| 		host_store_hp_ssd_smart_path_status);
 | |
| static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 | |
| 			host_store_raid_offload_debug);
 | |
| static DEVICE_ATTR(firmware_revision, S_IRUGO,
 | |
| 	host_show_firmware_revision, NULL);
 | |
| static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 | |
| 	host_show_commands_outstanding, NULL);
 | |
| static DEVICE_ATTR(transport_mode, S_IRUGO,
 | |
| 	host_show_transport_mode, NULL);
 | |
| static DEVICE_ATTR(resettable, S_IRUGO,
 | |
| 	host_show_resettable, NULL);
 | |
| static DEVICE_ATTR(lockup_detected, S_IRUGO,
 | |
| 	host_show_lockup_detected, NULL);
 | |
| static DEVICE_ATTR(ctlr_num, S_IRUGO,
 | |
| 	host_show_ctlr_num, NULL);
 | |
| static DEVICE_ATTR(legacy_board, S_IRUGO,
 | |
| 	host_show_legacy_board, NULL);
 | |
| 
 | |
| static struct device_attribute *hpsa_sdev_attrs[] = {
 | |
| 	&dev_attr_raid_level,
 | |
| 	&dev_attr_lunid,
 | |
| 	&dev_attr_unique_id,
 | |
| 	&dev_attr_hp_ssd_smart_path_enabled,
 | |
| 	&dev_attr_path_info,
 | |
| 	&dev_attr_sas_address,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct device_attribute *hpsa_shost_attrs[] = {
 | |
| 	&dev_attr_rescan,
 | |
| 	&dev_attr_firmware_revision,
 | |
| 	&dev_attr_commands_outstanding,
 | |
| 	&dev_attr_transport_mode,
 | |
| 	&dev_attr_resettable,
 | |
| 	&dev_attr_hp_ssd_smart_path_status,
 | |
| 	&dev_attr_raid_offload_debug,
 | |
| 	&dev_attr_lockup_detected,
 | |
| 	&dev_attr_ctlr_num,
 | |
| 	&dev_attr_legacy_board,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
 | |
| 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
 | |
| 
 | |
| static struct scsi_host_template hpsa_driver_template = {
 | |
| 	.module			= THIS_MODULE,
 | |
| 	.name			= HPSA,
 | |
| 	.proc_name		= HPSA,
 | |
| 	.queuecommand		= hpsa_scsi_queue_command,
 | |
| 	.scan_start		= hpsa_scan_start,
 | |
| 	.scan_finished		= hpsa_scan_finished,
 | |
| 	.change_queue_depth	= hpsa_change_queue_depth,
 | |
| 	.this_id		= -1,
 | |
| 	.use_clustering		= ENABLE_CLUSTERING,
 | |
| 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
 | |
| 	.ioctl			= hpsa_ioctl,
 | |
| 	.slave_alloc		= hpsa_slave_alloc,
 | |
| 	.slave_configure	= hpsa_slave_configure,
 | |
| 	.slave_destroy		= hpsa_slave_destroy,
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	.compat_ioctl		= hpsa_compat_ioctl,
 | |
| #endif
 | |
| 	.sdev_attrs = hpsa_sdev_attrs,
 | |
| 	.shost_attrs = hpsa_shost_attrs,
 | |
| 	.max_sectors = 2048,
 | |
| 	.no_write_same = 1,
 | |
| };
 | |
| 
 | |
| static inline u32 next_command(struct ctlr_info *h, u8 q)
 | |
| {
 | |
| 	u32 a;
 | |
| 	struct reply_queue_buffer *rq = &h->reply_queue[q];
 | |
| 
 | |
| 	if (h->transMethod & CFGTBL_Trans_io_accel1)
 | |
| 		return h->access.command_completed(h, q);
 | |
| 
 | |
| 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 | |
| 		return h->access.command_completed(h, q);
 | |
| 
 | |
| 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 | |
| 		a = rq->head[rq->current_entry];
 | |
| 		rq->current_entry++;
 | |
| 		atomic_dec(&h->commands_outstanding);
 | |
| 	} else {
 | |
| 		a = FIFO_EMPTY;
 | |
| 	}
 | |
| 	/* Check for wraparound */
 | |
| 	if (rq->current_entry == h->max_commands) {
 | |
| 		rq->current_entry = 0;
 | |
| 		rq->wraparound ^= 1;
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are some special bits in the bus address of the
 | |
|  * command that we have to set for the controller to know
 | |
|  * how to process the command:
 | |
|  *
 | |
|  * Normal performant mode:
 | |
|  * bit 0: 1 means performant mode, 0 means simple mode.
 | |
|  * bits 1-3 = block fetch table entry
 | |
|  * bits 4-6 = command type (== 0)
 | |
|  *
 | |
|  * ioaccel1 mode:
 | |
|  * bit 0 = "performant mode" bit.
 | |
|  * bits 1-3 = block fetch table entry
 | |
|  * bits 4-6 = command type (== 110)
 | |
|  * (command type is needed because ioaccel1 mode
 | |
|  * commands are submitted through the same register as normal
 | |
|  * mode commands, so this is how the controller knows whether
 | |
|  * the command is normal mode or ioaccel1 mode.)
 | |
|  *
 | |
|  * ioaccel2 mode:
 | |
|  * bit 0 = "performant mode" bit.
 | |
|  * bits 1-4 = block fetch table entry (note extra bit)
 | |
|  * bits 4-6 = not needed, because ioaccel2 mode has
 | |
|  * a separate special register for submitting commands.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * set_performant_mode: Modify the tag for cciss performant
 | |
|  * set bit 0 for pull model, bits 3-1 for block fetch
 | |
|  * register number
 | |
|  */
 | |
| #define DEFAULT_REPLY_QUEUE (-1)
 | |
| static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
 | |
| 					int reply_queue)
 | |
| {
 | |
| 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
 | |
| 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
 | |
| 		if (unlikely(!h->msix_vectors))
 | |
| 			return;
 | |
| 		c->Header.ReplyQueue = reply_queue;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_ioaccel1_performant_mode(struct ctlr_info *h,
 | |
| 						struct CommandList *c,
 | |
| 						int reply_queue)
 | |
| {
 | |
| 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell the controller to post the reply to the queue for this
 | |
| 	 * processor.  This seems to give the best I/O throughput.
 | |
| 	 */
 | |
| 	cp->ReplyQueue = reply_queue;
 | |
| 	/*
 | |
| 	 * Set the bits in the address sent down to include:
 | |
| 	 *  - performant mode bit (bit 0)
 | |
| 	 *  - pull count (bits 1-3)
 | |
| 	 *  - command type (bits 4-6)
 | |
| 	 */
 | |
| 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
 | |
| 					IOACCEL1_BUSADDR_CMDTYPE;
 | |
| }
 | |
| 
 | |
| static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
 | |
| 						struct CommandList *c,
 | |
| 						int reply_queue)
 | |
| {
 | |
| 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
 | |
| 		&h->ioaccel2_cmd_pool[c->cmdindex];
 | |
| 
 | |
| 	/* Tell the controller to post the reply to the queue for this
 | |
| 	 * processor.  This seems to give the best I/O throughput.
 | |
| 	 */
 | |
| 	cp->reply_queue = reply_queue;
 | |
| 	/* Set the bits in the address sent down to include:
 | |
| 	 *  - performant mode bit not used in ioaccel mode 2
 | |
| 	 *  - pull count (bits 0-3)
 | |
| 	 *  - command type isn't needed for ioaccel2
 | |
| 	 */
 | |
| 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
 | |
| }
 | |
| 
 | |
| static void set_ioaccel2_performant_mode(struct ctlr_info *h,
 | |
| 						struct CommandList *c,
 | |
| 						int reply_queue)
 | |
| {
 | |
| 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell the controller to post the reply to the queue for this
 | |
| 	 * processor.  This seems to give the best I/O throughput.
 | |
| 	 */
 | |
| 	cp->reply_queue = reply_queue;
 | |
| 	/*
 | |
| 	 * Set the bits in the address sent down to include:
 | |
| 	 *  - performant mode bit not used in ioaccel mode 2
 | |
| 	 *  - pull count (bits 0-3)
 | |
| 	 *  - command type isn't needed for ioaccel2
 | |
| 	 */
 | |
| 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
 | |
| }
 | |
| 
 | |
| static int is_firmware_flash_cmd(u8 *cdb)
 | |
| {
 | |
| 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * During firmware flash, the heartbeat register may not update as frequently
 | |
|  * as it should.  So we dial down lockup detection during firmware flash. and
 | |
|  * dial it back up when firmware flash completes.
 | |
|  */
 | |
| #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
 | |
| #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
 | |
| #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
 | |
| static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
 | |
| 		struct CommandList *c)
 | |
| {
 | |
| 	if (!is_firmware_flash_cmd(c->Request.CDB))
 | |
| 		return;
 | |
| 	atomic_inc(&h->firmware_flash_in_progress);
 | |
| 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
 | |
| }
 | |
| 
 | |
| static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
 | |
| 		struct CommandList *c)
 | |
| {
 | |
| 	if (is_firmware_flash_cmd(c->Request.CDB) &&
 | |
| 		atomic_dec_and_test(&h->firmware_flash_in_progress))
 | |
| 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
 | |
| }
 | |
| 
 | |
| static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
 | |
| 	struct CommandList *c, int reply_queue)
 | |
| {
 | |
| 	dial_down_lockup_detection_during_fw_flash(h, c);
 | |
| 	atomic_inc(&h->commands_outstanding);
 | |
| 
 | |
| 	reply_queue = h->reply_map[raw_smp_processor_id()];
 | |
| 	switch (c->cmd_type) {
 | |
| 	case CMD_IOACCEL1:
 | |
| 		set_ioaccel1_performant_mode(h, c, reply_queue);
 | |
| 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
 | |
| 		break;
 | |
| 	case CMD_IOACCEL2:
 | |
| 		set_ioaccel2_performant_mode(h, c, reply_queue);
 | |
| 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
 | |
| 		break;
 | |
| 	case IOACCEL2_TMF:
 | |
| 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
 | |
| 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
 | |
| 		break;
 | |
| 	default:
 | |
| 		set_performant_mode(h, c, reply_queue);
 | |
| 		h->access.submit_command(h, c);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
 | |
| {
 | |
| 	if (unlikely(hpsa_is_pending_event(c)))
 | |
| 		return finish_cmd(c);
 | |
| 
 | |
| 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
 | |
| }
 | |
| 
 | |
| static inline int is_hba_lunid(unsigned char scsi3addr[])
 | |
| {
 | |
| 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
 | |
| }
 | |
| 
 | |
| static inline int is_scsi_rev_5(struct ctlr_info *h)
 | |
| {
 | |
| 	if (!h->hba_inquiry_data)
 | |
| 		return 0;
 | |
| 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpsa_find_target_lun(struct ctlr_info *h,
 | |
| 	unsigned char scsi3addr[], int bus, int *target, int *lun)
 | |
| {
 | |
| 	/* finds an unused bus, target, lun for a new physical device
 | |
| 	 * assumes h->devlock is held
 | |
| 	 */
 | |
| 	int i, found = 0;
 | |
| 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
 | |
| 
 | |
| 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
 | |
| 
 | |
| 	for (i = 0; i < h->ndevices; i++) {
 | |
| 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
 | |
| 			__set_bit(h->dev[i]->target, lun_taken);
 | |
| 	}
 | |
| 
 | |
| 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
 | |
| 	if (i < HPSA_MAX_DEVICES) {
 | |
| 		/* *bus = 1; */
 | |
| 		*target = i;
 | |
| 		*lun = 0;
 | |
| 		found = 1;
 | |
| 	}
 | |
| 	return !found;
 | |
| }
 | |
| 
 | |
| static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
 | |
| 	struct hpsa_scsi_dev_t *dev, char *description)
 | |
| {
 | |
| #define LABEL_SIZE 25
 | |
| 	char label[LABEL_SIZE];
 | |
| 
 | |
| 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	switch (dev->devtype) {
 | |
| 	case TYPE_RAID:
 | |
| 		snprintf(label, LABEL_SIZE, "controller");
 | |
| 		break;
 | |
| 	case TYPE_ENCLOSURE:
 | |
| 		snprintf(label, LABEL_SIZE, "enclosure");
 | |
| 		break;
 | |
| 	case TYPE_DISK:
 | |
| 	case TYPE_ZBC:
 | |
| 		if (dev->external)
 | |
| 			snprintf(label, LABEL_SIZE, "external");
 | |
| 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
 | |
| 			snprintf(label, LABEL_SIZE, "%s",
 | |
| 				raid_label[PHYSICAL_DRIVE]);
 | |
| 		else
 | |
| 			snprintf(label, LABEL_SIZE, "RAID-%s",
 | |
| 				dev->raid_level > RAID_UNKNOWN ? "?" :
 | |
| 				raid_label[dev->raid_level]);
 | |
| 		break;
 | |
| 	case TYPE_ROM:
 | |
| 		snprintf(label, LABEL_SIZE, "rom");
 | |
| 		break;
 | |
| 	case TYPE_TAPE:
 | |
| 		snprintf(label, LABEL_SIZE, "tape");
 | |
| 		break;
 | |
| 	case TYPE_MEDIUM_CHANGER:
 | |
| 		snprintf(label, LABEL_SIZE, "changer");
 | |
| 		break;
 | |
| 	default:
 | |
| 		snprintf(label, LABEL_SIZE, "UNKNOWN");
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	dev_printk(level, &h->pdev->dev,
 | |
| 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
 | |
| 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
 | |
| 			description,
 | |
| 			scsi_device_type(dev->devtype),
 | |
| 			dev->vendor,
 | |
| 			dev->model,
 | |
| 			label,
 | |
| 			dev->offload_config ? '+' : '-',
 | |
| 			dev->offload_to_be_enabled ? '+' : '-',
 | |
| 			dev->expose_device);
 | |
| }
 | |
| 
 | |
| /* Add an entry into h->dev[] array. */
 | |
| static int hpsa_scsi_add_entry(struct ctlr_info *h,
 | |
| 		struct hpsa_scsi_dev_t *device,
 | |
| 		struct hpsa_scsi_dev_t *added[], int *nadded)
 | |
| {
 | |
| 	/* assumes h->devlock is held */
 | |
| 	int n = h->ndevices;
 | |
| 	int i;
 | |
| 	unsigned char addr1[8], addr2[8];
 | |
| 	struct hpsa_scsi_dev_t *sd;
 | |
| 
 | |
| 	if (n >= HPSA_MAX_DEVICES) {
 | |
| 		dev_err(&h->pdev->dev, "too many devices, some will be "
 | |
| 			"inaccessible.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* physical devices do not have lun or target assigned until now. */
 | |
| 	if (device->lun != -1)
 | |
| 		/* Logical device, lun is already assigned. */
 | |
| 		goto lun_assigned;
 | |
| 
 | |
| 	/* If this device a non-zero lun of a multi-lun device
 | |
| 	 * byte 4 of the 8-byte LUN addr will contain the logical
 | |
| 	 * unit no, zero otherwise.
 | |
| 	 */
 | |
| 	if (device->scsi3addr[4] == 0) {
 | |
| 		/* This is not a non-zero lun of a multi-lun device */
 | |
| 		if (hpsa_find_target_lun(h, device->scsi3addr,
 | |
| 			device->bus, &device->target, &device->lun) != 0)
 | |
| 			return -1;
 | |
| 		goto lun_assigned;
 | |
| 	}
 | |
| 
 | |
| 	/* This is a non-zero lun of a multi-lun device.
 | |
| 	 * Search through our list and find the device which
 | |
| 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
 | |
| 	 * Assign the same bus and target for this new LUN.
 | |
| 	 * Use the logical unit number from the firmware.
 | |
| 	 */
 | |
| 	memcpy(addr1, device->scsi3addr, 8);
 | |
| 	addr1[4] = 0;
 | |
| 	addr1[5] = 0;
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		sd = h->dev[i];
 | |
| 		memcpy(addr2, sd->scsi3addr, 8);
 | |
| 		addr2[4] = 0;
 | |
| 		addr2[5] = 0;
 | |
| 		/* differ only in byte 4 and 5? */
 | |
| 		if (memcmp(addr1, addr2, 8) == 0) {
 | |
| 			device->bus = sd->bus;
 | |
| 			device->target = sd->target;
 | |
| 			device->lun = device->scsi3addr[4];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (device->lun == -1) {
 | |
| 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
 | |
| 			" suspect firmware bug or unsupported hardware "
 | |
| 			"configuration.\n");
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| lun_assigned:
 | |
| 
 | |
| 	h->dev[n] = device;
 | |
| 	h->ndevices++;
 | |
| 	added[*nadded] = device;
 | |
| 	(*nadded)++;
 | |
| 	hpsa_show_dev_msg(KERN_INFO, h, device,
 | |
| 		device->expose_device ? "added" : "masked");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called during a scan operation.
 | |
|  *
 | |
|  * Update an entry in h->dev[] array.
 | |
|  */
 | |
| static void hpsa_scsi_update_entry(struct ctlr_info *h,
 | |
| 	int entry, struct hpsa_scsi_dev_t *new_entry)
 | |
| {
 | |
| 	/* assumes h->devlock is held */
 | |
| 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 | |
| 
 | |
| 	/* Raid level changed. */
 | |
| 	h->dev[entry]->raid_level = new_entry->raid_level;
 | |
| 
 | |
| 	/*
 | |
| 	 * ioacccel_handle may have changed for a dual domain disk
 | |
| 	 */
 | |
| 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
 | |
| 
 | |
| 	/* Raid offload parameters changed.  Careful about the ordering. */
 | |
| 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
 | |
| 		/*
 | |
| 		 * if drive is newly offload_enabled, we want to copy the
 | |
| 		 * raid map data first.  If previously offload_enabled and
 | |
| 		 * offload_config were set, raid map data had better be
 | |
| 		 * the same as it was before. If raid map data has changed
 | |
| 		 * then it had better be the case that
 | |
| 		 * h->dev[entry]->offload_enabled is currently 0.
 | |
| 		 */
 | |
| 		h->dev[entry]->raid_map = new_entry->raid_map;
 | |
| 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
 | |
| 	}
 | |
| 	if (new_entry->offload_to_be_enabled) {
 | |
| 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
 | |
| 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
 | |
| 	}
 | |
| 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
 | |
| 	h->dev[entry]->offload_config = new_entry->offload_config;
 | |
| 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
 | |
| 	h->dev[entry]->queue_depth = new_entry->queue_depth;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can turn off ioaccel offload now, but need to delay turning
 | |
| 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
 | |
| 	 * can't do that until all the devices are updated.
 | |
| 	 */
 | |
| 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
 | |
| 
 | |
| 	/*
 | |
| 	 * turn ioaccel off immediately if told to do so.
 | |
| 	 */
 | |
| 	if (!new_entry->offload_to_be_enabled)
 | |
| 		h->dev[entry]->offload_enabled = 0;
 | |
| 
 | |
| 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
 | |
| }
 | |
| 
 | |
| /* Replace an entry from h->dev[] array. */
 | |
| static void hpsa_scsi_replace_entry(struct ctlr_info *h,
 | |
| 	int entry, struct hpsa_scsi_dev_t *new_entry,
 | |
| 	struct hpsa_scsi_dev_t *added[], int *nadded,
 | |
| 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
 | |
| {
 | |
| 	/* assumes h->devlock is held */
 | |
| 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 | |
| 	removed[*nremoved] = h->dev[entry];
 | |
| 	(*nremoved)++;
 | |
| 
 | |
| 	/*
 | |
| 	 * New physical devices won't have target/lun assigned yet
 | |
| 	 * so we need to preserve the values in the slot we are replacing.
 | |
| 	 */
 | |
| 	if (new_entry->target == -1) {
 | |
| 		new_entry->target = h->dev[entry]->target;
 | |
| 		new_entry->lun = h->dev[entry]->lun;
 | |
| 	}
 | |
| 
 | |
| 	h->dev[entry] = new_entry;
 | |
| 	added[*nadded] = new_entry;
 | |
| 	(*nadded)++;
 | |
| 
 | |
| 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
 | |
| }
 | |
| 
 | |
| /* Remove an entry from h->dev[] array. */
 | |
| static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
 | |
| 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
 | |
| {
 | |
| 	/* assumes h->devlock is held */
 | |
| 	int i;
 | |
| 	struct hpsa_scsi_dev_t *sd;
 | |
| 
 | |
| 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 | |
| 
 | |
| 	sd = h->dev[entry];
 | |
| 	removed[*nremoved] = h->dev[entry];
 | |
| 	(*nremoved)++;
 | |
| 
 | |
| 	for (i = entry; i < h->ndevices-1; i++)
 | |
| 		h->dev[i] = h->dev[i+1];
 | |
| 	h->ndevices--;
 | |
| 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
 | |
| }
 | |
| 
 | |
| #define SCSI3ADDR_EQ(a, b) ( \
 | |
| 	(a)[7] == (b)[7] && \
 | |
| 	(a)[6] == (b)[6] && \
 | |
| 	(a)[5] == (b)[5] && \
 | |
| 	(a)[4] == (b)[4] && \
 | |
| 	(a)[3] == (b)[3] && \
 | |
| 	(a)[2] == (b)[2] && \
 | |
| 	(a)[1] == (b)[1] && \
 | |
| 	(a)[0] == (b)[0])
 | |
| 
 | |
| static void fixup_botched_add(struct ctlr_info *h,
 | |
| 	struct hpsa_scsi_dev_t *added)
 | |
| {
 | |
| 	/* called when scsi_add_device fails in order to re-adjust
 | |
| 	 * h->dev[] to match the mid layer's view.
 | |
| 	 */
 | |
| 	unsigned long flags;
 | |
| 	int i, j;
 | |
| 
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	for (i = 0; i < h->ndevices; i++) {
 | |
| 		if (h->dev[i] == added) {
 | |
| 			for (j = i; j < h->ndevices-1; j++)
 | |
| 				h->dev[j] = h->dev[j+1];
 | |
| 			h->ndevices--;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	kfree(added);
 | |
| }
 | |
| 
 | |
| static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
 | |
| 	struct hpsa_scsi_dev_t *dev2)
 | |
| {
 | |
| 	/* we compare everything except lun and target as these
 | |
| 	 * are not yet assigned.  Compare parts likely
 | |
| 	 * to differ first
 | |
| 	 */
 | |
| 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
 | |
| 		sizeof(dev1->scsi3addr)) != 0)
 | |
| 		return 0;
 | |
| 	if (memcmp(dev1->device_id, dev2->device_id,
 | |
| 		sizeof(dev1->device_id)) != 0)
 | |
| 		return 0;
 | |
| 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
 | |
| 		return 0;
 | |
| 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
 | |
| 		return 0;
 | |
| 	if (dev1->devtype != dev2->devtype)
 | |
| 		return 0;
 | |
| 	if (dev1->bus != dev2->bus)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
 | |
| 	struct hpsa_scsi_dev_t *dev2)
 | |
| {
 | |
| 	/* Device attributes that can change, but don't mean
 | |
| 	 * that the device is a different device, nor that the OS
 | |
| 	 * needs to be told anything about the change.
 | |
| 	 */
 | |
| 	if (dev1->raid_level != dev2->raid_level)
 | |
| 		return 1;
 | |
| 	if (dev1->offload_config != dev2->offload_config)
 | |
| 		return 1;
 | |
| 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
 | |
| 		return 1;
 | |
| 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
 | |
| 		if (dev1->queue_depth != dev2->queue_depth)
 | |
| 			return 1;
 | |
| 	/*
 | |
| 	 * This can happen for dual domain devices. An active
 | |
| 	 * path change causes the ioaccel handle to change
 | |
| 	 *
 | |
| 	 * for example note the handle differences between p0 and p1
 | |
| 	 * Device                    WWN               ,WWN hash,Handle
 | |
| 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
 | |
| 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
 | |
| 	 */
 | |
| 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 | |
|  * and return needle location in *index.  If scsi3addr matches, but not
 | |
|  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
 | |
|  * location in *index.
 | |
|  * In the case of a minor device attribute change, such as RAID level, just
 | |
|  * return DEVICE_UPDATED, along with the updated device's location in index.
 | |
|  * If needle not found, return DEVICE_NOT_FOUND.
 | |
|  */
 | |
| static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
 | |
| 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
 | |
| 	int *index)
 | |
| {
 | |
| 	int i;
 | |
| #define DEVICE_NOT_FOUND 0
 | |
| #define DEVICE_CHANGED 1
 | |
| #define DEVICE_SAME 2
 | |
| #define DEVICE_UPDATED 3
 | |
| 	if (needle == NULL)
 | |
| 		return DEVICE_NOT_FOUND;
 | |
| 
 | |
| 	for (i = 0; i < haystack_size; i++) {
 | |
| 		if (haystack[i] == NULL) /* previously removed. */
 | |
| 			continue;
 | |
| 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
 | |
| 			*index = i;
 | |
| 			if (device_is_the_same(needle, haystack[i])) {
 | |
| 				if (device_updated(needle, haystack[i]))
 | |
| 					return DEVICE_UPDATED;
 | |
| 				return DEVICE_SAME;
 | |
| 			} else {
 | |
| 				/* Keep offline devices offline */
 | |
| 				if (needle->volume_offline)
 | |
| 					return DEVICE_NOT_FOUND;
 | |
| 				return DEVICE_CHANGED;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	*index = -1;
 | |
| 	return DEVICE_NOT_FOUND;
 | |
| }
 | |
| 
 | |
| static void hpsa_monitor_offline_device(struct ctlr_info *h,
 | |
| 					unsigned char scsi3addr[])
 | |
| {
 | |
| 	struct offline_device_entry *device;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Check to see if device is already on the list */
 | |
| 	spin_lock_irqsave(&h->offline_device_lock, flags);
 | |
| 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
 | |
| 		if (memcmp(device->scsi3addr, scsi3addr,
 | |
| 			sizeof(device->scsi3addr)) == 0) {
 | |
| 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
 | |
| 
 | |
| 	/* Device is not on the list, add it. */
 | |
| 	device = kmalloc(sizeof(*device), GFP_KERNEL);
 | |
| 	if (!device)
 | |
| 		return;
 | |
| 
 | |
| 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
 | |
| 	spin_lock_irqsave(&h->offline_device_lock, flags);
 | |
| 	list_add_tail(&device->offline_list, &h->offline_device_list);
 | |
| 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
 | |
| }
 | |
| 
 | |
| /* Print a message explaining various offline volume states */
 | |
| static void hpsa_show_volume_status(struct ctlr_info *h,
 | |
| 	struct hpsa_scsi_dev_t *sd)
 | |
| {
 | |
| 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 	switch (sd->volume_offline) {
 | |
| 	case HPSA_LV_OK:
 | |
| 		break;
 | |
| 	case HPSA_LV_UNDERGOING_ERASE:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_NOT_AVAILABLE:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_UNDERGOING_RPI:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_PENDING_RPI:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_ENCRYPTED_NO_KEY:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_UNDERGOING_ENCRYPTION:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_PENDING_ENCRYPTION:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
 | |
| 			h->scsi_host->host_no,
 | |
| 			sd->bus, sd->target, sd->lun);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Figure the list of physical drive pointers for a logical drive with
 | |
|  * raid offload configured.
 | |
|  */
 | |
| static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
 | |
| 				struct hpsa_scsi_dev_t *dev[], int ndevices,
 | |
| 				struct hpsa_scsi_dev_t *logical_drive)
 | |
| {
 | |
| 	struct raid_map_data *map = &logical_drive->raid_map;
 | |
| 	struct raid_map_disk_data *dd = &map->data[0];
 | |
| 	int i, j;
 | |
| 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
 | |
| 				le16_to_cpu(map->metadata_disks_per_row);
 | |
| 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
 | |
| 				le16_to_cpu(map->layout_map_count) *
 | |
| 				total_disks_per_row;
 | |
| 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
 | |
| 				total_disks_per_row;
 | |
| 	int qdepth;
 | |
| 
 | |
| 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
 | |
| 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
 | |
| 
 | |
| 	logical_drive->nphysical_disks = nraid_map_entries;
 | |
| 
 | |
| 	qdepth = 0;
 | |
| 	for (i = 0; i < nraid_map_entries; i++) {
 | |
| 		logical_drive->phys_disk[i] = NULL;
 | |
| 		if (!logical_drive->offload_config)
 | |
| 			continue;
 | |
| 		for (j = 0; j < ndevices; j++) {
 | |
| 			if (dev[j] == NULL)
 | |
| 				continue;
 | |
| 			if (dev[j]->devtype != TYPE_DISK &&
 | |
| 			    dev[j]->devtype != TYPE_ZBC)
 | |
| 				continue;
 | |
| 			if (is_logical_device(dev[j]))
 | |
| 				continue;
 | |
| 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
 | |
| 				continue;
 | |
| 
 | |
| 			logical_drive->phys_disk[i] = dev[j];
 | |
| 			if (i < nphys_disk)
 | |
| 				qdepth = min(h->nr_cmds, qdepth +
 | |
| 				    logical_drive->phys_disk[i]->queue_depth);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This can happen if a physical drive is removed and
 | |
| 		 * the logical drive is degraded.  In that case, the RAID
 | |
| 		 * map data will refer to a physical disk which isn't actually
 | |
| 		 * present.  And in that case offload_enabled should already
 | |
| 		 * be 0, but we'll turn it off here just in case
 | |
| 		 */
 | |
| 		if (!logical_drive->phys_disk[i]) {
 | |
| 			dev_warn(&h->pdev->dev,
 | |
| 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
 | |
| 				__func__,
 | |
| 				h->scsi_host->host_no, logical_drive->bus,
 | |
| 				logical_drive->target, logical_drive->lun);
 | |
| 			logical_drive->offload_enabled = 0;
 | |
| 			logical_drive->offload_to_be_enabled = 0;
 | |
| 			logical_drive->queue_depth = 8;
 | |
| 		}
 | |
| 	}
 | |
| 	if (nraid_map_entries)
 | |
| 		/*
 | |
| 		 * This is correct for reads, too high for full stripe writes,
 | |
| 		 * way too high for partial stripe writes
 | |
| 		 */
 | |
| 		logical_drive->queue_depth = qdepth;
 | |
| 	else {
 | |
| 		if (logical_drive->external)
 | |
| 			logical_drive->queue_depth = EXTERNAL_QD;
 | |
| 		else
 | |
| 			logical_drive->queue_depth = h->nr_cmds;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
 | |
| 				struct hpsa_scsi_dev_t *dev[], int ndevices)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ndevices; i++) {
 | |
| 		if (dev[i] == NULL)
 | |
| 			continue;
 | |
| 		if (dev[i]->devtype != TYPE_DISK &&
 | |
| 		    dev[i]->devtype != TYPE_ZBC)
 | |
| 			continue;
 | |
| 		if (!is_logical_device(dev[i]))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If offload is currently enabled, the RAID map and
 | |
| 		 * phys_disk[] assignment *better* not be changing
 | |
| 		 * because we would be changing ioaccel phsy_disk[] pointers
 | |
| 		 * on a ioaccel volume processing I/O requests.
 | |
| 		 *
 | |
| 		 * If an ioaccel volume status changed, initially because it was
 | |
| 		 * re-configured and thus underwent a transformation, or
 | |
| 		 * a drive failed, we would have received a state change
 | |
| 		 * request and ioaccel should have been turned off. When the
 | |
| 		 * transformation completes, we get another state change
 | |
| 		 * request to turn ioaccel back on. In this case, we need
 | |
| 		 * to update the ioaccel information.
 | |
| 		 *
 | |
| 		 * Thus: If it is not currently enabled, but will be after
 | |
| 		 * the scan completes, make sure the ioaccel pointers
 | |
| 		 * are up to date.
 | |
| 		 */
 | |
| 
 | |
| 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
 | |
| 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (!h->scsi_host)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (is_logical_device(device)) /* RAID */
 | |
| 		rc = scsi_add_device(h->scsi_host, device->bus,
 | |
| 					device->target, device->lun);
 | |
| 	else /* HBA */
 | |
| 		rc = hpsa_add_sas_device(h->sas_host, device);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
 | |
| 						struct hpsa_scsi_dev_t *dev)
 | |
| {
 | |
| 	int i;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	for (i = 0; i < h->nr_cmds; i++) {
 | |
| 		struct CommandList *c = h->cmd_pool + i;
 | |
| 		int refcount = atomic_inc_return(&c->refcount);
 | |
| 
 | |
| 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
 | |
| 				dev->scsi3addr)) {
 | |
| 			unsigned long flags;
 | |
| 
 | |
| 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
 | |
| 			if (!hpsa_is_cmd_idle(c))
 | |
| 				++count;
 | |
| 			spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		}
 | |
| 
 | |
| 		cmd_free(h, c);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
 | |
| 						struct hpsa_scsi_dev_t *device)
 | |
| {
 | |
| 	int cmds = 0;
 | |
| 	int waits = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
 | |
| 		if (cmds == 0)
 | |
| 			break;
 | |
| 		if (++waits > 20)
 | |
| 			break;
 | |
| 		msleep(1000);
 | |
| 	}
 | |
| 
 | |
| 	if (waits > 20)
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"%s: removing device with %d outstanding commands!\n",
 | |
| 			__func__, cmds);
 | |
| }
 | |
| 
 | |
| static void hpsa_remove_device(struct ctlr_info *h,
 | |
| 			struct hpsa_scsi_dev_t *device)
 | |
| {
 | |
| 	struct scsi_device *sdev = NULL;
 | |
| 
 | |
| 	if (!h->scsi_host)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow for commands to drain
 | |
| 	 */
 | |
| 	device->removed = 1;
 | |
| 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
 | |
| 
 | |
| 	if (is_logical_device(device)) { /* RAID */
 | |
| 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
 | |
| 						device->target, device->lun);
 | |
| 		if (sdev) {
 | |
| 			scsi_remove_device(sdev);
 | |
| 			scsi_device_put(sdev);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We don't expect to get here.  Future commands
 | |
| 			 * to this device will get a selection timeout as
 | |
| 			 * if the device were gone.
 | |
| 			 */
 | |
| 			hpsa_show_dev_msg(KERN_WARNING, h, device,
 | |
| 					"didn't find device for removal.");
 | |
| 		}
 | |
| 	} else { /* HBA */
 | |
| 
 | |
| 		hpsa_remove_sas_device(device);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void adjust_hpsa_scsi_table(struct ctlr_info *h,
 | |
| 	struct hpsa_scsi_dev_t *sd[], int nsds)
 | |
| {
 | |
| 	/* sd contains scsi3 addresses and devtypes, and inquiry
 | |
| 	 * data.  This function takes what's in sd to be the current
 | |
| 	 * reality and updates h->dev[] to reflect that reality.
 | |
| 	 */
 | |
| 	int i, entry, device_change, changes = 0;
 | |
| 	struct hpsa_scsi_dev_t *csd;
 | |
| 	unsigned long flags;
 | |
| 	struct hpsa_scsi_dev_t **added, **removed;
 | |
| 	int nadded, nremoved;
 | |
| 
 | |
| 	/*
 | |
| 	 * A reset can cause a device status to change
 | |
| 	 * re-schedule the scan to see what happened.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&h->reset_lock, flags);
 | |
| 	if (h->reset_in_progress) {
 | |
| 		h->drv_req_rescan = 1;
 | |
| 		spin_unlock_irqrestore(&h->reset_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&h->reset_lock, flags);
 | |
| 
 | |
| 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
 | |
| 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
 | |
| 
 | |
| 	if (!added || !removed) {
 | |
| 		dev_warn(&h->pdev->dev, "out of memory in "
 | |
| 			"adjust_hpsa_scsi_table\n");
 | |
| 		goto free_and_out;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&h->devlock, flags);
 | |
| 
 | |
| 	/* find any devices in h->dev[] that are not in
 | |
| 	 * sd[] and remove them from h->dev[], and for any
 | |
| 	 * devices which have changed, remove the old device
 | |
| 	 * info and add the new device info.
 | |
| 	 * If minor device attributes change, just update
 | |
| 	 * the existing device structure.
 | |
| 	 */
 | |
| 	i = 0;
 | |
| 	nremoved = 0;
 | |
| 	nadded = 0;
 | |
| 	while (i < h->ndevices) {
 | |
| 		csd = h->dev[i];
 | |
| 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
 | |
| 		if (device_change == DEVICE_NOT_FOUND) {
 | |
| 			changes++;
 | |
| 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
 | |
| 			continue; /* remove ^^^, hence i not incremented */
 | |
| 		} else if (device_change == DEVICE_CHANGED) {
 | |
| 			changes++;
 | |
| 			hpsa_scsi_replace_entry(h, i, sd[entry],
 | |
| 				added, &nadded, removed, &nremoved);
 | |
| 			/* Set it to NULL to prevent it from being freed
 | |
| 			 * at the bottom of hpsa_update_scsi_devices()
 | |
| 			 */
 | |
| 			sd[entry] = NULL;
 | |
| 		} else if (device_change == DEVICE_UPDATED) {
 | |
| 			hpsa_scsi_update_entry(h, i, sd[entry]);
 | |
| 		}
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	/* Now, make sure every device listed in sd[] is also
 | |
| 	 * listed in h->dev[], adding them if they aren't found
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0; i < nsds; i++) {
 | |
| 		if (!sd[i]) /* if already added above. */
 | |
| 			continue;
 | |
| 
 | |
| 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
 | |
| 		 * as the SCSI mid-layer does not handle such devices well.
 | |
| 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
 | |
| 		 * at 160Hz, and prevents the system from coming up.
 | |
| 		 */
 | |
| 		if (sd[i]->volume_offline) {
 | |
| 			hpsa_show_volume_status(h, sd[i]);
 | |
| 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
 | |
| 					h->ndevices, &entry);
 | |
| 		if (device_change == DEVICE_NOT_FOUND) {
 | |
| 			changes++;
 | |
| 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
 | |
| 				break;
 | |
| 			sd[i] = NULL; /* prevent from being freed later. */
 | |
| 		} else if (device_change == DEVICE_CHANGED) {
 | |
| 			/* should never happen... */
 | |
| 			changes++;
 | |
| 			dev_warn(&h->pdev->dev,
 | |
| 				"device unexpectedly changed.\n");
 | |
| 			/* but if it does happen, we just ignore that device */
 | |
| 		}
 | |
| 	}
 | |
| 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
 | |
| 	 * any logical drives that need it enabled.
 | |
| 	 *
 | |
| 	 * The raid map should be current by now.
 | |
| 	 *
 | |
| 	 * We are updating the device list used for I/O requests.
 | |
| 	 */
 | |
| 	for (i = 0; i < h->ndevices; i++) {
 | |
| 		if (h->dev[i] == NULL)
 | |
| 			continue;
 | |
| 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&h->devlock, flags);
 | |
| 
 | |
| 	/* Monitor devices which are in one of several NOT READY states to be
 | |
| 	 * brought online later. This must be done without holding h->devlock,
 | |
| 	 * so don't touch h->dev[]
 | |
| 	 */
 | |
| 	for (i = 0; i < nsds; i++) {
 | |
| 		if (!sd[i]) /* if already added above. */
 | |
| 			continue;
 | |
| 		if (sd[i]->volume_offline)
 | |
| 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
 | |
| 	}
 | |
| 
 | |
| 	/* Don't notify scsi mid layer of any changes the first time through
 | |
| 	 * (or if there are no changes) scsi_scan_host will do it later the
 | |
| 	 * first time through.
 | |
| 	 */
 | |
| 	if (!changes)
 | |
| 		goto free_and_out;
 | |
| 
 | |
| 	/* Notify scsi mid layer of any removed devices */
 | |
| 	for (i = 0; i < nremoved; i++) {
 | |
| 		if (removed[i] == NULL)
 | |
| 			continue;
 | |
| 		if (removed[i]->expose_device)
 | |
| 			hpsa_remove_device(h, removed[i]);
 | |
| 		kfree(removed[i]);
 | |
| 		removed[i] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Notify scsi mid layer of any added devices */
 | |
| 	for (i = 0; i < nadded; i++) {
 | |
| 		int rc = 0;
 | |
| 
 | |
| 		if (added[i] == NULL)
 | |
| 			continue;
 | |
| 		if (!(added[i]->expose_device))
 | |
| 			continue;
 | |
| 		rc = hpsa_add_device(h, added[i]);
 | |
| 		if (!rc)
 | |
| 			continue;
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"addition failed %d, device not added.", rc);
 | |
| 		/* now we have to remove it from h->dev,
 | |
| 		 * since it didn't get added to scsi mid layer
 | |
| 		 */
 | |
| 		fixup_botched_add(h, added[i]);
 | |
| 		h->drv_req_rescan = 1;
 | |
| 	}
 | |
| 
 | |
| free_and_out:
 | |
| 	kfree(added);
 | |
| 	kfree(removed);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
 | |
|  * Assume's h->devlock is held.
 | |
|  */
 | |
| static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
 | |
| 	int bus, int target, int lun)
 | |
| {
 | |
| 	int i;
 | |
| 	struct hpsa_scsi_dev_t *sd;
 | |
| 
 | |
| 	for (i = 0; i < h->ndevices; i++) {
 | |
| 		sd = h->dev[i];
 | |
| 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
 | |
| 			return sd;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int hpsa_slave_alloc(struct scsi_device *sdev)
 | |
| {
 | |
| 	struct hpsa_scsi_dev_t *sd = NULL;
 | |
| 	unsigned long flags;
 | |
| 	struct ctlr_info *h;
 | |
| 
 | |
| 	h = sdev_to_hba(sdev);
 | |
| 	spin_lock_irqsave(&h->devlock, flags);
 | |
| 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
 | |
| 		struct scsi_target *starget;
 | |
| 		struct sas_rphy *rphy;
 | |
| 
 | |
| 		starget = scsi_target(sdev);
 | |
| 		rphy = target_to_rphy(starget);
 | |
| 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
 | |
| 		if (sd) {
 | |
| 			sd->target = sdev_id(sdev);
 | |
| 			sd->lun = sdev->lun;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!sd)
 | |
| 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
 | |
| 					sdev_id(sdev), sdev->lun);
 | |
| 
 | |
| 	if (sd && sd->expose_device) {
 | |
| 		atomic_set(&sd->ioaccel_cmds_out, 0);
 | |
| 		sdev->hostdata = sd;
 | |
| 	} else
 | |
| 		sdev->hostdata = NULL;
 | |
| 	spin_unlock_irqrestore(&h->devlock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* configure scsi device based on internal per-device structure */
 | |
| static int hpsa_slave_configure(struct scsi_device *sdev)
 | |
| {
 | |
| 	struct hpsa_scsi_dev_t *sd;
 | |
| 	int queue_depth;
 | |
| 
 | |
| 	sd = sdev->hostdata;
 | |
| 	sdev->no_uld_attach = !sd || !sd->expose_device;
 | |
| 
 | |
| 	if (sd) {
 | |
| 		if (sd->external)
 | |
| 			queue_depth = EXTERNAL_QD;
 | |
| 		else
 | |
| 			queue_depth = sd->queue_depth != 0 ?
 | |
| 					sd->queue_depth : sdev->host->can_queue;
 | |
| 	} else
 | |
| 		queue_depth = sdev->host->can_queue;
 | |
| 
 | |
| 	scsi_change_queue_depth(sdev, queue_depth);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hpsa_slave_destroy(struct scsi_device *sdev)
 | |
| {
 | |
| 	/* nothing to do. */
 | |
| }
 | |
| 
 | |
| static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!h->ioaccel2_cmd_sg_list)
 | |
| 		return;
 | |
| 	for (i = 0; i < h->nr_cmds; i++) {
 | |
| 		kfree(h->ioaccel2_cmd_sg_list[i]);
 | |
| 		h->ioaccel2_cmd_sg_list[i] = NULL;
 | |
| 	}
 | |
| 	kfree(h->ioaccel2_cmd_sg_list);
 | |
| 	h->ioaccel2_cmd_sg_list = NULL;
 | |
| }
 | |
| 
 | |
| static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (h->chainsize <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	h->ioaccel2_cmd_sg_list =
 | |
| 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
 | |
| 					GFP_KERNEL);
 | |
| 	if (!h->ioaccel2_cmd_sg_list)
 | |
| 		return -ENOMEM;
 | |
| 	for (i = 0; i < h->nr_cmds; i++) {
 | |
| 		h->ioaccel2_cmd_sg_list[i] =
 | |
| 			kmalloc_array(h->maxsgentries,
 | |
| 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
 | |
| 				      GFP_KERNEL);
 | |
| 		if (!h->ioaccel2_cmd_sg_list[i])
 | |
| 			goto clean;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| clean:
 | |
| 	hpsa_free_ioaccel2_sg_chain_blocks(h);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!h->cmd_sg_list)
 | |
| 		return;
 | |
| 	for (i = 0; i < h->nr_cmds; i++) {
 | |
| 		kfree(h->cmd_sg_list[i]);
 | |
| 		h->cmd_sg_list[i] = NULL;
 | |
| 	}
 | |
| 	kfree(h->cmd_sg_list);
 | |
| 	h->cmd_sg_list = NULL;
 | |
| }
 | |
| 
 | |
| static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (h->chainsize <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
 | |
| 				 GFP_KERNEL);
 | |
| 	if (!h->cmd_sg_list)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < h->nr_cmds; i++) {
 | |
| 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
 | |
| 						  sizeof(*h->cmd_sg_list[i]),
 | |
| 						  GFP_KERNEL);
 | |
| 		if (!h->cmd_sg_list[i])
 | |
| 			goto clean;
 | |
| 
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| clean:
 | |
| 	hpsa_free_sg_chain_blocks(h);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
 | |
| 	struct io_accel2_cmd *cp, struct CommandList *c)
 | |
| {
 | |
| 	struct ioaccel2_sg_element *chain_block;
 | |
| 	u64 temp64;
 | |
| 	u32 chain_size;
 | |
| 
 | |
| 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
 | |
| 	chain_size = le32_to_cpu(cp->sg[0].length);
 | |
| 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
 | |
| 				PCI_DMA_TODEVICE);
 | |
| 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
 | |
| 		/* prevent subsequent unmapping */
 | |
| 		cp->sg->address = 0;
 | |
| 		return -1;
 | |
| 	}
 | |
| 	cp->sg->address = cpu_to_le64(temp64);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
 | |
| 	struct io_accel2_cmd *cp)
 | |
| {
 | |
| 	struct ioaccel2_sg_element *chain_sg;
 | |
| 	u64 temp64;
 | |
| 	u32 chain_size;
 | |
| 
 | |
| 	chain_sg = cp->sg;
 | |
| 	temp64 = le64_to_cpu(chain_sg->address);
 | |
| 	chain_size = le32_to_cpu(cp->sg[0].length);
 | |
| 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
 | |
| }
 | |
| 
 | |
| static int hpsa_map_sg_chain_block(struct ctlr_info *h,
 | |
| 	struct CommandList *c)
 | |
| {
 | |
| 	struct SGDescriptor *chain_sg, *chain_block;
 | |
| 	u64 temp64;
 | |
| 	u32 chain_len;
 | |
| 
 | |
| 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
 | |
| 	chain_block = h->cmd_sg_list[c->cmdindex];
 | |
| 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
 | |
| 	chain_len = sizeof(*chain_sg) *
 | |
| 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
 | |
| 	chain_sg->Len = cpu_to_le32(chain_len);
 | |
| 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
 | |
| 				PCI_DMA_TODEVICE);
 | |
| 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
 | |
| 		/* prevent subsequent unmapping */
 | |
| 		chain_sg->Addr = cpu_to_le64(0);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	chain_sg->Addr = cpu_to_le64(temp64);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
 | |
| 	struct CommandList *c)
 | |
| {
 | |
| 	struct SGDescriptor *chain_sg;
 | |
| 
 | |
| 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
 | |
| 		return;
 | |
| 
 | |
| 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
 | |
| 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
 | |
| 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Decode the various types of errors on ioaccel2 path.
 | |
|  * Return 1 for any error that should generate a RAID path retry.
 | |
|  * Return 0 for errors that don't require a RAID path retry.
 | |
|  */
 | |
| static int handle_ioaccel_mode2_error(struct ctlr_info *h,
 | |
| 					struct CommandList *c,
 | |
| 					struct scsi_cmnd *cmd,
 | |
| 					struct io_accel2_cmd *c2,
 | |
| 					struct hpsa_scsi_dev_t *dev)
 | |
| {
 | |
| 	int data_len;
 | |
| 	int retry = 0;
 | |
| 	u32 ioaccel2_resid = 0;
 | |
| 
 | |
| 	switch (c2->error_data.serv_response) {
 | |
| 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
 | |
| 		switch (c2->error_data.status) {
 | |
| 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
 | |
| 			if (cmd)
 | |
| 				cmd->result = 0;
 | |
| 			break;
 | |
| 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
 | |
| 			cmd->result |= SAM_STAT_CHECK_CONDITION;
 | |
| 			if (c2->error_data.data_present !=
 | |
| 					IOACCEL2_SENSE_DATA_PRESENT) {
 | |
| 				memset(cmd->sense_buffer, 0,
 | |
| 					SCSI_SENSE_BUFFERSIZE);
 | |
| 				break;
 | |
| 			}
 | |
| 			/* copy the sense data */
 | |
| 			data_len = c2->error_data.sense_data_len;
 | |
| 			if (data_len > SCSI_SENSE_BUFFERSIZE)
 | |
| 				data_len = SCSI_SENSE_BUFFERSIZE;
 | |
| 			if (data_len > sizeof(c2->error_data.sense_data_buff))
 | |
| 				data_len =
 | |
| 					sizeof(c2->error_data.sense_data_buff);
 | |
| 			memcpy(cmd->sense_buffer,
 | |
| 				c2->error_data.sense_data_buff, data_len);
 | |
| 			retry = 1;
 | |
| 			break;
 | |
| 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
 | |
| 			retry = 1;
 | |
| 			break;
 | |
| 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
 | |
| 			retry = 1;
 | |
| 			break;
 | |
| 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
 | |
| 			retry = 1;
 | |
| 			break;
 | |
| 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
 | |
| 			retry = 1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			retry = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case IOACCEL2_SERV_RESPONSE_FAILURE:
 | |
| 		switch (c2->error_data.status) {
 | |
| 		case IOACCEL2_STATUS_SR_IO_ERROR:
 | |
| 		case IOACCEL2_STATUS_SR_IO_ABORTED:
 | |
| 		case IOACCEL2_STATUS_SR_OVERRUN:
 | |
| 			retry = 1;
 | |
| 			break;
 | |
| 		case IOACCEL2_STATUS_SR_UNDERRUN:
 | |
| 			cmd->result = (DID_OK << 16);		/* host byte */
 | |
| 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
 | |
| 			ioaccel2_resid = get_unaligned_le32(
 | |
| 						&c2->error_data.resid_cnt[0]);
 | |
| 			scsi_set_resid(cmd, ioaccel2_resid);
 | |
| 			break;
 | |
| 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
 | |
| 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
 | |
| 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
 | |
| 			/*
 | |
| 			 * Did an HBA disk disappear? We will eventually
 | |
| 			 * get a state change event from the controller but
 | |
| 			 * in the meantime, we need to tell the OS that the
 | |
| 			 * HBA disk is no longer there and stop I/O
 | |
| 			 * from going down. This allows the potential re-insert
 | |
| 			 * of the disk to get the same device node.
 | |
| 			 */
 | |
| 			if (dev->physical_device && dev->expose_device) {
 | |
| 				cmd->result = DID_NO_CONNECT << 16;
 | |
| 				dev->removed = 1;
 | |
| 				h->drv_req_rescan = 1;
 | |
| 				dev_warn(&h->pdev->dev,
 | |
| 					"%s: device is gone!\n", __func__);
 | |
| 			} else
 | |
| 				/*
 | |
| 				 * Retry by sending down the RAID path.
 | |
| 				 * We will get an event from ctlr to
 | |
| 				 * trigger rescan regardless.
 | |
| 				 */
 | |
| 				retry = 1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			retry = 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
 | |
| 		break;
 | |
| 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
 | |
| 		break;
 | |
| 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
 | |
| 		retry = 1;
 | |
| 		break;
 | |
| 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
 | |
| 		break;
 | |
| 	default:
 | |
| 		retry = 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return retry;	/* retry on raid path? */
 | |
| }
 | |
| 
 | |
| static void hpsa_cmd_resolve_events(struct ctlr_info *h,
 | |
| 		struct CommandList *c)
 | |
| {
 | |
| 	bool do_wake = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset c->scsi_cmd here so that the reset handler will know
 | |
| 	 * this command has completed.  Then, check to see if the handler is
 | |
| 	 * waiting for this command, and, if so, wake it.
 | |
| 	 */
 | |
| 	c->scsi_cmd = SCSI_CMD_IDLE;
 | |
| 	mb();	/* Declare command idle before checking for pending events. */
 | |
| 	if (c->reset_pending) {
 | |
| 		unsigned long flags;
 | |
| 		struct hpsa_scsi_dev_t *dev;
 | |
| 
 | |
| 		/*
 | |
| 		 * There appears to be a reset pending; lock the lock and
 | |
| 		 * reconfirm.  If so, then decrement the count of outstanding
 | |
| 		 * commands and wake the reset command if this is the last one.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&h->lock, flags);
 | |
| 		dev = c->reset_pending;		/* Re-fetch under the lock. */
 | |
| 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
 | |
| 			do_wake = true;
 | |
| 		c->reset_pending = NULL;
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (do_wake)
 | |
| 		wake_up_all(&h->event_sync_wait_queue);
 | |
| }
 | |
| 
 | |
| static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
 | |
| 				      struct CommandList *c)
 | |
| {
 | |
| 	hpsa_cmd_resolve_events(h, c);
 | |
| 	cmd_tagged_free(h, c);
 | |
| }
 | |
| 
 | |
| static void hpsa_cmd_free_and_done(struct ctlr_info *h,
 | |
| 		struct CommandList *c, struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	hpsa_cmd_resolve_and_free(h, c);
 | |
| 	if (cmd && cmd->scsi_done)
 | |
| 		cmd->scsi_done(cmd);
 | |
| }
 | |
| 
 | |
| static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
 | |
| {
 | |
| 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
 | |
| 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
 | |
| }
 | |
| 
 | |
| static void process_ioaccel2_completion(struct ctlr_info *h,
 | |
| 		struct CommandList *c, struct scsi_cmnd *cmd,
 | |
| 		struct hpsa_scsi_dev_t *dev)
 | |
| {
 | |
| 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 | |
| 
 | |
| 	/* check for good status */
 | |
| 	if (likely(c2->error_data.serv_response == 0 &&
 | |
| 			c2->error_data.status == 0)) {
 | |
| 		cmd->result = 0;
 | |
| 		return hpsa_cmd_free_and_done(h, c, cmd);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Any RAID offload error results in retry which will use
 | |
| 	 * the normal I/O path so the controller can handle whatever is
 | |
| 	 * wrong.
 | |
| 	 */
 | |
| 	if (is_logical_device(dev) &&
 | |
| 		c2->error_data.serv_response ==
 | |
| 			IOACCEL2_SERV_RESPONSE_FAILURE) {
 | |
| 		if (c2->error_data.status ==
 | |
| 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
 | |
| 			dev->offload_enabled = 0;
 | |
| 			dev->offload_to_be_enabled = 0;
 | |
| 		}
 | |
| 
 | |
| 		return hpsa_retry_cmd(h, c);
 | |
| 	}
 | |
| 
 | |
| 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
 | |
| 		return hpsa_retry_cmd(h, c);
 | |
| 
 | |
| 	return hpsa_cmd_free_and_done(h, c, cmd);
 | |
| }
 | |
| 
 | |
| /* Returns 0 on success, < 0 otherwise. */
 | |
| static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
 | |
| 					struct CommandList *cp)
 | |
| {
 | |
| 	u8 tmf_status = cp->err_info->ScsiStatus;
 | |
| 
 | |
| 	switch (tmf_status) {
 | |
| 	case CISS_TMF_COMPLETE:
 | |
| 		/*
 | |
| 		 * CISS_TMF_COMPLETE never happens, instead,
 | |
| 		 * ei->CommandStatus == 0 for this case.
 | |
| 		 */
 | |
| 	case CISS_TMF_SUCCESS:
 | |
| 		return 0;
 | |
| 	case CISS_TMF_INVALID_FRAME:
 | |
| 	case CISS_TMF_NOT_SUPPORTED:
 | |
| 	case CISS_TMF_FAILED:
 | |
| 	case CISS_TMF_WRONG_LUN:
 | |
| 	case CISS_TMF_OVERLAPPED_TAG:
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
 | |
| 				tmf_status);
 | |
| 		break;
 | |
| 	}
 | |
| 	return -tmf_status;
 | |
| }
 | |
| 
 | |
| static void complete_scsi_command(struct CommandList *cp)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd;
 | |
| 	struct ctlr_info *h;
 | |
| 	struct ErrorInfo *ei;
 | |
| 	struct hpsa_scsi_dev_t *dev;
 | |
| 	struct io_accel2_cmd *c2;
 | |
| 
 | |
| 	u8 sense_key;
 | |
| 	u8 asc;      /* additional sense code */
 | |
| 	u8 ascq;     /* additional sense code qualifier */
 | |
| 	unsigned long sense_data_size;
 | |
| 
 | |
| 	ei = cp->err_info;
 | |
| 	cmd = cp->scsi_cmd;
 | |
| 	h = cp->h;
 | |
| 
 | |
| 	if (!cmd->device) {
 | |
| 		cmd->result = DID_NO_CONNECT << 16;
 | |
| 		return hpsa_cmd_free_and_done(h, cp, cmd);
 | |
| 	}
 | |
| 
 | |
| 	dev = cmd->device->hostdata;
 | |
| 	if (!dev) {
 | |
| 		cmd->result = DID_NO_CONNECT << 16;
 | |
| 		return hpsa_cmd_free_and_done(h, cp, cmd);
 | |
| 	}
 | |
| 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
 | |
| 
 | |
| 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
 | |
| 	if ((cp->cmd_type == CMD_SCSI) &&
 | |
| 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
 | |
| 		hpsa_unmap_sg_chain_block(h, cp);
 | |
| 
 | |
| 	if ((cp->cmd_type == CMD_IOACCEL2) &&
 | |
| 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
 | |
| 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
 | |
| 
 | |
| 	cmd->result = (DID_OK << 16); 		/* host byte */
 | |
| 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
 | |
| 
 | |
| 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
 | |
| 		if (dev->physical_device && dev->expose_device &&
 | |
| 			dev->removed) {
 | |
| 			cmd->result = DID_NO_CONNECT << 16;
 | |
| 			return hpsa_cmd_free_and_done(h, cp, cmd);
 | |
| 		}
 | |
| 		if (likely(cp->phys_disk != NULL))
 | |
| 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We check for lockup status here as it may be set for
 | |
| 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
 | |
| 	 * fail_all_oustanding_cmds()
 | |
| 	 */
 | |
| 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
 | |
| 		/* DID_NO_CONNECT will prevent a retry */
 | |
| 		cmd->result = DID_NO_CONNECT << 16;
 | |
| 		return hpsa_cmd_free_and_done(h, cp, cmd);
 | |
| 	}
 | |
| 
 | |
| 	if ((unlikely(hpsa_is_pending_event(cp))))
 | |
| 		if (cp->reset_pending)
 | |
| 			return hpsa_cmd_free_and_done(h, cp, cmd);
 | |
| 
 | |
| 	if (cp->cmd_type == CMD_IOACCEL2)
 | |
| 		return process_ioaccel2_completion(h, cp, cmd, dev);
 | |
| 
 | |
| 	scsi_set_resid(cmd, ei->ResidualCnt);
 | |
| 	if (ei->CommandStatus == 0)
 | |
| 		return hpsa_cmd_free_and_done(h, cp, cmd);
 | |
| 
 | |
| 	/* For I/O accelerator commands, copy over some fields to the normal
 | |
| 	 * CISS header used below for error handling.
 | |
| 	 */
 | |
| 	if (cp->cmd_type == CMD_IOACCEL1) {
 | |
| 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
 | |
| 		cp->Header.SGList = scsi_sg_count(cmd);
 | |
| 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
 | |
| 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
 | |
| 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
 | |
| 		cp->Header.tag = c->tag;
 | |
| 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
 | |
| 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
 | |
| 
 | |
| 		/* Any RAID offload error results in retry which will use
 | |
| 		 * the normal I/O path so the controller can handle whatever's
 | |
| 		 * wrong.
 | |
| 		 */
 | |
| 		if (is_logical_device(dev)) {
 | |
| 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
 | |
| 				dev->offload_enabled = 0;
 | |
| 			return hpsa_retry_cmd(h, cp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* an error has occurred */
 | |
| 	switch (ei->CommandStatus) {
 | |
| 
 | |
| 	case CMD_TARGET_STATUS:
 | |
| 		cmd->result |= ei->ScsiStatus;
 | |
| 		/* copy the sense data */
 | |
| 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
 | |
| 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
 | |
| 		else
 | |
| 			sense_data_size = sizeof(ei->SenseInfo);
 | |
| 		if (ei->SenseLen < sense_data_size)
 | |
| 			sense_data_size = ei->SenseLen;
 | |
| 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
 | |
| 		if (ei->ScsiStatus)
 | |
| 			decode_sense_data(ei->SenseInfo, sense_data_size,
 | |
| 				&sense_key, &asc, &ascq);
 | |
| 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
 | |
| 			if (sense_key == ABORTED_COMMAND) {
 | |
| 				cmd->result |= DID_SOFT_ERROR << 16;
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Problem was not a check condition
 | |
| 		 * Pass it up to the upper layers...
 | |
| 		 */
 | |
| 		if (ei->ScsiStatus) {
 | |
| 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
 | |
| 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
 | |
| 				"Returning result: 0x%x\n",
 | |
| 				cp, ei->ScsiStatus,
 | |
| 				sense_key, asc, ascq,
 | |
| 				cmd->result);
 | |
| 		} else {  /* scsi status is zero??? How??? */
 | |
| 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
 | |
| 				"Returning no connection.\n", cp),
 | |
| 
 | |
| 			/* Ordinarily, this case should never happen,
 | |
| 			 * but there is a bug in some released firmware
 | |
| 			 * revisions that allows it to happen if, for
 | |
| 			 * example, a 4100 backplane loses power and
 | |
| 			 * the tape drive is in it.  We assume that
 | |
| 			 * it's a fatal error of some kind because we
 | |
| 			 * can't show that it wasn't. We will make it
 | |
| 			 * look like selection timeout since that is
 | |
| 			 * the most common reason for this to occur,
 | |
| 			 * and it's severe enough.
 | |
| 			 */
 | |
| 
 | |
| 			cmd->result = DID_NO_CONNECT << 16;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
 | |
| 		break;
 | |
| 	case CMD_DATA_OVERRUN:
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"CDB %16phN data overrun\n", cp->Request.CDB);
 | |
| 		break;
 | |
| 	case CMD_INVALID: {
 | |
| 		/* print_bytes(cp, sizeof(*cp), 1, 0);
 | |
| 		print_cmd(cp); */
 | |
| 		/* We get CMD_INVALID if you address a non-existent device
 | |
| 		 * instead of a selection timeout (no response).  You will
 | |
| 		 * see this if you yank out a drive, then try to access it.
 | |
| 		 * This is kind of a shame because it means that any other
 | |
| 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
 | |
| 		 * missing target. */
 | |
| 		cmd->result = DID_NO_CONNECT << 16;
 | |
| 	}
 | |
| 		break;
 | |
| 	case CMD_PROTOCOL_ERR:
 | |
| 		cmd->result = DID_ERROR << 16;
 | |
| 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
 | |
| 				cp->Request.CDB);
 | |
| 		break;
 | |
| 	case CMD_HARDWARE_ERR:
 | |
| 		cmd->result = DID_ERROR << 16;
 | |
| 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
 | |
| 			cp->Request.CDB);
 | |
| 		break;
 | |
| 	case CMD_CONNECTION_LOST:
 | |
| 		cmd->result = DID_ERROR << 16;
 | |
| 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
 | |
| 			cp->Request.CDB);
 | |
| 		break;
 | |
| 	case CMD_ABORTED:
 | |
| 		cmd->result = DID_ABORT << 16;
 | |
| 		break;
 | |
| 	case CMD_ABORT_FAILED:
 | |
| 		cmd->result = DID_ERROR << 16;
 | |
| 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
 | |
| 			cp->Request.CDB);
 | |
| 		break;
 | |
| 	case CMD_UNSOLICITED_ABORT:
 | |
| 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
 | |
| 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
 | |
| 			cp->Request.CDB);
 | |
| 		break;
 | |
| 	case CMD_TIMEOUT:
 | |
| 		cmd->result = DID_TIME_OUT << 16;
 | |
| 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
 | |
| 			cp->Request.CDB);
 | |
| 		break;
 | |
| 	case CMD_UNABORTABLE:
 | |
| 		cmd->result = DID_ERROR << 16;
 | |
| 		dev_warn(&h->pdev->dev, "Command unabortable\n");
 | |
| 		break;
 | |
| 	case CMD_TMF_STATUS:
 | |
| 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
 | |
| 			cmd->result = DID_ERROR << 16;
 | |
| 		break;
 | |
| 	case CMD_IOACCEL_DISABLED:
 | |
| 		/* This only handles the direct pass-through case since RAID
 | |
| 		 * offload is handled above.  Just attempt a retry.
 | |
| 		 */
 | |
| 		cmd->result = DID_SOFT_ERROR << 16;
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 				"cp %p had HP SSD Smart Path error\n", cp);
 | |
| 		break;
 | |
| 	default:
 | |
| 		cmd->result = DID_ERROR << 16;
 | |
| 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
 | |
| 				cp, ei->CommandStatus);
 | |
| 	}
 | |
| 
 | |
| 	return hpsa_cmd_free_and_done(h, cp, cmd);
 | |
| }
 | |
| 
 | |
| static void hpsa_pci_unmap(struct pci_dev *pdev,
 | |
| 	struct CommandList *c, int sg_used, int data_direction)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < sg_used; i++)
 | |
| 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
 | |
| 				le32_to_cpu(c->SG[i].Len),
 | |
| 				data_direction);
 | |
| }
 | |
| 
 | |
| static int hpsa_map_one(struct pci_dev *pdev,
 | |
| 		struct CommandList *cp,
 | |
| 		unsigned char *buf,
 | |
| 		size_t buflen,
 | |
| 		int data_direction)
 | |
| {
 | |
| 	u64 addr64;
 | |
| 
 | |
| 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
 | |
| 		cp->Header.SGList = 0;
 | |
| 		cp->Header.SGTotal = cpu_to_le16(0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
 | |
| 	if (dma_mapping_error(&pdev->dev, addr64)) {
 | |
| 		/* Prevent subsequent unmap of something never mapped */
 | |
| 		cp->Header.SGList = 0;
 | |
| 		cp->Header.SGTotal = cpu_to_le16(0);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	cp->SG[0].Addr = cpu_to_le64(addr64);
 | |
| 	cp->SG[0].Len = cpu_to_le32(buflen);
 | |
| 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
 | |
| 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
 | |
| 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define NO_TIMEOUT ((unsigned long) -1)
 | |
| #define DEFAULT_TIMEOUT 30000 /* milliseconds */
 | |
| static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
 | |
| 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
 | |
| {
 | |
| 	DECLARE_COMPLETION_ONSTACK(wait);
 | |
| 
 | |
| 	c->waiting = &wait;
 | |
| 	__enqueue_cmd_and_start_io(h, c, reply_queue);
 | |
| 	if (timeout_msecs == NO_TIMEOUT) {
 | |
| 		/* TODO: get rid of this no-timeout thing */
 | |
| 		wait_for_completion_io(&wait);
 | |
| 		return IO_OK;
 | |
| 	}
 | |
| 	if (!wait_for_completion_io_timeout(&wait,
 | |
| 					msecs_to_jiffies(timeout_msecs))) {
 | |
| 		dev_warn(&h->pdev->dev, "Command timed out.\n");
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 	return IO_OK;
 | |
| }
 | |
| 
 | |
| static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
 | |
| 				   int reply_queue, unsigned long timeout_msecs)
 | |
| {
 | |
| 	if (unlikely(lockup_detected(h))) {
 | |
| 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
 | |
| 		return IO_OK;
 | |
| 	}
 | |
| 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
 | |
| }
 | |
| 
 | |
| static u32 lockup_detected(struct ctlr_info *h)
 | |
| {
 | |
| 	int cpu;
 | |
| 	u32 rc, *lockup_detected;
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
 | |
| 	rc = *lockup_detected;
 | |
| 	put_cpu();
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #define MAX_DRIVER_CMD_RETRIES 25
 | |
| static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
 | |
| 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
 | |
| {
 | |
| 	int backoff_time = 10, retry_count = 0;
 | |
| 	int rc;
 | |
| 
 | |
| 	do {
 | |
| 		memset(c->err_info, 0, sizeof(*c->err_info));
 | |
| 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 | |
| 						  timeout_msecs);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 		retry_count++;
 | |
| 		if (retry_count > 3) {
 | |
| 			msleep(backoff_time);
 | |
| 			if (backoff_time < 1000)
 | |
| 				backoff_time *= 2;
 | |
| 		}
 | |
| 	} while ((check_for_unit_attention(h, c) ||
 | |
| 			check_for_busy(h, c)) &&
 | |
| 			retry_count <= MAX_DRIVER_CMD_RETRIES);
 | |
| 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
 | |
| 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
 | |
| 		rc = -EIO;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
 | |
| 				struct CommandList *c)
 | |
| {
 | |
| 	const u8 *cdb = c->Request.CDB;
 | |
| 	const u8 *lun = c->Header.LUN.LunAddrBytes;
 | |
| 
 | |
| 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
 | |
| 		 txt, lun, cdb);
 | |
| }
 | |
| 
 | |
| static void hpsa_scsi_interpret_error(struct ctlr_info *h,
 | |
| 			struct CommandList *cp)
 | |
| {
 | |
| 	const struct ErrorInfo *ei = cp->err_info;
 | |
| 	struct device *d = &cp->h->pdev->dev;
 | |
| 	u8 sense_key, asc, ascq;
 | |
| 	int sense_len;
 | |
| 
 | |
| 	switch (ei->CommandStatus) {
 | |
| 	case CMD_TARGET_STATUS:
 | |
| 		if (ei->SenseLen > sizeof(ei->SenseInfo))
 | |
| 			sense_len = sizeof(ei->SenseInfo);
 | |
| 		else
 | |
| 			sense_len = ei->SenseLen;
 | |
| 		decode_sense_data(ei->SenseInfo, sense_len,
 | |
| 					&sense_key, &asc, &ascq);
 | |
| 		hpsa_print_cmd(h, "SCSI status", cp);
 | |
| 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
 | |
| 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
 | |
| 				sense_key, asc, ascq);
 | |
| 		else
 | |
| 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
 | |
| 		if (ei->ScsiStatus == 0)
 | |
| 			dev_warn(d, "SCSI status is abnormally zero.  "
 | |
| 			"(probably indicates selection timeout "
 | |
| 			"reported incorrectly due to a known "
 | |
| 			"firmware bug, circa July, 2001.)\n");
 | |
| 		break;
 | |
| 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
 | |
| 		break;
 | |
| 	case CMD_DATA_OVERRUN:
 | |
| 		hpsa_print_cmd(h, "overrun condition", cp);
 | |
| 		break;
 | |
| 	case CMD_INVALID: {
 | |
| 		/* controller unfortunately reports SCSI passthru's
 | |
| 		 * to non-existent targets as invalid commands.
 | |
| 		 */
 | |
| 		hpsa_print_cmd(h, "invalid command", cp);
 | |
| 		dev_warn(d, "probably means device no longer present\n");
 | |
| 		}
 | |
| 		break;
 | |
| 	case CMD_PROTOCOL_ERR:
 | |
| 		hpsa_print_cmd(h, "protocol error", cp);
 | |
| 		break;
 | |
| 	case CMD_HARDWARE_ERR:
 | |
| 		hpsa_print_cmd(h, "hardware error", cp);
 | |
| 		break;
 | |
| 	case CMD_CONNECTION_LOST:
 | |
| 		hpsa_print_cmd(h, "connection lost", cp);
 | |
| 		break;
 | |
| 	case CMD_ABORTED:
 | |
| 		hpsa_print_cmd(h, "aborted", cp);
 | |
| 		break;
 | |
| 	case CMD_ABORT_FAILED:
 | |
| 		hpsa_print_cmd(h, "abort failed", cp);
 | |
| 		break;
 | |
| 	case CMD_UNSOLICITED_ABORT:
 | |
| 		hpsa_print_cmd(h, "unsolicited abort", cp);
 | |
| 		break;
 | |
| 	case CMD_TIMEOUT:
 | |
| 		hpsa_print_cmd(h, "timed out", cp);
 | |
| 		break;
 | |
| 	case CMD_UNABORTABLE:
 | |
| 		hpsa_print_cmd(h, "unabortable", cp);
 | |
| 		break;
 | |
| 	case CMD_CTLR_LOCKUP:
 | |
| 		hpsa_print_cmd(h, "controller lockup detected", cp);
 | |
| 		break;
 | |
| 	default:
 | |
| 		hpsa_print_cmd(h, "unknown status", cp);
 | |
| 		dev_warn(d, "Unknown command status %x\n",
 | |
| 				ei->CommandStatus);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
 | |
| 					u8 page, u8 *buf, size_t bufsize)
 | |
| {
 | |
| 	int rc = IO_OK;
 | |
| 	struct CommandList *c;
 | |
| 	struct ErrorInfo *ei;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
 | |
| 			page, scsi3addr, TYPE_CMD)) {
 | |
| 		rc = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	ei = c->err_info;
 | |
| 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 | |
| 		hpsa_scsi_interpret_error(h, c);
 | |
| 		rc = -1;
 | |
| 	}
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
 | |
| 						u8 *scsi3addr)
 | |
| {
 | |
| 	u8 *buf;
 | |
| 	u64 sa = 0;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	buf = kzalloc(1024, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return 0;
 | |
| 
 | |
| 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
 | |
| 					buf, 1024);
 | |
| 
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	sa = get_unaligned_be64(buf+12);
 | |
| 
 | |
| out:
 | |
| 	kfree(buf);
 | |
| 	return sa;
 | |
| }
 | |
| 
 | |
| static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
 | |
| 			u16 page, unsigned char *buf,
 | |
| 			unsigned char bufsize)
 | |
| {
 | |
| 	int rc = IO_OK;
 | |
| 	struct CommandList *c;
 | |
| 	struct ErrorInfo *ei;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
 | |
| 			page, scsi3addr, TYPE_CMD)) {
 | |
| 		rc = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	ei = c->err_info;
 | |
| 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 | |
| 		hpsa_scsi_interpret_error(h, c);
 | |
| 		rc = -1;
 | |
| 	}
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
 | |
| 	u8 reset_type, int reply_queue)
 | |
| {
 | |
| 	int rc = IO_OK;
 | |
| 	struct CommandList *c;
 | |
| 	struct ErrorInfo *ei;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 
 | |
| 	/* fill_cmd can't fail here, no data buffer to map. */
 | |
| 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
 | |
| 			scsi3addr, TYPE_MSG);
 | |
| 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
 | |
| 	if (rc) {
 | |
| 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* no unmap needed here because no data xfer. */
 | |
| 
 | |
| 	ei = c->err_info;
 | |
| 	if (ei->CommandStatus != 0) {
 | |
| 		hpsa_scsi_interpret_error(h, c);
 | |
| 		rc = -1;
 | |
| 	}
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 | |
| 			       struct hpsa_scsi_dev_t *dev,
 | |
| 			       unsigned char *scsi3addr)
 | |
| {
 | |
| 	int i;
 | |
| 	bool match = false;
 | |
| 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 | |
| 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
 | |
| 
 | |
| 	if (hpsa_is_cmd_idle(c))
 | |
| 		return false;
 | |
| 
 | |
| 	switch (c->cmd_type) {
 | |
| 	case CMD_SCSI:
 | |
| 	case CMD_IOCTL_PEND:
 | |
| 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
 | |
| 				sizeof(c->Header.LUN.LunAddrBytes));
 | |
| 		break;
 | |
| 
 | |
| 	case CMD_IOACCEL1:
 | |
| 	case CMD_IOACCEL2:
 | |
| 		if (c->phys_disk == dev) {
 | |
| 			/* HBA mode match */
 | |
| 			match = true;
 | |
| 		} else {
 | |
| 			/* Possible RAID mode -- check each phys dev. */
 | |
| 			/* FIXME:  Do we need to take out a lock here?  If
 | |
| 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
 | |
| 			 * instead. */
 | |
| 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
 | |
| 				/* FIXME: an alternate test might be
 | |
| 				 *
 | |
| 				 * match = dev->phys_disk[i]->ioaccel_handle
 | |
| 				 *              == c2->scsi_nexus;      */
 | |
| 				match = dev->phys_disk[i] == c->phys_disk;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case IOACCEL2_TMF:
 | |
| 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
 | |
| 			match = dev->phys_disk[i]->ioaccel_handle ==
 | |
| 					le32_to_cpu(ac->it_nexus);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 0:		/* The command is in the middle of being initialized. */
 | |
| 		match = false;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
 | |
| 			c->cmd_type);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
 | |
| 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
 | |
| {
 | |
| 	int i;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/* We can really only handle one reset at a time */
 | |
| 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
 | |
| 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
 | |
| 
 | |
| 	for (i = 0; i < h->nr_cmds; i++) {
 | |
| 		struct CommandList *c = h->cmd_pool + i;
 | |
| 		int refcount = atomic_inc_return(&c->refcount);
 | |
| 
 | |
| 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
 | |
| 			unsigned long flags;
 | |
| 
 | |
| 			/*
 | |
| 			 * Mark the target command as having a reset pending,
 | |
| 			 * then lock a lock so that the command cannot complete
 | |
| 			 * while we're considering it.  If the command is not
 | |
| 			 * idle then count it; otherwise revoke the event.
 | |
| 			 */
 | |
| 			c->reset_pending = dev;
 | |
| 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
 | |
| 			if (!hpsa_is_cmd_idle(c))
 | |
| 				atomic_inc(&dev->reset_cmds_out);
 | |
| 			else
 | |
| 				c->reset_pending = NULL;
 | |
| 			spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		}
 | |
| 
 | |
| 		cmd_free(h, c);
 | |
| 	}
 | |
| 
 | |
| 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
 | |
| 	if (!rc)
 | |
| 		wait_event(h->event_sync_wait_queue,
 | |
| 			atomic_read(&dev->reset_cmds_out) == 0 ||
 | |
| 			lockup_detected(h));
 | |
| 
 | |
| 	if (unlikely(lockup_detected(h))) {
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			 "Controller lockup detected during reset wait\n");
 | |
| 		rc = -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(rc))
 | |
| 		atomic_set(&dev->reset_cmds_out, 0);
 | |
| 	else
 | |
| 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
 | |
| 
 | |
| 	mutex_unlock(&h->reset_mutex);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void hpsa_get_raid_level(struct ctlr_info *h,
 | |
| 	unsigned char *scsi3addr, unsigned char *raid_level)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned char *buf;
 | |
| 
 | |
| 	*raid_level = RAID_UNKNOWN;
 | |
| 	buf = kzalloc(64, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return;
 | |
| 
 | |
| 	if (!hpsa_vpd_page_supported(h, scsi3addr,
 | |
| 		HPSA_VPD_LV_DEVICE_GEOMETRY))
 | |
| 		goto exit;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
 | |
| 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
 | |
| 
 | |
| 	if (rc == 0)
 | |
| 		*raid_level = buf[8];
 | |
| 	if (*raid_level > RAID_UNKNOWN)
 | |
| 		*raid_level = RAID_UNKNOWN;
 | |
| exit:
 | |
| 	kfree(buf);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| #define HPSA_MAP_DEBUG
 | |
| #ifdef HPSA_MAP_DEBUG
 | |
| static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
 | |
| 				struct raid_map_data *map_buff)
 | |
| {
 | |
| 	struct raid_map_disk_data *dd = &map_buff->data[0];
 | |
| 	int map, row, col;
 | |
| 	u16 map_cnt, row_cnt, disks_per_row;
 | |
| 
 | |
| 	if (rc != 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Show details only if debugging has been activated. */
 | |
| 	if (h->raid_offload_debug < 2)
 | |
| 		return;
 | |
| 
 | |
| 	dev_info(&h->pdev->dev, "structure_size = %u\n",
 | |
| 				le32_to_cpu(map_buff->structure_size));
 | |
| 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
 | |
| 			le32_to_cpu(map_buff->volume_blk_size));
 | |
| 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
 | |
| 			le64_to_cpu(map_buff->volume_blk_cnt));
 | |
| 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
 | |
| 			map_buff->phys_blk_shift);
 | |
| 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
 | |
| 			map_buff->parity_rotation_shift);
 | |
| 	dev_info(&h->pdev->dev, "strip_size = %u\n",
 | |
| 			le16_to_cpu(map_buff->strip_size));
 | |
| 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
 | |
| 			le64_to_cpu(map_buff->disk_starting_blk));
 | |
| 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
 | |
| 			le64_to_cpu(map_buff->disk_blk_cnt));
 | |
| 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
 | |
| 			le16_to_cpu(map_buff->data_disks_per_row));
 | |
| 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
 | |
| 			le16_to_cpu(map_buff->metadata_disks_per_row));
 | |
| 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
 | |
| 			le16_to_cpu(map_buff->row_cnt));
 | |
| 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
 | |
| 			le16_to_cpu(map_buff->layout_map_count));
 | |
| 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
 | |
| 			le16_to_cpu(map_buff->flags));
 | |
| 	dev_info(&h->pdev->dev, "encryption = %s\n",
 | |
| 			le16_to_cpu(map_buff->flags) &
 | |
| 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
 | |
| 	dev_info(&h->pdev->dev, "dekindex = %u\n",
 | |
| 			le16_to_cpu(map_buff->dekindex));
 | |
| 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
 | |
| 	for (map = 0; map < map_cnt; map++) {
 | |
| 		dev_info(&h->pdev->dev, "Map%u:\n", map);
 | |
| 		row_cnt = le16_to_cpu(map_buff->row_cnt);
 | |
| 		for (row = 0; row < row_cnt; row++) {
 | |
| 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
 | |
| 			disks_per_row =
 | |
| 				le16_to_cpu(map_buff->data_disks_per_row);
 | |
| 			for (col = 0; col < disks_per_row; col++, dd++)
 | |
| 				dev_info(&h->pdev->dev,
 | |
| 					"    D%02u: h=0x%04x xor=%u,%u\n",
 | |
| 					col, dd->ioaccel_handle,
 | |
| 					dd->xor_mult[0], dd->xor_mult[1]);
 | |
| 			disks_per_row =
 | |
| 				le16_to_cpu(map_buff->metadata_disks_per_row);
 | |
| 			for (col = 0; col < disks_per_row; col++, dd++)
 | |
| 				dev_info(&h->pdev->dev,
 | |
| 					"    M%02u: h=0x%04x xor=%u,%u\n",
 | |
| 					col, dd->ioaccel_handle,
 | |
| 					dd->xor_mult[0], dd->xor_mult[1]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
 | |
| 			__attribute__((unused)) int rc,
 | |
| 			__attribute__((unused)) struct raid_map_data *map_buff)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int hpsa_get_raid_map(struct ctlr_info *h,
 | |
| 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	struct CommandList *c;
 | |
| 	struct ErrorInfo *ei;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
 | |
| 			sizeof(this_device->raid_map), 0,
 | |
| 			scsi3addr, TYPE_CMD)) {
 | |
| 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
 | |
| 		cmd_free(h, c);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	ei = c->err_info;
 | |
| 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 | |
| 		hpsa_scsi_interpret_error(h, c);
 | |
| 		rc = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	cmd_free(h, c);
 | |
| 
 | |
| 	/* @todo in the future, dynamically allocate RAID map memory */
 | |
| 	if (le32_to_cpu(this_device->raid_map.structure_size) >
 | |
| 				sizeof(this_device->raid_map)) {
 | |
| 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
 | |
| 		rc = -1;
 | |
| 	}
 | |
| 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
 | |
| 	return rc;
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
 | |
| 		unsigned char scsi3addr[], u16 bmic_device_index,
 | |
| 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
 | |
| {
 | |
| 	int rc = IO_OK;
 | |
| 	struct CommandList *c;
 | |
| 	struct ErrorInfo *ei;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
 | |
| 		0, RAID_CTLR_LUNID, TYPE_CMD);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	c->Request.CDB[2] = bmic_device_index & 0xff;
 | |
| 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	ei = c->err_info;
 | |
| 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 | |
| 		hpsa_scsi_interpret_error(h, c);
 | |
| 		rc = -1;
 | |
| 	}
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int hpsa_bmic_id_controller(struct ctlr_info *h,
 | |
| 	struct bmic_identify_controller *buf, size_t bufsize)
 | |
| {
 | |
| 	int rc = IO_OK;
 | |
| 	struct CommandList *c;
 | |
| 	struct ErrorInfo *ei;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
 | |
| 		0, RAID_CTLR_LUNID, TYPE_CMD);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	ei = c->err_info;
 | |
| 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 | |
| 		hpsa_scsi_interpret_error(h, c);
 | |
| 		rc = -1;
 | |
| 	}
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
 | |
| 		unsigned char scsi3addr[], u16 bmic_device_index,
 | |
| 		struct bmic_identify_physical_device *buf, size_t bufsize)
 | |
| {
 | |
| 	int rc = IO_OK;
 | |
| 	struct CommandList *c;
 | |
| 	struct ErrorInfo *ei;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
 | |
| 		0, RAID_CTLR_LUNID, TYPE_CMD);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	c->Request.CDB[2] = bmic_device_index & 0xff;
 | |
| 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
 | |
| 
 | |
| 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
 | |
| 						NO_TIMEOUT);
 | |
| 	ei = c->err_info;
 | |
| 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 | |
| 		hpsa_scsi_interpret_error(h, c);
 | |
| 		rc = -1;
 | |
| 	}
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get enclosure information
 | |
|  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
 | |
|  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
 | |
|  * Uses id_physical_device to determine the box_index.
 | |
|  */
 | |
| static void hpsa_get_enclosure_info(struct ctlr_info *h,
 | |
| 			unsigned char *scsi3addr,
 | |
| 			struct ReportExtendedLUNdata *rlep, int rle_index,
 | |
| 			struct hpsa_scsi_dev_t *encl_dev)
 | |
| {
 | |
| 	int rc = -1;
 | |
| 	struct CommandList *c = NULL;
 | |
| 	struct ErrorInfo *ei = NULL;
 | |
| 	struct bmic_sense_storage_box_params *bssbp = NULL;
 | |
| 	struct bmic_identify_physical_device *id_phys = NULL;
 | |
| 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
 | |
| 	u16 bmic_device_index = 0;
 | |
| 
 | |
| 	encl_dev->eli =
 | |
| 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
 | |
| 
 | |
| 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
 | |
| 
 | |
| 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
 | |
| 		rc = IO_OK;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
 | |
| 		rc = IO_OK;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
 | |
| 	if (!bssbp)
 | |
| 		goto out;
 | |
| 
 | |
| 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
 | |
| 	if (!id_phys)
 | |
| 		goto out;
 | |
| 
 | |
| 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
 | |
| 						id_phys, sizeof(*id_phys));
 | |
| 	if (rc) {
 | |
| 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
 | |
| 			__func__, encl_dev->external, bmic_device_index);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
 | |
| 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
 | |
| 
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (id_phys->phys_connector[1] == 'E')
 | |
| 		c->Request.CDB[5] = id_phys->box_index;
 | |
| 	else
 | |
| 		c->Request.CDB[5] = 0;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
 | |
| 						NO_TIMEOUT);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	ei = c->err_info;
 | |
| 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 | |
| 		rc = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
 | |
| 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
 | |
| 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
 | |
| 
 | |
| 	rc = IO_OK;
 | |
| out:
 | |
| 	kfree(bssbp);
 | |
| 	kfree(id_phys);
 | |
| 
 | |
| 	if (c)
 | |
| 		cmd_free(h, c);
 | |
| 
 | |
| 	if (rc != IO_OK)
 | |
| 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
 | |
| 			"Error, could not get enclosure information");
 | |
| }
 | |
| 
 | |
| static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
 | |
| 						unsigned char *scsi3addr)
 | |
| {
 | |
| 	struct ReportExtendedLUNdata *physdev;
 | |
| 	u32 nphysicals;
 | |
| 	u64 sa = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
 | |
| 	if (!physdev)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
 | |
| 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
 | |
| 		kfree(physdev);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
 | |
| 
 | |
| 	for (i = 0; i < nphysicals; i++)
 | |
| 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
 | |
| 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	kfree(physdev);
 | |
| 
 | |
| 	return sa;
 | |
| }
 | |
| 
 | |
| static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
 | |
| 					struct hpsa_scsi_dev_t *dev)
 | |
| {
 | |
| 	int rc;
 | |
| 	u64 sa = 0;
 | |
| 
 | |
| 	if (is_hba_lunid(scsi3addr)) {
 | |
| 		struct bmic_sense_subsystem_info *ssi;
 | |
| 
 | |
| 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
 | |
| 		if (!ssi)
 | |
| 			return;
 | |
| 
 | |
| 		rc = hpsa_bmic_sense_subsystem_information(h,
 | |
| 					scsi3addr, 0, ssi, sizeof(*ssi));
 | |
| 		if (rc == 0) {
 | |
| 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
 | |
| 			h->sas_address = sa;
 | |
| 		}
 | |
| 
 | |
| 		kfree(ssi);
 | |
| 	} else
 | |
| 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
 | |
| 
 | |
| 	dev->sas_address = sa;
 | |
| }
 | |
| 
 | |
| static void hpsa_ext_ctrl_present(struct ctlr_info *h,
 | |
| 	struct ReportExtendedLUNdata *physdev)
 | |
| {
 | |
| 	u32 nphysicals;
 | |
| 	int i;
 | |
| 
 | |
| 	if (h->discovery_polling)
 | |
| 		return;
 | |
| 
 | |
| 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
 | |
| 
 | |
| 	for (i = 0; i < nphysicals; i++) {
 | |
| 		if (physdev->LUN[i].device_type ==
 | |
| 			BMIC_DEVICE_TYPE_CONTROLLER
 | |
| 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
 | |
| 			dev_info(&h->pdev->dev,
 | |
| 				"External controller present, activate discovery polling and disable rld caching\n");
 | |
| 			hpsa_disable_rld_caching(h);
 | |
| 			h->discovery_polling = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Get a device id from inquiry page 0x83 */
 | |
| static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 | |
| 	unsigned char scsi3addr[], u8 page)
 | |
| {
 | |
| 	int rc;
 | |
| 	int i;
 | |
| 	int pages;
 | |
| 	unsigned char *buf, bufsize;
 | |
| 
 | |
| 	buf = kzalloc(256, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Get the size of the page list first */
 | |
| 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
 | |
| 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
 | |
| 				buf, HPSA_VPD_HEADER_SZ);
 | |
| 	if (rc != 0)
 | |
| 		goto exit_unsupported;
 | |
| 	pages = buf[3];
 | |
| 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
 | |
| 		bufsize = pages + HPSA_VPD_HEADER_SZ;
 | |
| 	else
 | |
| 		bufsize = 255;
 | |
| 
 | |
| 	/* Get the whole VPD page list */
 | |
| 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
 | |
| 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
 | |
| 				buf, bufsize);
 | |
| 	if (rc != 0)
 | |
| 		goto exit_unsupported;
 | |
| 
 | |
| 	pages = buf[3];
 | |
| 	for (i = 1; i <= pages; i++)
 | |
| 		if (buf[3 + i] == page)
 | |
| 			goto exit_supported;
 | |
| exit_unsupported:
 | |
| 	kfree(buf);
 | |
| 	return false;
 | |
| exit_supported:
 | |
| 	kfree(buf);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called during a scan operation.
 | |
|  * Sets ioaccel status on the new device list, not the existing device list
 | |
|  *
 | |
|  * The device list used during I/O will be updated later in
 | |
|  * adjust_hpsa_scsi_table.
 | |
|  */
 | |
| static void hpsa_get_ioaccel_status(struct ctlr_info *h,
 | |
| 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned char *buf;
 | |
| 	u8 ioaccel_status;
 | |
| 
 | |
| 	this_device->offload_config = 0;
 | |
| 	this_device->offload_enabled = 0;
 | |
| 	this_device->offload_to_be_enabled = 0;
 | |
| 
 | |
| 	buf = kzalloc(64, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return;
 | |
| 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
 | |
| 		goto out;
 | |
| 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
 | |
| 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
 | |
| 	if (rc != 0)
 | |
| 		goto out;
 | |
| 
 | |
| #define IOACCEL_STATUS_BYTE 4
 | |
| #define OFFLOAD_CONFIGURED_BIT 0x01
 | |
| #define OFFLOAD_ENABLED_BIT 0x02
 | |
| 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
 | |
| 	this_device->offload_config =
 | |
| 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
 | |
| 	if (this_device->offload_config) {
 | |
| 		this_device->offload_to_be_enabled =
 | |
| 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
 | |
| 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
 | |
| 			this_device->offload_to_be_enabled = 0;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	kfree(buf);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /* Get the device id from inquiry page 0x83 */
 | |
| static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
 | |
| 	unsigned char *device_id, int index, int buflen)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned char *buf;
 | |
| 
 | |
| 	/* Does controller have VPD for device id? */
 | |
| 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
 | |
| 		return 1; /* not supported */
 | |
| 
 | |
| 	buf = kzalloc(64, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
 | |
| 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
 | |
| 	if (rc == 0) {
 | |
| 		if (buflen > 16)
 | |
| 			buflen = 16;
 | |
| 		memcpy(device_id, &buf[8], buflen);
 | |
| 	}
 | |
| 
 | |
| 	kfree(buf);
 | |
| 
 | |
| 	return rc; /*0 - got id,  otherwise, didn't */
 | |
| }
 | |
| 
 | |
| static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
 | |
| 		void *buf, int bufsize,
 | |
| 		int extended_response)
 | |
| {
 | |
| 	int rc = IO_OK;
 | |
| 	struct CommandList *c;
 | |
| 	unsigned char scsi3addr[8];
 | |
| 	struct ErrorInfo *ei;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	/* address the controller */
 | |
| 	memset(scsi3addr, 0, sizeof(scsi3addr));
 | |
| 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
 | |
| 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
 | |
| 		rc = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (extended_response)
 | |
| 		c->Request.CDB[1] = extended_response;
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	ei = c->err_info;
 | |
| 	if (ei->CommandStatus != 0 &&
 | |
| 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
 | |
| 		hpsa_scsi_interpret_error(h, c);
 | |
| 		rc = -EIO;
 | |
| 	} else {
 | |
| 		struct ReportLUNdata *rld = buf;
 | |
| 
 | |
| 		if (rld->extended_response_flag != extended_response) {
 | |
| 			if (!h->legacy_board) {
 | |
| 				dev_err(&h->pdev->dev,
 | |
| 					"report luns requested format %u, got %u\n",
 | |
| 					extended_response,
 | |
| 					rld->extended_response_flag);
 | |
| 				rc = -EINVAL;
 | |
| 			} else
 | |
| 				rc = -EOPNOTSUPP;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 | |
| 		struct ReportExtendedLUNdata *buf, int bufsize)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct ReportLUNdata *lbuf;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
 | |
| 				      HPSA_REPORT_PHYS_EXTENDED);
 | |
| 	if (!rc || rc != -EOPNOTSUPP)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* REPORT PHYS EXTENDED is not supported */
 | |
| 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
 | |
| 	if (!lbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
 | |
| 	if (!rc) {
 | |
| 		int i;
 | |
| 		u32 nphys;
 | |
| 
 | |
| 		/* Copy ReportLUNdata header */
 | |
| 		memcpy(buf, lbuf, 8);
 | |
| 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
 | |
| 		for (i = 0; i < nphys; i++)
 | |
| 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
 | |
| 	}
 | |
| 	kfree(lbuf);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
 | |
| 		struct ReportLUNdata *buf, int bufsize)
 | |
| {
 | |
| 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
 | |
| }
 | |
| 
 | |
| static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
 | |
| 	int bus, int target, int lun)
 | |
| {
 | |
| 	device->bus = bus;
 | |
| 	device->target = target;
 | |
| 	device->lun = lun;
 | |
| }
 | |
| 
 | |
| /* Use VPD inquiry to get details of volume status */
 | |
| static int hpsa_get_volume_status(struct ctlr_info *h,
 | |
| 					unsigned char scsi3addr[])
 | |
| {
 | |
| 	int rc;
 | |
| 	int status;
 | |
| 	int size;
 | |
| 	unsigned char *buf;
 | |
| 
 | |
| 	buf = kzalloc(64, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
 | |
| 
 | |
| 	/* Does controller have VPD for logical volume status? */
 | |
| 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
 | |
| 		goto exit_failed;
 | |
| 
 | |
| 	/* Get the size of the VPD return buffer */
 | |
| 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
 | |
| 					buf, HPSA_VPD_HEADER_SZ);
 | |
| 	if (rc != 0)
 | |
| 		goto exit_failed;
 | |
| 	size = buf[3];
 | |
| 
 | |
| 	/* Now get the whole VPD buffer */
 | |
| 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
 | |
| 					buf, size + HPSA_VPD_HEADER_SZ);
 | |
| 	if (rc != 0)
 | |
| 		goto exit_failed;
 | |
| 	status = buf[4]; /* status byte */
 | |
| 
 | |
| 	kfree(buf);
 | |
| 	return status;
 | |
| exit_failed:
 | |
| 	kfree(buf);
 | |
| 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
 | |
| }
 | |
| 
 | |
| /* Determine offline status of a volume.
 | |
|  * Return either:
 | |
|  *  0 (not offline)
 | |
|  *  0xff (offline for unknown reasons)
 | |
|  *  # (integer code indicating one of several NOT READY states
 | |
|  *     describing why a volume is to be kept offline)
 | |
|  */
 | |
| static unsigned char hpsa_volume_offline(struct ctlr_info *h,
 | |
| 					unsigned char scsi3addr[])
 | |
| {
 | |
| 	struct CommandList *c;
 | |
| 	unsigned char *sense;
 | |
| 	u8 sense_key, asc, ascq;
 | |
| 	int sense_len;
 | |
| 	int rc, ldstat = 0;
 | |
| 	u16 cmd_status;
 | |
| 	u8 scsi_status;
 | |
| #define ASC_LUN_NOT_READY 0x04
 | |
| #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
 | |
| #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
 | |
| 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 | |
| 					NO_TIMEOUT);
 | |
| 	if (rc) {
 | |
| 		cmd_free(h, c);
 | |
| 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
 | |
| 	}
 | |
| 	sense = c->err_info->SenseInfo;
 | |
| 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 | |
| 		sense_len = sizeof(c->err_info->SenseInfo);
 | |
| 	else
 | |
| 		sense_len = c->err_info->SenseLen;
 | |
| 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
 | |
| 	cmd_status = c->err_info->CommandStatus;
 | |
| 	scsi_status = c->err_info->ScsiStatus;
 | |
| 	cmd_free(h, c);
 | |
| 
 | |
| 	/* Determine the reason for not ready state */
 | |
| 	ldstat = hpsa_get_volume_status(h, scsi3addr);
 | |
| 
 | |
| 	/* Keep volume offline in certain cases: */
 | |
| 	switch (ldstat) {
 | |
| 	case HPSA_LV_FAILED:
 | |
| 	case HPSA_LV_UNDERGOING_ERASE:
 | |
| 	case HPSA_LV_NOT_AVAILABLE:
 | |
| 	case HPSA_LV_UNDERGOING_RPI:
 | |
| 	case HPSA_LV_PENDING_RPI:
 | |
| 	case HPSA_LV_ENCRYPTED_NO_KEY:
 | |
| 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
 | |
| 	case HPSA_LV_UNDERGOING_ENCRYPTION:
 | |
| 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
 | |
| 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
 | |
| 		return ldstat;
 | |
| 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
 | |
| 		/* If VPD status page isn't available,
 | |
| 		 * use ASC/ASCQ to determine state
 | |
| 		 */
 | |
| 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
 | |
| 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
 | |
| 			return ldstat;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return HPSA_LV_OK;
 | |
| }
 | |
| 
 | |
| static int hpsa_update_device_info(struct ctlr_info *h,
 | |
| 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
 | |
| 	unsigned char *is_OBDR_device)
 | |
| {
 | |
| 
 | |
| #define OBDR_SIG_OFFSET 43
 | |
| #define OBDR_TAPE_SIG "$DR-10"
 | |
| #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
 | |
| #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
 | |
| 
 | |
| 	unsigned char *inq_buff;
 | |
| 	unsigned char *obdr_sig;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
 | |
| 	if (!inq_buff) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto bail_out;
 | |
| 	}
 | |
| 
 | |
| 	/* Do an inquiry to the device to see what it is. */
 | |
| 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
 | |
| 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
 | |
| 		dev_err(&h->pdev->dev,
 | |
| 			"%s: inquiry failed, device will be skipped.\n",
 | |
| 			__func__);
 | |
| 		rc = HPSA_INQUIRY_FAILED;
 | |
| 		goto bail_out;
 | |
| 	}
 | |
| 
 | |
| 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
 | |
| 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
 | |
| 
 | |
| 	this_device->devtype = (inq_buff[0] & 0x1f);
 | |
| 	memcpy(this_device->scsi3addr, scsi3addr, 8);
 | |
| 	memcpy(this_device->vendor, &inq_buff[8],
 | |
| 		sizeof(this_device->vendor));
 | |
| 	memcpy(this_device->model, &inq_buff[16],
 | |
| 		sizeof(this_device->model));
 | |
| 	this_device->rev = inq_buff[2];
 | |
| 	memset(this_device->device_id, 0,
 | |
| 		sizeof(this_device->device_id));
 | |
| 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
 | |
| 		sizeof(this_device->device_id)) < 0)
 | |
| 		dev_err(&h->pdev->dev,
 | |
| 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
 | |
| 			h->ctlr, __func__,
 | |
| 			h->scsi_host->host_no,
 | |
| 			this_device->target, this_device->lun,
 | |
| 			scsi_device_type(this_device->devtype),
 | |
| 			this_device->model);
 | |
| 
 | |
| 	if ((this_device->devtype == TYPE_DISK ||
 | |
| 		this_device->devtype == TYPE_ZBC) &&
 | |
| 		is_logical_dev_addr_mode(scsi3addr)) {
 | |
| 		unsigned char volume_offline;
 | |
| 
 | |
| 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
 | |
| 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
 | |
| 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
 | |
| 		volume_offline = hpsa_volume_offline(h, scsi3addr);
 | |
| 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
 | |
| 		    h->legacy_board) {
 | |
| 			/*
 | |
| 			 * Legacy boards might not support volume status
 | |
| 			 */
 | |
| 			dev_info(&h->pdev->dev,
 | |
| 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
 | |
| 				 this_device->target, this_device->lun);
 | |
| 			volume_offline = 0;
 | |
| 		}
 | |
| 		this_device->volume_offline = volume_offline;
 | |
| 		if (volume_offline == HPSA_LV_FAILED) {
 | |
| 			rc = HPSA_LV_FAILED;
 | |
| 			dev_err(&h->pdev->dev,
 | |
| 				"%s: LV failed, device will be skipped.\n",
 | |
| 				__func__);
 | |
| 			goto bail_out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		this_device->raid_level = RAID_UNKNOWN;
 | |
| 		this_device->offload_config = 0;
 | |
| 		this_device->offload_enabled = 0;
 | |
| 		this_device->offload_to_be_enabled = 0;
 | |
| 		this_device->hba_ioaccel_enabled = 0;
 | |
| 		this_device->volume_offline = 0;
 | |
| 		this_device->queue_depth = h->nr_cmds;
 | |
| 	}
 | |
| 
 | |
| 	if (this_device->external)
 | |
| 		this_device->queue_depth = EXTERNAL_QD;
 | |
| 
 | |
| 	if (is_OBDR_device) {
 | |
| 		/* See if this is a One-Button-Disaster-Recovery device
 | |
| 		 * by looking for "$DR-10" at offset 43 in inquiry data.
 | |
| 		 */
 | |
| 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
 | |
| 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
 | |
| 					strncmp(obdr_sig, OBDR_TAPE_SIG,
 | |
| 						OBDR_SIG_LEN) == 0);
 | |
| 	}
 | |
| 	kfree(inq_buff);
 | |
| 	return 0;
 | |
| 
 | |
| bail_out:
 | |
| 	kfree(inq_buff);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to assign bus, target, lun mapping of devices.
 | |
|  * Logical drive target and lun are assigned at this time, but
 | |
|  * physical device lun and target assignment are deferred (assigned
 | |
|  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 | |
| */
 | |
| static void figure_bus_target_lun(struct ctlr_info *h,
 | |
| 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
 | |
| {
 | |
| 	u32 lunid = get_unaligned_le32(lunaddrbytes);
 | |
| 
 | |
| 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
 | |
| 		/* physical device, target and lun filled in later */
 | |
| 		if (is_hba_lunid(lunaddrbytes)) {
 | |
| 			int bus = HPSA_HBA_BUS;
 | |
| 
 | |
| 			if (!device->rev)
 | |
| 				bus = HPSA_LEGACY_HBA_BUS;
 | |
| 			hpsa_set_bus_target_lun(device,
 | |
| 					bus, 0, lunid & 0x3fff);
 | |
| 		} else
 | |
| 			/* defer target, lun assignment for physical devices */
 | |
| 			hpsa_set_bus_target_lun(device,
 | |
| 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* It's a logical device */
 | |
| 	if (device->external) {
 | |
| 		hpsa_set_bus_target_lun(device,
 | |
| 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
 | |
| 			lunid & 0x00ff);
 | |
| 		return;
 | |
| 	}
 | |
| 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
 | |
| 				0, lunid & 0x3fff);
 | |
| }
 | |
| 
 | |
| static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
 | |
| 	int i, int nphysicals, int nlocal_logicals)
 | |
| {
 | |
| 	/* In report logicals, local logicals are listed first,
 | |
| 	* then any externals.
 | |
| 	*/
 | |
| 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
 | |
| 
 | |
| 	if (i == raid_ctlr_position)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (i < logicals_start)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* i is in logicals range, but still within local logicals */
 | |
| 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1; /* it's an external lun */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 | |
|  * logdev.  The number of luns in physdev and logdev are returned in
 | |
|  * *nphysicals and *nlogicals, respectively.
 | |
|  * Returns 0 on success, -1 otherwise.
 | |
|  */
 | |
| static int hpsa_gather_lun_info(struct ctlr_info *h,
 | |
| 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
 | |
| 	struct ReportLUNdata *logdev, u32 *nlogicals)
 | |
| {
 | |
| 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
 | |
| 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
 | |
| 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
 | |
| 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
 | |
| 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
 | |
| 		*nphysicals = HPSA_MAX_PHYS_LUN;
 | |
| 	}
 | |
| 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
 | |
| 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
 | |
| 	/* Reject Logicals in excess of our max capability. */
 | |
| 	if (*nlogicals > HPSA_MAX_LUN) {
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"maximum logical LUNs (%d) exceeded.  "
 | |
| 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
 | |
| 			*nlogicals - HPSA_MAX_LUN);
 | |
| 			*nlogicals = HPSA_MAX_LUN;
 | |
| 	}
 | |
| 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"maximum logical + physical LUNs (%d) exceeded. "
 | |
| 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
 | |
| 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
 | |
| 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
 | |
| 	int i, int nphysicals, int nlogicals,
 | |
| 	struct ReportExtendedLUNdata *physdev_list,
 | |
| 	struct ReportLUNdata *logdev_list)
 | |
| {
 | |
| 	/* Helper function, figure out where the LUN ID info is coming from
 | |
| 	 * given index i, lists of physical and logical devices, where in
 | |
| 	 * the list the raid controller is supposed to appear (first or last)
 | |
| 	 */
 | |
| 
 | |
| 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
 | |
| 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
 | |
| 
 | |
| 	if (i == raid_ctlr_position)
 | |
| 		return RAID_CTLR_LUNID;
 | |
| 
 | |
| 	if (i < logicals_start)
 | |
| 		return &physdev_list->LUN[i -
 | |
| 				(raid_ctlr_position == 0)].lunid[0];
 | |
| 
 | |
| 	if (i < last_device)
 | |
| 		return &logdev_list->LUN[i - nphysicals -
 | |
| 			(raid_ctlr_position == 0)][0];
 | |
| 	BUG();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* get physical drive ioaccel handle and queue depth */
 | |
| static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
 | |
| 		struct hpsa_scsi_dev_t *dev,
 | |
| 		struct ReportExtendedLUNdata *rlep, int rle_index,
 | |
| 		struct bmic_identify_physical_device *id_phys)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct ext_report_lun_entry *rle;
 | |
| 
 | |
| 	rle = &rlep->LUN[rle_index];
 | |
| 
 | |
| 	dev->ioaccel_handle = rle->ioaccel_handle;
 | |
| 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
 | |
| 		dev->hba_ioaccel_enabled = 1;
 | |
| 	memset(id_phys, 0, sizeof(*id_phys));
 | |
| 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
 | |
| 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
 | |
| 			sizeof(*id_phys));
 | |
| 	if (!rc)
 | |
| 		/* Reserve space for FW operations */
 | |
| #define DRIVE_CMDS_RESERVED_FOR_FW 2
 | |
| #define DRIVE_QUEUE_DEPTH 7
 | |
| 		dev->queue_depth =
 | |
| 			le16_to_cpu(id_phys->current_queue_depth_limit) -
 | |
| 				DRIVE_CMDS_RESERVED_FOR_FW;
 | |
| 	else
 | |
| 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
 | |
| }
 | |
| 
 | |
| static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
 | |
| 	struct ReportExtendedLUNdata *rlep, int rle_index,
 | |
| 	struct bmic_identify_physical_device *id_phys)
 | |
| {
 | |
| 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
 | |
| 
 | |
| 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
 | |
| 		this_device->hba_ioaccel_enabled = 1;
 | |
| 
 | |
| 	memcpy(&this_device->active_path_index,
 | |
| 		&id_phys->active_path_number,
 | |
| 		sizeof(this_device->active_path_index));
 | |
| 	memcpy(&this_device->path_map,
 | |
| 		&id_phys->redundant_path_present_map,
 | |
| 		sizeof(this_device->path_map));
 | |
| 	memcpy(&this_device->box,
 | |
| 		&id_phys->alternate_paths_phys_box_on_port,
 | |
| 		sizeof(this_device->box));
 | |
| 	memcpy(&this_device->phys_connector,
 | |
| 		&id_phys->alternate_paths_phys_connector,
 | |
| 		sizeof(this_device->phys_connector));
 | |
| 	memcpy(&this_device->bay,
 | |
| 		&id_phys->phys_bay_in_box,
 | |
| 		sizeof(this_device->bay));
 | |
| }
 | |
| 
 | |
| /* get number of local logical disks. */
 | |
| static int hpsa_set_local_logical_count(struct ctlr_info *h,
 | |
| 	struct bmic_identify_controller *id_ctlr,
 | |
| 	u32 *nlocals)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!id_ctlr) {
 | |
| 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
 | |
| 			__func__);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memset(id_ctlr, 0, sizeof(*id_ctlr));
 | |
| 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
 | |
| 	if (!rc)
 | |
| 		if (id_ctlr->configured_logical_drive_count < 255)
 | |
| 			*nlocals = id_ctlr->configured_logical_drive_count;
 | |
| 		else
 | |
| 			*nlocals = le16_to_cpu(
 | |
| 					id_ctlr->extended_logical_unit_count);
 | |
| 	else
 | |
| 		*nlocals = -1;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
 | |
| {
 | |
| 	struct bmic_identify_physical_device *id_phys;
 | |
| 	bool is_spare = false;
 | |
| 	int rc;
 | |
| 
 | |
| 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
 | |
| 	if (!id_phys)
 | |
| 		return false;
 | |
| 
 | |
| 	rc = hpsa_bmic_id_physical_device(h,
 | |
| 					lunaddrbytes,
 | |
| 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
 | |
| 					id_phys, sizeof(*id_phys));
 | |
| 	if (rc == 0)
 | |
| 		is_spare = (id_phys->more_flags >> 6) & 0x01;
 | |
| 
 | |
| 	kfree(id_phys);
 | |
| 	return is_spare;
 | |
| }
 | |
| 
 | |
| #define RPL_DEV_FLAG_NON_DISK                           0x1
 | |
| #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
 | |
| #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
 | |
| 
 | |
| #define BMIC_DEVICE_TYPE_ENCLOSURE  6
 | |
| 
 | |
| static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
 | |
| 				struct ext_report_lun_entry *rle)
 | |
| {
 | |
| 	u8 device_flags;
 | |
| 	u8 device_type;
 | |
| 
 | |
| 	if (!MASKED_DEVICE(lunaddrbytes))
 | |
| 		return false;
 | |
| 
 | |
| 	device_flags = rle->device_flags;
 | |
| 	device_type = rle->device_type;
 | |
| 
 | |
| 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
 | |
| 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
 | |
| 			return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
 | |
| 		return false;
 | |
| 
 | |
| 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Spares may be spun down, we do not want to
 | |
| 	 * do an Inquiry to a RAID set spare drive as
 | |
| 	 * that would have them spun up, that is a
 | |
| 	 * performance hit because I/O to the RAID device
 | |
| 	 * stops while the spin up occurs which can take
 | |
| 	 * over 50 seconds.
 | |
| 	 */
 | |
| 	if (hpsa_is_disk_spare(h, lunaddrbytes))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void hpsa_update_scsi_devices(struct ctlr_info *h)
 | |
| {
 | |
| 	/* the idea here is we could get notified
 | |
| 	 * that some devices have changed, so we do a report
 | |
| 	 * physical luns and report logical luns cmd, and adjust
 | |
| 	 * our list of devices accordingly.
 | |
| 	 *
 | |
| 	 * The scsi3addr's of devices won't change so long as the
 | |
| 	 * adapter is not reset.  That means we can rescan and
 | |
| 	 * tell which devices we already know about, vs. new
 | |
| 	 * devices, vs.  disappearing devices.
 | |
| 	 */
 | |
| 	struct ReportExtendedLUNdata *physdev_list = NULL;
 | |
| 	struct ReportLUNdata *logdev_list = NULL;
 | |
| 	struct bmic_identify_physical_device *id_phys = NULL;
 | |
| 	struct bmic_identify_controller *id_ctlr = NULL;
 | |
| 	u32 nphysicals = 0;
 | |
| 	u32 nlogicals = 0;
 | |
| 	u32 nlocal_logicals = 0;
 | |
| 	u32 ndev_allocated = 0;
 | |
| 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
 | |
| 	int ncurrent = 0;
 | |
| 	int i, n_ext_target_devs, ndevs_to_allocate;
 | |
| 	int raid_ctlr_position;
 | |
| 	bool physical_device;
 | |
| 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
 | |
| 
 | |
| 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
 | |
| 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
 | |
| 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
 | |
| 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
 | |
| 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
 | |
| 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
 | |
| 
 | |
| 	if (!currentsd || !physdev_list || !logdev_list ||
 | |
| 		!tmpdevice || !id_phys || !id_ctlr) {
 | |
| 		dev_err(&h->pdev->dev, "out of memory\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	memset(lunzerobits, 0, sizeof(lunzerobits));
 | |
| 
 | |
| 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
 | |
| 
 | |
| 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
 | |
| 			logdev_list, &nlogicals)) {
 | |
| 		h->drv_req_rescan = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Set number of local logicals (non PTRAID) */
 | |
| 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"%s: Can't determine number of local logical devices.\n",
 | |
| 			__func__);
 | |
| 	}
 | |
| 
 | |
| 	/* We might see up to the maximum number of logical and physical disks
 | |
| 	 * plus external target devices, and a device for the local RAID
 | |
| 	 * controller.
 | |
| 	 */
 | |
| 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
 | |
| 
 | |
| 	hpsa_ext_ctrl_present(h, physdev_list);
 | |
| 
 | |
| 	/* Allocate the per device structures */
 | |
| 	for (i = 0; i < ndevs_to_allocate; i++) {
 | |
| 		if (i >= HPSA_MAX_DEVICES) {
 | |
| 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
 | |
| 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
 | |
| 				ndevs_to_allocate - HPSA_MAX_DEVICES);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
 | |
| 		if (!currentsd[i]) {
 | |
| 			h->drv_req_rescan = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ndev_allocated++;
 | |
| 	}
 | |
| 
 | |
| 	if (is_scsi_rev_5(h))
 | |
| 		raid_ctlr_position = 0;
 | |
| 	else
 | |
| 		raid_ctlr_position = nphysicals + nlogicals;
 | |
| 
 | |
| 	/* adjust our table of devices */
 | |
| 	n_ext_target_devs = 0;
 | |
| 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
 | |
| 		u8 *lunaddrbytes, is_OBDR = 0;
 | |
| 		int rc = 0;
 | |
| 		int phys_dev_index = i - (raid_ctlr_position == 0);
 | |
| 		bool skip_device = false;
 | |
| 
 | |
| 		memset(tmpdevice, 0, sizeof(*tmpdevice));
 | |
| 
 | |
| 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
 | |
| 
 | |
| 		/* Figure out where the LUN ID info is coming from */
 | |
| 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
 | |
| 			i, nphysicals, nlogicals, physdev_list, logdev_list);
 | |
| 
 | |
| 		/* Determine if this is a lun from an external target array */
 | |
| 		tmpdevice->external =
 | |
| 			figure_external_status(h, raid_ctlr_position, i,
 | |
| 						nphysicals, nlocal_logicals);
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip over some devices such as a spare.
 | |
| 		 */
 | |
| 		if (!tmpdevice->external && physical_device) {
 | |
| 			skip_device = hpsa_skip_device(h, lunaddrbytes,
 | |
| 					&physdev_list->LUN[phys_dev_index]);
 | |
| 			if (skip_device)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Get device type, vendor, model, device id, raid_map */
 | |
| 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
 | |
| 							&is_OBDR);
 | |
| 		if (rc == -ENOMEM) {
 | |
| 			dev_warn(&h->pdev->dev,
 | |
| 				"Out of memory, rescan deferred.\n");
 | |
| 			h->drv_req_rescan = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (rc) {
 | |
| 			h->drv_req_rescan = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
 | |
| 		this_device = currentsd[ncurrent];
 | |
| 
 | |
| 		*this_device = *tmpdevice;
 | |
| 		this_device->physical_device = physical_device;
 | |
| 
 | |
| 		/*
 | |
| 		 * Expose all devices except for physical devices that
 | |
| 		 * are masked.
 | |
| 		 */
 | |
| 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
 | |
| 			this_device->expose_device = 0;
 | |
| 		else
 | |
| 			this_device->expose_device = 1;
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * Get the SAS address for physical devices that are exposed.
 | |
| 		 */
 | |
| 		if (this_device->physical_device && this_device->expose_device)
 | |
| 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
 | |
| 
 | |
| 		switch (this_device->devtype) {
 | |
| 		case TYPE_ROM:
 | |
| 			/* We don't *really* support actual CD-ROM devices,
 | |
| 			 * just "One Button Disaster Recovery" tape drive
 | |
| 			 * which temporarily pretends to be a CD-ROM drive.
 | |
| 			 * So we check that the device is really an OBDR tape
 | |
| 			 * device by checking for "$DR-10" in bytes 43-48 of
 | |
| 			 * the inquiry data.
 | |
| 			 */
 | |
| 			if (is_OBDR)
 | |
| 				ncurrent++;
 | |
| 			break;
 | |
| 		case TYPE_DISK:
 | |
| 		case TYPE_ZBC:
 | |
| 			if (this_device->physical_device) {
 | |
| 				/* The disk is in HBA mode. */
 | |
| 				/* Never use RAID mapper in HBA mode. */
 | |
| 				this_device->offload_enabled = 0;
 | |
| 				hpsa_get_ioaccel_drive_info(h, this_device,
 | |
| 					physdev_list, phys_dev_index, id_phys);
 | |
| 				hpsa_get_path_info(this_device,
 | |
| 					physdev_list, phys_dev_index, id_phys);
 | |
| 			}
 | |
| 			ncurrent++;
 | |
| 			break;
 | |
| 		case TYPE_TAPE:
 | |
| 		case TYPE_MEDIUM_CHANGER:
 | |
| 			ncurrent++;
 | |
| 			break;
 | |
| 		case TYPE_ENCLOSURE:
 | |
| 			if (!this_device->external)
 | |
| 				hpsa_get_enclosure_info(h, lunaddrbytes,
 | |
| 						physdev_list, phys_dev_index,
 | |
| 						this_device);
 | |
| 			ncurrent++;
 | |
| 			break;
 | |
| 		case TYPE_RAID:
 | |
| 			/* Only present the Smartarray HBA as a RAID controller.
 | |
| 			 * If it's a RAID controller other than the HBA itself
 | |
| 			 * (an external RAID controller, MSA500 or similar)
 | |
| 			 * don't present it.
 | |
| 			 */
 | |
| 			if (!is_hba_lunid(lunaddrbytes))
 | |
| 				break;
 | |
| 			ncurrent++;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ncurrent >= HPSA_MAX_DEVICES)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (h->sas_host == NULL) {
 | |
| 		int rc = 0;
 | |
| 
 | |
| 		rc = hpsa_add_sas_host(h);
 | |
| 		if (rc) {
 | |
| 			dev_warn(&h->pdev->dev,
 | |
| 				"Could not add sas host %d\n", rc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
 | |
| out:
 | |
| 	kfree(tmpdevice);
 | |
| 	for (i = 0; i < ndev_allocated; i++)
 | |
| 		kfree(currentsd[i]);
 | |
| 	kfree(currentsd);
 | |
| 	kfree(physdev_list);
 | |
| 	kfree(logdev_list);
 | |
| 	kfree(id_ctlr);
 | |
| 	kfree(id_phys);
 | |
| }
 | |
| 
 | |
| static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
 | |
| 				   struct scatterlist *sg)
 | |
| {
 | |
| 	u64 addr64 = (u64) sg_dma_address(sg);
 | |
| 	unsigned int len = sg_dma_len(sg);
 | |
| 
 | |
| 	desc->Addr = cpu_to_le64(addr64);
 | |
| 	desc->Len = cpu_to_le32(len);
 | |
| 	desc->Ext = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 | |
|  * dma mapping  and fills in the scatter gather entries of the
 | |
|  * hpsa command, cp.
 | |
|  */
 | |
| static int hpsa_scatter_gather(struct ctlr_info *h,
 | |
| 		struct CommandList *cp,
 | |
| 		struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int use_sg, i, sg_limit, chained, last_sg;
 | |
| 	struct SGDescriptor *curr_sg;
 | |
| 
 | |
| 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
 | |
| 
 | |
| 	use_sg = scsi_dma_map(cmd);
 | |
| 	if (use_sg < 0)
 | |
| 		return use_sg;
 | |
| 
 | |
| 	if (!use_sg)
 | |
| 		goto sglist_finished;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the number of entries is greater than the max for a single list,
 | |
| 	 * then we have a chained list; we will set up all but one entry in the
 | |
| 	 * first list (the last entry is saved for link information);
 | |
| 	 * otherwise, we don't have a chained list and we'll set up at each of
 | |
| 	 * the entries in the one list.
 | |
| 	 */
 | |
| 	curr_sg = cp->SG;
 | |
| 	chained = use_sg > h->max_cmd_sg_entries;
 | |
| 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
 | |
| 	last_sg = scsi_sg_count(cmd) - 1;
 | |
| 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
 | |
| 		hpsa_set_sg_descriptor(curr_sg, sg);
 | |
| 		curr_sg++;
 | |
| 	}
 | |
| 
 | |
| 	if (chained) {
 | |
| 		/*
 | |
| 		 * Continue with the chained list.  Set curr_sg to the chained
 | |
| 		 * list.  Modify the limit to the total count less the entries
 | |
| 		 * we've already set up.  Resume the scan at the list entry
 | |
| 		 * where the previous loop left off.
 | |
| 		 */
 | |
| 		curr_sg = h->cmd_sg_list[cp->cmdindex];
 | |
| 		sg_limit = use_sg - sg_limit;
 | |
| 		for_each_sg(sg, sg, sg_limit, i) {
 | |
| 			hpsa_set_sg_descriptor(curr_sg, sg);
 | |
| 			curr_sg++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Back the pointer up to the last entry and mark it as "last". */
 | |
| 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
 | |
| 
 | |
| 	if (use_sg + chained > h->maxSG)
 | |
| 		h->maxSG = use_sg + chained;
 | |
| 
 | |
| 	if (chained) {
 | |
| 		cp->Header.SGList = h->max_cmd_sg_entries;
 | |
| 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
 | |
| 		if (hpsa_map_sg_chain_block(h, cp)) {
 | |
| 			scsi_dma_unmap(cmd);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| sglist_finished:
 | |
| 
 | |
| 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
 | |
| 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void warn_zero_length_transfer(struct ctlr_info *h,
 | |
| 						u8 *cdb, int cdb_len,
 | |
| 						const char *func)
 | |
| {
 | |
| 	dev_warn(&h->pdev->dev,
 | |
| 		 "%s: Blocking zero-length request: CDB:%*phN\n",
 | |
| 		 func, cdb_len, cdb);
 | |
| }
 | |
| 
 | |
| #define IO_ACCEL_INELIGIBLE 1
 | |
| /* zero-length transfers trigger hardware errors. */
 | |
| static bool is_zero_length_transfer(u8 *cdb)
 | |
| {
 | |
| 	u32 block_cnt;
 | |
| 
 | |
| 	/* Block zero-length transfer sizes on certain commands. */
 | |
| 	switch (cdb[0]) {
 | |
| 	case READ_10:
 | |
| 	case WRITE_10:
 | |
| 	case VERIFY:		/* 0x2F */
 | |
| 	case WRITE_VERIFY:	/* 0x2E */
 | |
| 		block_cnt = get_unaligned_be16(&cdb[7]);
 | |
| 		break;
 | |
| 	case READ_12:
 | |
| 	case WRITE_12:
 | |
| 	case VERIFY_12: /* 0xAF */
 | |
| 	case WRITE_VERIFY_12:	/* 0xAE */
 | |
| 		block_cnt = get_unaligned_be32(&cdb[6]);
 | |
| 		break;
 | |
| 	case READ_16:
 | |
| 	case WRITE_16:
 | |
| 	case VERIFY_16:		/* 0x8F */
 | |
| 		block_cnt = get_unaligned_be32(&cdb[10]);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return block_cnt == 0;
 | |
| }
 | |
| 
 | |
| static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
 | |
| {
 | |
| 	int is_write = 0;
 | |
| 	u32 block;
 | |
| 	u32 block_cnt;
 | |
| 
 | |
| 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
 | |
| 	switch (cdb[0]) {
 | |
| 	case WRITE_6:
 | |
| 	case WRITE_12:
 | |
| 		is_write = 1;
 | |
| 	case READ_6:
 | |
| 	case READ_12:
 | |
| 		if (*cdb_len == 6) {
 | |
| 			block = (((cdb[1] & 0x1F) << 16) |
 | |
| 				(cdb[2] << 8) |
 | |
| 				cdb[3]);
 | |
| 			block_cnt = cdb[4];
 | |
| 			if (block_cnt == 0)
 | |
| 				block_cnt = 256;
 | |
| 		} else {
 | |
| 			BUG_ON(*cdb_len != 12);
 | |
| 			block = get_unaligned_be32(&cdb[2]);
 | |
| 			block_cnt = get_unaligned_be32(&cdb[6]);
 | |
| 		}
 | |
| 		if (block_cnt > 0xffff)
 | |
| 			return IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 		cdb[0] = is_write ? WRITE_10 : READ_10;
 | |
| 		cdb[1] = 0;
 | |
| 		cdb[2] = (u8) (block >> 24);
 | |
| 		cdb[3] = (u8) (block >> 16);
 | |
| 		cdb[4] = (u8) (block >> 8);
 | |
| 		cdb[5] = (u8) (block);
 | |
| 		cdb[6] = 0;
 | |
| 		cdb[7] = (u8) (block_cnt >> 8);
 | |
| 		cdb[8] = (u8) (block_cnt);
 | |
| 		cdb[9] = 0;
 | |
| 		*cdb_len = 10;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
 | |
| 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 | |
| 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd = c->scsi_cmd;
 | |
| 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
 | |
| 	unsigned int len;
 | |
| 	unsigned int total_len = 0;
 | |
| 	struct scatterlist *sg;
 | |
| 	u64 addr64;
 | |
| 	int use_sg, i;
 | |
| 	struct SGDescriptor *curr_sg;
 | |
| 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
 | |
| 
 | |
| 	/* TODO: implement chaining support */
 | |
| 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
 | |
| 		atomic_dec(&phys_disk->ioaccel_cmds_out);
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
 | |
| 
 | |
| 	if (is_zero_length_transfer(cdb)) {
 | |
| 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
 | |
| 		atomic_dec(&phys_disk->ioaccel_cmds_out);
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 	}
 | |
| 
 | |
| 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
 | |
| 		atomic_dec(&phys_disk->ioaccel_cmds_out);
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 	}
 | |
| 
 | |
| 	c->cmd_type = CMD_IOACCEL1;
 | |
| 
 | |
| 	/* Adjust the DMA address to point to the accelerated command buffer */
 | |
| 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
 | |
| 				(c->cmdindex * sizeof(*cp));
 | |
| 	BUG_ON(c->busaddr & 0x0000007F);
 | |
| 
 | |
| 	use_sg = scsi_dma_map(cmd);
 | |
| 	if (use_sg < 0) {
 | |
| 		atomic_dec(&phys_disk->ioaccel_cmds_out);
 | |
| 		return use_sg;
 | |
| 	}
 | |
| 
 | |
| 	if (use_sg) {
 | |
| 		curr_sg = cp->SG;
 | |
| 		scsi_for_each_sg(cmd, sg, use_sg, i) {
 | |
| 			addr64 = (u64) sg_dma_address(sg);
 | |
| 			len  = sg_dma_len(sg);
 | |
| 			total_len += len;
 | |
| 			curr_sg->Addr = cpu_to_le64(addr64);
 | |
| 			curr_sg->Len = cpu_to_le32(len);
 | |
| 			curr_sg->Ext = cpu_to_le32(0);
 | |
| 			curr_sg++;
 | |
| 		}
 | |
| 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
 | |
| 
 | |
| 		switch (cmd->sc_data_direction) {
 | |
| 		case DMA_TO_DEVICE:
 | |
| 			control |= IOACCEL1_CONTROL_DATA_OUT;
 | |
| 			break;
 | |
| 		case DMA_FROM_DEVICE:
 | |
| 			control |= IOACCEL1_CONTROL_DATA_IN;
 | |
| 			break;
 | |
| 		case DMA_NONE:
 | |
| 			control |= IOACCEL1_CONTROL_NODATAXFER;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
 | |
| 			cmd->sc_data_direction);
 | |
| 			BUG();
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		control |= IOACCEL1_CONTROL_NODATAXFER;
 | |
| 	}
 | |
| 
 | |
| 	c->Header.SGList = use_sg;
 | |
| 	/* Fill out the command structure to submit */
 | |
| 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
 | |
| 	cp->transfer_len = cpu_to_le32(total_len);
 | |
| 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
 | |
| 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
 | |
| 	cp->control = cpu_to_le32(control);
 | |
| 	memcpy(cp->CDB, cdb, cdb_len);
 | |
| 	memcpy(cp->CISS_LUN, scsi3addr, 8);
 | |
| 	/* Tag was already set at init time. */
 | |
| 	enqueue_cmd_and_start_io(h, c);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue a command directly to a device behind the controller using the
 | |
|  * I/O accelerator path.
 | |
|  */
 | |
| static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
 | |
| 	struct CommandList *c)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd = c->scsi_cmd;
 | |
| 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return -1;
 | |
| 
 | |
| 	c->phys_disk = dev;
 | |
| 
 | |
| 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
 | |
| 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set encryption parameters for the ioaccel2 request
 | |
|  */
 | |
| static void set_encrypt_ioaccel2(struct ctlr_info *h,
 | |
| 	struct CommandList *c, struct io_accel2_cmd *cp)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd = c->scsi_cmd;
 | |
| 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 | |
| 	struct raid_map_data *map = &dev->raid_map;
 | |
| 	u64 first_block;
 | |
| 
 | |
| 	/* Are we doing encryption on this device */
 | |
| 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
 | |
| 		return;
 | |
| 	/* Set the data encryption key index. */
 | |
| 	cp->dekindex = map->dekindex;
 | |
| 
 | |
| 	/* Set the encryption enable flag, encoded into direction field. */
 | |
| 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
 | |
| 
 | |
| 	/* Set encryption tweak values based on logical block address
 | |
| 	 * If block size is 512, tweak value is LBA.
 | |
| 	 * For other block sizes, tweak is (LBA * block size)/ 512)
 | |
| 	 */
 | |
| 	switch (cmd->cmnd[0]) {
 | |
| 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
 | |
| 	case READ_6:
 | |
| 	case WRITE_6:
 | |
| 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
 | |
| 				(cmd->cmnd[2] << 8) |
 | |
| 				cmd->cmnd[3]);
 | |
| 		break;
 | |
| 	case WRITE_10:
 | |
| 	case READ_10:
 | |
| 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
 | |
| 	case WRITE_12:
 | |
| 	case READ_12:
 | |
| 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
 | |
| 		break;
 | |
| 	case WRITE_16:
 | |
| 	case READ_16:
 | |
| 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(&h->pdev->dev,
 | |
| 			"ERROR: %s: size (0x%x) not supported for encryption\n",
 | |
| 			__func__, cmd->cmnd[0]);
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (le32_to_cpu(map->volume_blk_size) != 512)
 | |
| 		first_block = first_block *
 | |
| 				le32_to_cpu(map->volume_blk_size)/512;
 | |
| 
 | |
| 	cp->tweak_lower = cpu_to_le32(first_block);
 | |
| 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
 | |
| }
 | |
| 
 | |
| static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
 | |
| 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 | |
| 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd = c->scsi_cmd;
 | |
| 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
 | |
| 	struct ioaccel2_sg_element *curr_sg;
 | |
| 	int use_sg, i;
 | |
| 	struct scatterlist *sg;
 | |
| 	u64 addr64;
 | |
| 	u32 len;
 | |
| 	u32 total_len = 0;
 | |
| 
 | |
| 	if (!cmd->device)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (!cmd->device->hostdata)
 | |
| 		return -1;
 | |
| 
 | |
| 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
 | |
| 
 | |
| 	if (is_zero_length_transfer(cdb)) {
 | |
| 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
 | |
| 		atomic_dec(&phys_disk->ioaccel_cmds_out);
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 	}
 | |
| 
 | |
| 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
 | |
| 		atomic_dec(&phys_disk->ioaccel_cmds_out);
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 	}
 | |
| 
 | |
| 	c->cmd_type = CMD_IOACCEL2;
 | |
| 	/* Adjust the DMA address to point to the accelerated command buffer */
 | |
| 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
 | |
| 				(c->cmdindex * sizeof(*cp));
 | |
| 	BUG_ON(c->busaddr & 0x0000007F);
 | |
| 
 | |
| 	memset(cp, 0, sizeof(*cp));
 | |
| 	cp->IU_type = IOACCEL2_IU_TYPE;
 | |
| 
 | |
| 	use_sg = scsi_dma_map(cmd);
 | |
| 	if (use_sg < 0) {
 | |
| 		atomic_dec(&phys_disk->ioaccel_cmds_out);
 | |
| 		return use_sg;
 | |
| 	}
 | |
| 
 | |
| 	if (use_sg) {
 | |
| 		curr_sg = cp->sg;
 | |
| 		if (use_sg > h->ioaccel_maxsg) {
 | |
| 			addr64 = le64_to_cpu(
 | |
| 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
 | |
| 			curr_sg->address = cpu_to_le64(addr64);
 | |
| 			curr_sg->length = 0;
 | |
| 			curr_sg->reserved[0] = 0;
 | |
| 			curr_sg->reserved[1] = 0;
 | |
| 			curr_sg->reserved[2] = 0;
 | |
| 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
 | |
| 
 | |
| 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
 | |
| 		}
 | |
| 		scsi_for_each_sg(cmd, sg, use_sg, i) {
 | |
| 			addr64 = (u64) sg_dma_address(sg);
 | |
| 			len  = sg_dma_len(sg);
 | |
| 			total_len += len;
 | |
| 			curr_sg->address = cpu_to_le64(addr64);
 | |
| 			curr_sg->length = cpu_to_le32(len);
 | |
| 			curr_sg->reserved[0] = 0;
 | |
| 			curr_sg->reserved[1] = 0;
 | |
| 			curr_sg->reserved[2] = 0;
 | |
| 			curr_sg->chain_indicator = 0;
 | |
| 			curr_sg++;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the last s/g element bit
 | |
| 		 */
 | |
| 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
 | |
| 
 | |
| 		switch (cmd->sc_data_direction) {
 | |
| 		case DMA_TO_DEVICE:
 | |
| 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 | |
| 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
 | |
| 			break;
 | |
| 		case DMA_FROM_DEVICE:
 | |
| 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 | |
| 			cp->direction |= IOACCEL2_DIR_DATA_IN;
 | |
| 			break;
 | |
| 		case DMA_NONE:
 | |
| 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 | |
| 			cp->direction |= IOACCEL2_DIR_NO_DATA;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
 | |
| 				cmd->sc_data_direction);
 | |
| 			BUG();
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 | |
| 		cp->direction |= IOACCEL2_DIR_NO_DATA;
 | |
| 	}
 | |
| 
 | |
| 	/* Set encryption parameters, if necessary */
 | |
| 	set_encrypt_ioaccel2(h, c, cp);
 | |
| 
 | |
| 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
 | |
| 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
 | |
| 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
 | |
| 
 | |
| 	cp->data_len = cpu_to_le32(total_len);
 | |
| 	cp->err_ptr = cpu_to_le64(c->busaddr +
 | |
| 			offsetof(struct io_accel2_cmd, error_data));
 | |
| 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
 | |
| 
 | |
| 	/* fill in sg elements */
 | |
| 	if (use_sg > h->ioaccel_maxsg) {
 | |
| 		cp->sg_count = 1;
 | |
| 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
 | |
| 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
 | |
| 			atomic_dec(&phys_disk->ioaccel_cmds_out);
 | |
| 			scsi_dma_unmap(cmd);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	} else
 | |
| 		cp->sg_count = (u8) use_sg;
 | |
| 
 | |
| 	enqueue_cmd_and_start_io(h, c);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue a command to the correct I/O accelerator path.
 | |
|  */
 | |
| static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 | |
| 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 | |
| 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
 | |
| {
 | |
| 	if (!c->scsi_cmd->device)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (!c->scsi_cmd->device->hostdata)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Try to honor the device's queue depth */
 | |
| 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
 | |
| 					phys_disk->queue_depth) {
 | |
| 		atomic_dec(&phys_disk->ioaccel_cmds_out);
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 	}
 | |
| 	if (h->transMethod & CFGTBL_Trans_io_accel1)
 | |
| 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
 | |
| 						cdb, cdb_len, scsi3addr,
 | |
| 						phys_disk);
 | |
| 	else
 | |
| 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
 | |
| 						cdb, cdb_len, scsi3addr,
 | |
| 						phys_disk);
 | |
| }
 | |
| 
 | |
| static void raid_map_helper(struct raid_map_data *map,
 | |
| 		int offload_to_mirror, u32 *map_index, u32 *current_group)
 | |
| {
 | |
| 	if (offload_to_mirror == 0)  {
 | |
| 		/* use physical disk in the first mirrored group. */
 | |
| 		*map_index %= le16_to_cpu(map->data_disks_per_row);
 | |
| 		return;
 | |
| 	}
 | |
| 	do {
 | |
| 		/* determine mirror group that *map_index indicates */
 | |
| 		*current_group = *map_index /
 | |
| 			le16_to_cpu(map->data_disks_per_row);
 | |
| 		if (offload_to_mirror == *current_group)
 | |
| 			continue;
 | |
| 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
 | |
| 			/* select map index from next group */
 | |
| 			*map_index += le16_to_cpu(map->data_disks_per_row);
 | |
| 			(*current_group)++;
 | |
| 		} else {
 | |
| 			/* select map index from first group */
 | |
| 			*map_index %= le16_to_cpu(map->data_disks_per_row);
 | |
| 			*current_group = 0;
 | |
| 		}
 | |
| 	} while (offload_to_mirror != *current_group);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to perform offload RAID mapping for a logical volume I/O.
 | |
|  */
 | |
| static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
 | |
| 	struct CommandList *c)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd = c->scsi_cmd;
 | |
| 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 | |
| 	struct raid_map_data *map = &dev->raid_map;
 | |
| 	struct raid_map_disk_data *dd = &map->data[0];
 | |
| 	int is_write = 0;
 | |
| 	u32 map_index;
 | |
| 	u64 first_block, last_block;
 | |
| 	u32 block_cnt;
 | |
| 	u32 blocks_per_row;
 | |
| 	u64 first_row, last_row;
 | |
| 	u32 first_row_offset, last_row_offset;
 | |
| 	u32 first_column, last_column;
 | |
| 	u64 r0_first_row, r0_last_row;
 | |
| 	u32 r5or6_blocks_per_row;
 | |
| 	u64 r5or6_first_row, r5or6_last_row;
 | |
| 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
 | |
| 	u32 r5or6_first_column, r5or6_last_column;
 | |
| 	u32 total_disks_per_row;
 | |
| 	u32 stripesize;
 | |
| 	u32 first_group, last_group, current_group;
 | |
| 	u32 map_row;
 | |
| 	u32 disk_handle;
 | |
| 	u64 disk_block;
 | |
| 	u32 disk_block_cnt;
 | |
| 	u8 cdb[16];
 | |
| 	u8 cdb_len;
 | |
| 	u16 strip_size;
 | |
| #if BITS_PER_LONG == 32
 | |
| 	u64 tmpdiv;
 | |
| #endif
 | |
| 	int offload_to_mirror;
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* check for valid opcode, get LBA and block count */
 | |
| 	switch (cmd->cmnd[0]) {
 | |
| 	case WRITE_6:
 | |
| 		is_write = 1;
 | |
| 	case READ_6:
 | |
| 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
 | |
| 				(cmd->cmnd[2] << 8) |
 | |
| 				cmd->cmnd[3]);
 | |
| 		block_cnt = cmd->cmnd[4];
 | |
| 		if (block_cnt == 0)
 | |
| 			block_cnt = 256;
 | |
| 		break;
 | |
| 	case WRITE_10:
 | |
| 		is_write = 1;
 | |
| 	case READ_10:
 | |
| 		first_block =
 | |
| 			(((u64) cmd->cmnd[2]) << 24) |
 | |
| 			(((u64) cmd->cmnd[3]) << 16) |
 | |
| 			(((u64) cmd->cmnd[4]) << 8) |
 | |
| 			cmd->cmnd[5];
 | |
| 		block_cnt =
 | |
| 			(((u32) cmd->cmnd[7]) << 8) |
 | |
| 			cmd->cmnd[8];
 | |
| 		break;
 | |
| 	case WRITE_12:
 | |
| 		is_write = 1;
 | |
| 	case READ_12:
 | |
| 		first_block =
 | |
| 			(((u64) cmd->cmnd[2]) << 24) |
 | |
| 			(((u64) cmd->cmnd[3]) << 16) |
 | |
| 			(((u64) cmd->cmnd[4]) << 8) |
 | |
| 			cmd->cmnd[5];
 | |
| 		block_cnt =
 | |
| 			(((u32) cmd->cmnd[6]) << 24) |
 | |
| 			(((u32) cmd->cmnd[7]) << 16) |
 | |
| 			(((u32) cmd->cmnd[8]) << 8) |
 | |
| 		cmd->cmnd[9];
 | |
| 		break;
 | |
| 	case WRITE_16:
 | |
| 		is_write = 1;
 | |
| 	case READ_16:
 | |
| 		first_block =
 | |
| 			(((u64) cmd->cmnd[2]) << 56) |
 | |
| 			(((u64) cmd->cmnd[3]) << 48) |
 | |
| 			(((u64) cmd->cmnd[4]) << 40) |
 | |
| 			(((u64) cmd->cmnd[5]) << 32) |
 | |
| 			(((u64) cmd->cmnd[6]) << 24) |
 | |
| 			(((u64) cmd->cmnd[7]) << 16) |
 | |
| 			(((u64) cmd->cmnd[8]) << 8) |
 | |
| 			cmd->cmnd[9];
 | |
| 		block_cnt =
 | |
| 			(((u32) cmd->cmnd[10]) << 24) |
 | |
| 			(((u32) cmd->cmnd[11]) << 16) |
 | |
| 			(((u32) cmd->cmnd[12]) << 8) |
 | |
| 			cmd->cmnd[13];
 | |
| 		break;
 | |
| 	default:
 | |
| 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
 | |
| 	}
 | |
| 	last_block = first_block + block_cnt - 1;
 | |
| 
 | |
| 	/* check for write to non-RAID-0 */
 | |
| 	if (is_write && dev->raid_level != 0)
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 	/* check for invalid block or wraparound */
 | |
| 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
 | |
| 		last_block < first_block)
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 	/* calculate stripe information for the request */
 | |
| 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
 | |
| 				le16_to_cpu(map->strip_size);
 | |
| 	strip_size = le16_to_cpu(map->strip_size);
 | |
| #if BITS_PER_LONG == 32
 | |
| 	tmpdiv = first_block;
 | |
| 	(void) do_div(tmpdiv, blocks_per_row);
 | |
| 	first_row = tmpdiv;
 | |
| 	tmpdiv = last_block;
 | |
| 	(void) do_div(tmpdiv, blocks_per_row);
 | |
| 	last_row = tmpdiv;
 | |
| 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
 | |
| 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
 | |
| 	tmpdiv = first_row_offset;
 | |
| 	(void) do_div(tmpdiv, strip_size);
 | |
| 	first_column = tmpdiv;
 | |
| 	tmpdiv = last_row_offset;
 | |
| 	(void) do_div(tmpdiv, strip_size);
 | |
| 	last_column = tmpdiv;
 | |
| #else
 | |
| 	first_row = first_block / blocks_per_row;
 | |
| 	last_row = last_block / blocks_per_row;
 | |
| 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
 | |
| 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
 | |
| 	first_column = first_row_offset / strip_size;
 | |
| 	last_column = last_row_offset / strip_size;
 | |
| #endif
 | |
| 
 | |
| 	/* if this isn't a single row/column then give to the controller */
 | |
| 	if ((first_row != last_row) || (first_column != last_column))
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 	/* proceeding with driver mapping */
 | |
| 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
 | |
| 				le16_to_cpu(map->metadata_disks_per_row);
 | |
| 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
 | |
| 				le16_to_cpu(map->row_cnt);
 | |
| 	map_index = (map_row * total_disks_per_row) + first_column;
 | |
| 
 | |
| 	switch (dev->raid_level) {
 | |
| 	case HPSA_RAID_0:
 | |
| 		break; /* nothing special to do */
 | |
| 	case HPSA_RAID_1:
 | |
| 		/* Handles load balance across RAID 1 members.
 | |
| 		 * (2-drive R1 and R10 with even # of drives.)
 | |
| 		 * Appropriate for SSDs, not optimal for HDDs
 | |
| 		 */
 | |
| 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
 | |
| 		if (dev->offload_to_mirror)
 | |
| 			map_index += le16_to_cpu(map->data_disks_per_row);
 | |
| 		dev->offload_to_mirror = !dev->offload_to_mirror;
 | |
| 		break;
 | |
| 	case HPSA_RAID_ADM:
 | |
| 		/* Handles N-way mirrors  (R1-ADM)
 | |
| 		 * and R10 with # of drives divisible by 3.)
 | |
| 		 */
 | |
| 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
 | |
| 
 | |
| 		offload_to_mirror = dev->offload_to_mirror;
 | |
| 		raid_map_helper(map, offload_to_mirror,
 | |
| 				&map_index, ¤t_group);
 | |
| 		/* set mirror group to use next time */
 | |
| 		offload_to_mirror =
 | |
| 			(offload_to_mirror >=
 | |
| 			le16_to_cpu(map->layout_map_count) - 1)
 | |
| 			? 0 : offload_to_mirror + 1;
 | |
| 		dev->offload_to_mirror = offload_to_mirror;
 | |
| 		/* Avoid direct use of dev->offload_to_mirror within this
 | |
| 		 * function since multiple threads might simultaneously
 | |
| 		 * increment it beyond the range of dev->layout_map_count -1.
 | |
| 		 */
 | |
| 		break;
 | |
| 	case HPSA_RAID_5:
 | |
| 	case HPSA_RAID_6:
 | |
| 		if (le16_to_cpu(map->layout_map_count) <= 1)
 | |
| 			break;
 | |
| 
 | |
| 		/* Verify first and last block are in same RAID group */
 | |
| 		r5or6_blocks_per_row =
 | |
| 			le16_to_cpu(map->strip_size) *
 | |
| 			le16_to_cpu(map->data_disks_per_row);
 | |
| 		BUG_ON(r5or6_blocks_per_row == 0);
 | |
| 		stripesize = r5or6_blocks_per_row *
 | |
| 			le16_to_cpu(map->layout_map_count);
 | |
| #if BITS_PER_LONG == 32
 | |
| 		tmpdiv = first_block;
 | |
| 		first_group = do_div(tmpdiv, stripesize);
 | |
| 		tmpdiv = first_group;
 | |
| 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
 | |
| 		first_group = tmpdiv;
 | |
| 		tmpdiv = last_block;
 | |
| 		last_group = do_div(tmpdiv, stripesize);
 | |
| 		tmpdiv = last_group;
 | |
| 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
 | |
| 		last_group = tmpdiv;
 | |
| #else
 | |
| 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
 | |
| 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
 | |
| #endif
 | |
| 		if (first_group != last_group)
 | |
| 			return IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 		/* Verify request is in a single row of RAID 5/6 */
 | |
| #if BITS_PER_LONG == 32
 | |
| 		tmpdiv = first_block;
 | |
| 		(void) do_div(tmpdiv, stripesize);
 | |
| 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
 | |
| 		tmpdiv = last_block;
 | |
| 		(void) do_div(tmpdiv, stripesize);
 | |
| 		r5or6_last_row = r0_last_row = tmpdiv;
 | |
| #else
 | |
| 		first_row = r5or6_first_row = r0_first_row =
 | |
| 						first_block / stripesize;
 | |
| 		r5or6_last_row = r0_last_row = last_block / stripesize;
 | |
| #endif
 | |
| 		if (r5or6_first_row != r5or6_last_row)
 | |
| 			return IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 
 | |
| 		/* Verify request is in a single column */
 | |
| #if BITS_PER_LONG == 32
 | |
| 		tmpdiv = first_block;
 | |
| 		first_row_offset = do_div(tmpdiv, stripesize);
 | |
| 		tmpdiv = first_row_offset;
 | |
| 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
 | |
| 		r5or6_first_row_offset = first_row_offset;
 | |
| 		tmpdiv = last_block;
 | |
| 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
 | |
| 		tmpdiv = r5or6_last_row_offset;
 | |
| 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
 | |
| 		tmpdiv = r5or6_first_row_offset;
 | |
| 		(void) do_div(tmpdiv, map->strip_size);
 | |
| 		first_column = r5or6_first_column = tmpdiv;
 | |
| 		tmpdiv = r5or6_last_row_offset;
 | |
| 		(void) do_div(tmpdiv, map->strip_size);
 | |
| 		r5or6_last_column = tmpdiv;
 | |
| #else
 | |
| 		first_row_offset = r5or6_first_row_offset =
 | |
| 			(u32)((first_block % stripesize) %
 | |
| 						r5or6_blocks_per_row);
 | |
| 
 | |
| 		r5or6_last_row_offset =
 | |
| 			(u32)((last_block % stripesize) %
 | |
| 						r5or6_blocks_per_row);
 | |
| 
 | |
| 		first_column = r5or6_first_column =
 | |
| 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
 | |
| 		r5or6_last_column =
 | |
| 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
 | |
| #endif
 | |
| 		if (r5or6_first_column != r5or6_last_column)
 | |
| 			return IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 		/* Request is eligible */
 | |
| 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
 | |
| 			le16_to_cpu(map->row_cnt);
 | |
| 
 | |
| 		map_index = (first_group *
 | |
| 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
 | |
| 			(map_row * total_disks_per_row) + first_column;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 	c->phys_disk = dev->phys_disk[map_index];
 | |
| 	if (!c->phys_disk)
 | |
| 		return IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 	disk_handle = dd[map_index].ioaccel_handle;
 | |
| 	disk_block = le64_to_cpu(map->disk_starting_blk) +
 | |
| 			first_row * le16_to_cpu(map->strip_size) +
 | |
| 			(first_row_offset - first_column *
 | |
| 			le16_to_cpu(map->strip_size));
 | |
| 	disk_block_cnt = block_cnt;
 | |
| 
 | |
| 	/* handle differing logical/physical block sizes */
 | |
| 	if (map->phys_blk_shift) {
 | |
| 		disk_block <<= map->phys_blk_shift;
 | |
| 		disk_block_cnt <<= map->phys_blk_shift;
 | |
| 	}
 | |
| 	BUG_ON(disk_block_cnt > 0xffff);
 | |
| 
 | |
| 	/* build the new CDB for the physical disk I/O */
 | |
| 	if (disk_block > 0xffffffff) {
 | |
| 		cdb[0] = is_write ? WRITE_16 : READ_16;
 | |
| 		cdb[1] = 0;
 | |
| 		cdb[2] = (u8) (disk_block >> 56);
 | |
| 		cdb[3] = (u8) (disk_block >> 48);
 | |
| 		cdb[4] = (u8) (disk_block >> 40);
 | |
| 		cdb[5] = (u8) (disk_block >> 32);
 | |
| 		cdb[6] = (u8) (disk_block >> 24);
 | |
| 		cdb[7] = (u8) (disk_block >> 16);
 | |
| 		cdb[8] = (u8) (disk_block >> 8);
 | |
| 		cdb[9] = (u8) (disk_block);
 | |
| 		cdb[10] = (u8) (disk_block_cnt >> 24);
 | |
| 		cdb[11] = (u8) (disk_block_cnt >> 16);
 | |
| 		cdb[12] = (u8) (disk_block_cnt >> 8);
 | |
| 		cdb[13] = (u8) (disk_block_cnt);
 | |
| 		cdb[14] = 0;
 | |
| 		cdb[15] = 0;
 | |
| 		cdb_len = 16;
 | |
| 	} else {
 | |
| 		cdb[0] = is_write ? WRITE_10 : READ_10;
 | |
| 		cdb[1] = 0;
 | |
| 		cdb[2] = (u8) (disk_block >> 24);
 | |
| 		cdb[3] = (u8) (disk_block >> 16);
 | |
| 		cdb[4] = (u8) (disk_block >> 8);
 | |
| 		cdb[5] = (u8) (disk_block);
 | |
| 		cdb[6] = 0;
 | |
| 		cdb[7] = (u8) (disk_block_cnt >> 8);
 | |
| 		cdb[8] = (u8) (disk_block_cnt);
 | |
| 		cdb[9] = 0;
 | |
| 		cdb_len = 10;
 | |
| 	}
 | |
| 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
 | |
| 						dev->scsi3addr,
 | |
| 						dev->phys_disk[map_index]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit commands down the "normal" RAID stack path
 | |
|  * All callers to hpsa_ciss_submit must check lockup_detected
 | |
|  * beforehand, before (opt.) and after calling cmd_alloc
 | |
|  */
 | |
| static int hpsa_ciss_submit(struct ctlr_info *h,
 | |
| 	struct CommandList *c, struct scsi_cmnd *cmd,
 | |
| 	unsigned char scsi3addr[])
 | |
| {
 | |
| 	cmd->host_scribble = (unsigned char *) c;
 | |
| 	c->cmd_type = CMD_SCSI;
 | |
| 	c->scsi_cmd = cmd;
 | |
| 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
 | |
| 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
 | |
| 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
 | |
| 
 | |
| 	/* Fill in the request block... */
 | |
| 
 | |
| 	c->Request.Timeout = 0;
 | |
| 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
 | |
| 	c->Request.CDBLen = cmd->cmd_len;
 | |
| 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
 | |
| 	switch (cmd->sc_data_direction) {
 | |
| 	case DMA_TO_DEVICE:
 | |
| 		c->Request.type_attr_dir =
 | |
| 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
 | |
| 		break;
 | |
| 	case DMA_FROM_DEVICE:
 | |
| 		c->Request.type_attr_dir =
 | |
| 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
 | |
| 		break;
 | |
| 	case DMA_NONE:
 | |
| 		c->Request.type_attr_dir =
 | |
| 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
 | |
| 		break;
 | |
| 	case DMA_BIDIRECTIONAL:
 | |
| 		/* This can happen if a buggy application does a scsi passthru
 | |
| 		 * and sets both inlen and outlen to non-zero. ( see
 | |
| 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
 | |
| 		 */
 | |
| 
 | |
| 		c->Request.type_attr_dir =
 | |
| 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
 | |
| 		/* This is technically wrong, and hpsa controllers should
 | |
| 		 * reject it with CMD_INVALID, which is the most correct
 | |
| 		 * response, but non-fibre backends appear to let it
 | |
| 		 * slide by, and give the same results as if this field
 | |
| 		 * were set correctly.  Either way is acceptable for
 | |
| 		 * our purposes here.
 | |
| 		 */
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
 | |
| 			cmd->sc_data_direction);
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
 | |
| 		hpsa_cmd_resolve_and_free(h, c);
 | |
| 		return SCSI_MLQUEUE_HOST_BUSY;
 | |
| 	}
 | |
| 	enqueue_cmd_and_start_io(h, c);
 | |
| 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hpsa_cmd_init(struct ctlr_info *h, int index,
 | |
| 				struct CommandList *c)
 | |
| {
 | |
| 	dma_addr_t cmd_dma_handle, err_dma_handle;
 | |
| 
 | |
| 	/* Zero out all of commandlist except the last field, refcount */
 | |
| 	memset(c, 0, offsetof(struct CommandList, refcount));
 | |
| 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
 | |
| 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
 | |
| 	c->err_info = h->errinfo_pool + index;
 | |
| 	memset(c->err_info, 0, sizeof(*c->err_info));
 | |
| 	err_dma_handle = h->errinfo_pool_dhandle
 | |
| 	    + index * sizeof(*c->err_info);
 | |
| 	c->cmdindex = index;
 | |
| 	c->busaddr = (u32) cmd_dma_handle;
 | |
| 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
 | |
| 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
 | |
| 	c->h = h;
 | |
| 	c->scsi_cmd = SCSI_CMD_IDLE;
 | |
| }
 | |
| 
 | |
| static void hpsa_preinitialize_commands(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < h->nr_cmds; i++) {
 | |
| 		struct CommandList *c = h->cmd_pool + i;
 | |
| 
 | |
| 		hpsa_cmd_init(h, i, c);
 | |
| 		atomic_set(&c->refcount, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
 | |
| 				struct CommandList *c)
 | |
| {
 | |
| 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
 | |
| 
 | |
| 	BUG_ON(c->cmdindex != index);
 | |
| 
 | |
| 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
 | |
| 	memset(c->err_info, 0, sizeof(*c->err_info));
 | |
| 	c->busaddr = (u32) cmd_dma_handle;
 | |
| }
 | |
| 
 | |
| static int hpsa_ioaccel_submit(struct ctlr_info *h,
 | |
| 		struct CommandList *c, struct scsi_cmnd *cmd,
 | |
| 		unsigned char *scsi3addr)
 | |
| {
 | |
| 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 | |
| 	int rc = IO_ACCEL_INELIGIBLE;
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return SCSI_MLQUEUE_HOST_BUSY;
 | |
| 
 | |
| 	cmd->host_scribble = (unsigned char *) c;
 | |
| 
 | |
| 	if (dev->offload_enabled) {
 | |
| 		hpsa_cmd_init(h, c->cmdindex, c);
 | |
| 		c->cmd_type = CMD_SCSI;
 | |
| 		c->scsi_cmd = cmd;
 | |
| 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
 | |
| 		if (rc < 0)     /* scsi_dma_map failed. */
 | |
| 			rc = SCSI_MLQUEUE_HOST_BUSY;
 | |
| 	} else if (dev->hba_ioaccel_enabled) {
 | |
| 		hpsa_cmd_init(h, c->cmdindex, c);
 | |
| 		c->cmd_type = CMD_SCSI;
 | |
| 		c->scsi_cmd = cmd;
 | |
| 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
 | |
| 		if (rc < 0)     /* scsi_dma_map failed. */
 | |
| 			rc = SCSI_MLQUEUE_HOST_BUSY;
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void hpsa_command_resubmit_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd;
 | |
| 	struct hpsa_scsi_dev_t *dev;
 | |
| 	struct CommandList *c = container_of(work, struct CommandList, work);
 | |
| 
 | |
| 	cmd = c->scsi_cmd;
 | |
| 	dev = cmd->device->hostdata;
 | |
| 	if (!dev) {
 | |
| 		cmd->result = DID_NO_CONNECT << 16;
 | |
| 		return hpsa_cmd_free_and_done(c->h, c, cmd);
 | |
| 	}
 | |
| 	if (c->reset_pending)
 | |
| 		return hpsa_cmd_free_and_done(c->h, c, cmd);
 | |
| 	if (c->cmd_type == CMD_IOACCEL2) {
 | |
| 		struct ctlr_info *h = c->h;
 | |
| 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 | |
| 		int rc;
 | |
| 
 | |
| 		if (c2->error_data.serv_response ==
 | |
| 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
 | |
| 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
 | |
| 			if (rc == 0)
 | |
| 				return;
 | |
| 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
 | |
| 				/*
 | |
| 				 * If we get here, it means dma mapping failed.
 | |
| 				 * Try again via scsi mid layer, which will
 | |
| 				 * then get SCSI_MLQUEUE_HOST_BUSY.
 | |
| 				 */
 | |
| 				cmd->result = DID_IMM_RETRY << 16;
 | |
| 				return hpsa_cmd_free_and_done(h, c, cmd);
 | |
| 			}
 | |
| 			/* else, fall thru and resubmit down CISS path */
 | |
| 		}
 | |
| 	}
 | |
| 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
 | |
| 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
 | |
| 		/*
 | |
| 		 * If we get here, it means dma mapping failed. Try
 | |
| 		 * again via scsi mid layer, which will then get
 | |
| 		 * SCSI_MLQUEUE_HOST_BUSY.
 | |
| 		 *
 | |
| 		 * hpsa_ciss_submit will have already freed c
 | |
| 		 * if it encountered a dma mapping failure.
 | |
| 		 */
 | |
| 		cmd->result = DID_IMM_RETRY << 16;
 | |
| 		cmd->scsi_done(cmd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Running in struct Scsi_Host->host_lock less mode */
 | |
| static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	struct hpsa_scsi_dev_t *dev;
 | |
| 	unsigned char scsi3addr[8];
 | |
| 	struct CommandList *c;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	/* Get the ptr to our adapter structure out of cmd->host. */
 | |
| 	h = sdev_to_hba(cmd->device);
 | |
| 
 | |
| 	BUG_ON(cmd->request->tag < 0);
 | |
| 
 | |
| 	dev = cmd->device->hostdata;
 | |
| 	if (!dev) {
 | |
| 		cmd->result = DID_NO_CONNECT << 16;
 | |
| 		cmd->scsi_done(cmd);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (dev->removed) {
 | |
| 		cmd->result = DID_NO_CONNECT << 16;
 | |
| 		cmd->scsi_done(cmd);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
 | |
| 
 | |
| 	if (unlikely(lockup_detected(h))) {
 | |
| 		cmd->result = DID_NO_CONNECT << 16;
 | |
| 		cmd->scsi_done(cmd);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	c = cmd_tagged_alloc(h, cmd);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is necessary because the SML doesn't zero out this field during
 | |
| 	 * error recovery.
 | |
| 	 */
 | |
| 	cmd->result = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Call alternate submit routine for I/O accelerated commands.
 | |
| 	 * Retries always go down the normal I/O path.
 | |
| 	 */
 | |
| 	if (likely(cmd->retries == 0 &&
 | |
| 			!blk_rq_is_passthrough(cmd->request) &&
 | |
| 			h->acciopath_status)) {
 | |
| 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
 | |
| 		if (rc == 0)
 | |
| 			return 0;
 | |
| 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
 | |
| 			hpsa_cmd_resolve_and_free(h, c);
 | |
| 			return SCSI_MLQUEUE_HOST_BUSY;
 | |
| 		}
 | |
| 	}
 | |
| 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
 | |
| }
 | |
| 
 | |
| static void hpsa_scan_complete(struct ctlr_info *h)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&h->scan_lock, flags);
 | |
| 	h->scan_finished = 1;
 | |
| 	wake_up(&h->scan_wait_queue);
 | |
| 	spin_unlock_irqrestore(&h->scan_lock, flags);
 | |
| }
 | |
| 
 | |
| static void hpsa_scan_start(struct Scsi_Host *sh)
 | |
| {
 | |
| 	struct ctlr_info *h = shost_to_hba(sh);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't let rescans be initiated on a controller known to be locked
 | |
| 	 * up.  If the controller locks up *during* a rescan, that thread is
 | |
| 	 * probably hosed, but at least we can prevent new rescan threads from
 | |
| 	 * piling up on a locked up controller.
 | |
| 	 */
 | |
| 	if (unlikely(lockup_detected(h)))
 | |
| 		return hpsa_scan_complete(h);
 | |
| 
 | |
| 	/*
 | |
| 	 * If a scan is already waiting to run, no need to add another
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&h->scan_lock, flags);
 | |
| 	if (h->scan_waiting) {
 | |
| 		spin_unlock_irqrestore(&h->scan_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&h->scan_lock, flags);
 | |
| 
 | |
| 	/* wait until any scan already in progress is finished. */
 | |
| 	while (1) {
 | |
| 		spin_lock_irqsave(&h->scan_lock, flags);
 | |
| 		if (h->scan_finished)
 | |
| 			break;
 | |
| 		h->scan_waiting = 1;
 | |
| 		spin_unlock_irqrestore(&h->scan_lock, flags);
 | |
| 		wait_event(h->scan_wait_queue, h->scan_finished);
 | |
| 		/* Note: We don't need to worry about a race between this
 | |
| 		 * thread and driver unload because the midlayer will
 | |
| 		 * have incremented the reference count, so unload won't
 | |
| 		 * happen if we're in here.
 | |
| 		 */
 | |
| 	}
 | |
| 	h->scan_finished = 0; /* mark scan as in progress */
 | |
| 	h->scan_waiting = 0;
 | |
| 	spin_unlock_irqrestore(&h->scan_lock, flags);
 | |
| 
 | |
| 	if (unlikely(lockup_detected(h)))
 | |
| 		return hpsa_scan_complete(h);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do the scan after a reset completion
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&h->reset_lock, flags);
 | |
| 	if (h->reset_in_progress) {
 | |
| 		h->drv_req_rescan = 1;
 | |
| 		spin_unlock_irqrestore(&h->reset_lock, flags);
 | |
| 		hpsa_scan_complete(h);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&h->reset_lock, flags);
 | |
| 
 | |
| 	hpsa_update_scsi_devices(h);
 | |
| 
 | |
| 	hpsa_scan_complete(h);
 | |
| }
 | |
| 
 | |
| static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
 | |
| {
 | |
| 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
 | |
| 
 | |
| 	if (!logical_drive)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (qdepth < 1)
 | |
| 		qdepth = 1;
 | |
| 	else if (qdepth > logical_drive->queue_depth)
 | |
| 		qdepth = logical_drive->queue_depth;
 | |
| 
 | |
| 	return scsi_change_queue_depth(sdev, qdepth);
 | |
| }
 | |
| 
 | |
| static int hpsa_scan_finished(struct Scsi_Host *sh,
 | |
| 	unsigned long elapsed_time)
 | |
| {
 | |
| 	struct ctlr_info *h = shost_to_hba(sh);
 | |
| 	unsigned long flags;
 | |
| 	int finished;
 | |
| 
 | |
| 	spin_lock_irqsave(&h->scan_lock, flags);
 | |
| 	finished = h->scan_finished;
 | |
| 	spin_unlock_irqrestore(&h->scan_lock, flags);
 | |
| 	return finished;
 | |
| }
 | |
| 
 | |
| static int hpsa_scsi_host_alloc(struct ctlr_info *h)
 | |
| {
 | |
| 	struct Scsi_Host *sh;
 | |
| 
 | |
| 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
 | |
| 	if (sh == NULL) {
 | |
| 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	sh->io_port = 0;
 | |
| 	sh->n_io_port = 0;
 | |
| 	sh->this_id = -1;
 | |
| 	sh->max_channel = 3;
 | |
| 	sh->max_cmd_len = MAX_COMMAND_SIZE;
 | |
| 	sh->max_lun = HPSA_MAX_LUN;
 | |
| 	sh->max_id = HPSA_MAX_LUN;
 | |
| 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
 | |
| 	sh->cmd_per_lun = sh->can_queue;
 | |
| 	sh->sg_tablesize = h->maxsgentries;
 | |
| 	sh->transportt = hpsa_sas_transport_template;
 | |
| 	sh->hostdata[0] = (unsigned long) h;
 | |
| 	sh->irq = pci_irq_vector(h->pdev, 0);
 | |
| 	sh->unique_id = sh->irq;
 | |
| 
 | |
| 	h->scsi_host = sh;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpsa_scsi_add_host(struct ctlr_info *h)
 | |
| {
 | |
| 	int rv;
 | |
| 
 | |
| 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
 | |
| 	if (rv) {
 | |
| 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
 | |
| 		return rv;
 | |
| 	}
 | |
| 	scsi_scan_host(h->scsi_host);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The block layer has already gone to the trouble of picking out a unique,
 | |
|  * small-integer tag for this request.  We use an offset from that value as
 | |
|  * an index to select our command block.  (The offset allows us to reserve the
 | |
|  * low-numbered entries for our own uses.)
 | |
|  */
 | |
| static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
 | |
| {
 | |
| 	int idx = scmd->request->tag;
 | |
| 
 | |
| 	if (idx < 0)
 | |
| 		return idx;
 | |
| 
 | |
| 	/* Offset to leave space for internal cmds. */
 | |
| 	return idx += HPSA_NRESERVED_CMDS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send a TEST_UNIT_READY command to the specified LUN using the specified
 | |
|  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
 | |
|  */
 | |
| static int hpsa_send_test_unit_ready(struct ctlr_info *h,
 | |
| 				struct CommandList *c, unsigned char lunaddr[],
 | |
| 				int reply_queue)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
 | |
| 	(void) fill_cmd(c, TEST_UNIT_READY, h,
 | |
| 			NULL, 0, 0, lunaddr, TYPE_CMD);
 | |
| 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	/* no unmap needed here because no data xfer. */
 | |
| 
 | |
| 	/* Check if the unit is already ready. */
 | |
| 	if (c->err_info->CommandStatus == CMD_SUCCESS)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The first command sent after reset will receive "unit attention" to
 | |
| 	 * indicate that the LUN has been reset...this is actually what we're
 | |
| 	 * looking for (but, success is good too).
 | |
| 	 */
 | |
| 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
 | |
| 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
 | |
| 			(c->err_info->SenseInfo[2] == NO_SENSE ||
 | |
| 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
 | |
|  * returns zero when the unit is ready, and non-zero when giving up.
 | |
|  */
 | |
| static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
 | |
| 				struct CommandList *c,
 | |
| 				unsigned char lunaddr[], int reply_queue)
 | |
| {
 | |
| 	int rc;
 | |
| 	int count = 0;
 | |
| 	int waittime = 1; /* seconds */
 | |
| 
 | |
| 	/* Send test unit ready until device ready, or give up. */
 | |
| 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for a bit.  do this first, because if we send
 | |
| 		 * the TUR right away, the reset will just abort it.
 | |
| 		 */
 | |
| 		msleep(1000 * waittime);
 | |
| 
 | |
| 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
 | |
| 		if (!rc)
 | |
| 			break;
 | |
| 
 | |
| 		/* Increase wait time with each try, up to a point. */
 | |
| 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
 | |
| 			waittime *= 2;
 | |
| 
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			 "waiting %d secs for device to become ready.\n",
 | |
| 			 waittime);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int wait_for_device_to_become_ready(struct ctlr_info *h,
 | |
| 					   unsigned char lunaddr[],
 | |
| 					   int reply_queue)
 | |
| {
 | |
| 	int first_queue;
 | |
| 	int last_queue;
 | |
| 	int rq;
 | |
| 	int rc = 0;
 | |
| 	struct CommandList *c;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	/*
 | |
| 	 * If no specific reply queue was requested, then send the TUR
 | |
| 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
 | |
| 	 * the loop exactly once using only the specified queue.
 | |
| 	 */
 | |
| 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
 | |
| 		first_queue = 0;
 | |
| 		last_queue = h->nreply_queues - 1;
 | |
| 	} else {
 | |
| 		first_queue = reply_queue;
 | |
| 		last_queue = reply_queue;
 | |
| 	}
 | |
| 
 | |
| 	for (rq = first_queue; rq <= last_queue; rq++) {
 | |
| 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
 | |
| 		if (rc)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (rc)
 | |
| 		dev_warn(&h->pdev->dev, "giving up on device.\n");
 | |
| 	else
 | |
| 		dev_warn(&h->pdev->dev, "device is ready.\n");
 | |
| 
 | |
| 	cmd_free(h, c);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Need at least one of these error handlers to keep ../scsi/hosts.c from
 | |
|  * complaining.  Doing a host- or bus-reset can't do anything good here.
 | |
|  */
 | |
| static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
 | |
| {
 | |
| 	int rc = SUCCESS;
 | |
| 	struct ctlr_info *h;
 | |
| 	struct hpsa_scsi_dev_t *dev;
 | |
| 	u8 reset_type;
 | |
| 	char msg[48];
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* find the controller to which the command to be aborted was sent */
 | |
| 	h = sdev_to_hba(scsicmd->device);
 | |
| 	if (h == NULL) /* paranoia */
 | |
| 		return FAILED;
 | |
| 
 | |
| 	spin_lock_irqsave(&h->reset_lock, flags);
 | |
| 	h->reset_in_progress = 1;
 | |
| 	spin_unlock_irqrestore(&h->reset_lock, flags);
 | |
| 
 | |
| 	if (lockup_detected(h)) {
 | |
| 		rc = FAILED;
 | |
| 		goto return_reset_status;
 | |
| 	}
 | |
| 
 | |
| 	dev = scsicmd->device->hostdata;
 | |
| 	if (!dev) {
 | |
| 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
 | |
| 		rc = FAILED;
 | |
| 		goto return_reset_status;
 | |
| 	}
 | |
| 
 | |
| 	if (dev->devtype == TYPE_ENCLOSURE) {
 | |
| 		rc = SUCCESS;
 | |
| 		goto return_reset_status;
 | |
| 	}
 | |
| 
 | |
| 	/* if controller locked up, we can guarantee command won't complete */
 | |
| 	if (lockup_detected(h)) {
 | |
| 		snprintf(msg, sizeof(msg),
 | |
| 			 "cmd %d RESET FAILED, lockup detected",
 | |
| 			 hpsa_get_cmd_index(scsicmd));
 | |
| 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 | |
| 		rc = FAILED;
 | |
| 		goto return_reset_status;
 | |
| 	}
 | |
| 
 | |
| 	/* this reset request might be the result of a lockup; check */
 | |
| 	if (detect_controller_lockup(h)) {
 | |
| 		snprintf(msg, sizeof(msg),
 | |
| 			 "cmd %d RESET FAILED, new lockup detected",
 | |
| 			 hpsa_get_cmd_index(scsicmd));
 | |
| 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 | |
| 		rc = FAILED;
 | |
| 		goto return_reset_status;
 | |
| 	}
 | |
| 
 | |
| 	/* Do not attempt on controller */
 | |
| 	if (is_hba_lunid(dev->scsi3addr)) {
 | |
| 		rc = SUCCESS;
 | |
| 		goto return_reset_status;
 | |
| 	}
 | |
| 
 | |
| 	if (is_logical_dev_addr_mode(dev->scsi3addr))
 | |
| 		reset_type = HPSA_DEVICE_RESET_MSG;
 | |
| 	else
 | |
| 		reset_type = HPSA_PHYS_TARGET_RESET;
 | |
| 
 | |
| 	sprintf(msg, "resetting %s",
 | |
| 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
 | |
| 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 | |
| 
 | |
| 	/* send a reset to the SCSI LUN which the command was sent to */
 | |
| 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
 | |
| 			   DEFAULT_REPLY_QUEUE);
 | |
| 	if (rc == 0)
 | |
| 		rc = SUCCESS;
 | |
| 	else
 | |
| 		rc = FAILED;
 | |
| 
 | |
| 	sprintf(msg, "reset %s %s",
 | |
| 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
 | |
| 		rc == SUCCESS ? "completed successfully" : "failed");
 | |
| 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 | |
| 
 | |
| return_reset_status:
 | |
| 	spin_lock_irqsave(&h->reset_lock, flags);
 | |
| 	h->reset_in_progress = 0;
 | |
| 	spin_unlock_irqrestore(&h->reset_lock, flags);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For operations with an associated SCSI command, a command block is allocated
 | |
|  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
 | |
|  * block request tag as an index into a table of entries.  cmd_tagged_free() is
 | |
|  * the complement, although cmd_free() may be called instead.
 | |
|  */
 | |
| static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 | |
| 					    struct scsi_cmnd *scmd)
 | |
| {
 | |
| 	int idx = hpsa_get_cmd_index(scmd);
 | |
| 	struct CommandList *c = h->cmd_pool + idx;
 | |
| 
 | |
| 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
 | |
| 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
 | |
| 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
 | |
| 		/* The index value comes from the block layer, so if it's out of
 | |
| 		 * bounds, it's probably not our bug.
 | |
| 		 */
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&c->refcount);
 | |
| 	if (unlikely(!hpsa_is_cmd_idle(c))) {
 | |
| 		/*
 | |
| 		 * We expect that the SCSI layer will hand us a unique tag
 | |
| 		 * value.  Thus, there should never be a collision here between
 | |
| 		 * two requests...because if the selected command isn't idle
 | |
| 		 * then someone is going to be very disappointed.
 | |
| 		 */
 | |
| 		dev_err(&h->pdev->dev,
 | |
| 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
 | |
| 			idx);
 | |
| 		if (c->scsi_cmd != NULL)
 | |
| 			scsi_print_command(c->scsi_cmd);
 | |
| 		scsi_print_command(scmd);
 | |
| 	}
 | |
| 
 | |
| 	hpsa_cmd_partial_init(h, idx, c);
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
 | |
| {
 | |
| 	/*
 | |
| 	 * Release our reference to the block.  We don't need to do anything
 | |
| 	 * else to free it, because it is accessed by index.
 | |
| 	 */
 | |
| 	(void)atomic_dec(&c->refcount);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For operations that cannot sleep, a command block is allocated at init,
 | |
|  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 | |
|  * which ones are free or in use.  Lock must be held when calling this.
 | |
|  * cmd_free() is the complement.
 | |
|  * This function never gives up and returns NULL.  If it hangs,
 | |
|  * another thread must call cmd_free() to free some tags.
 | |
|  */
 | |
| 
 | |
| static struct CommandList *cmd_alloc(struct ctlr_info *h)
 | |
| {
 | |
| 	struct CommandList *c;
 | |
| 	int refcount, i;
 | |
| 	int offset = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is some *extremely* small but non-zero chance that that
 | |
| 	 * multiple threads could get in here, and one thread could
 | |
| 	 * be scanning through the list of bits looking for a free
 | |
| 	 * one, but the free ones are always behind him, and other
 | |
| 	 * threads sneak in behind him and eat them before he can
 | |
| 	 * get to them, so that while there is always a free one, a
 | |
| 	 * very unlucky thread might be starved anyway, never able to
 | |
| 	 * beat the other threads.  In reality, this happens so
 | |
| 	 * infrequently as to be indistinguishable from never.
 | |
| 	 *
 | |
| 	 * Note that we start allocating commands before the SCSI host structure
 | |
| 	 * is initialized.  Since the search starts at bit zero, this
 | |
| 	 * all works, since we have at least one command structure available;
 | |
| 	 * however, it means that the structures with the low indexes have to be
 | |
| 	 * reserved for driver-initiated requests, while requests from the block
 | |
| 	 * layer will use the higher indexes.
 | |
| 	 */
 | |
| 
 | |
| 	for (;;) {
 | |
| 		i = find_next_zero_bit(h->cmd_pool_bits,
 | |
| 					HPSA_NRESERVED_CMDS,
 | |
| 					offset);
 | |
| 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
 | |
| 			offset = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 		c = h->cmd_pool + i;
 | |
| 		refcount = atomic_inc_return(&c->refcount);
 | |
| 		if (unlikely(refcount > 1)) {
 | |
| 			cmd_free(h, c); /* already in use */
 | |
| 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
 | |
| 			continue;
 | |
| 		}
 | |
| 		set_bit(i & (BITS_PER_LONG - 1),
 | |
| 			h->cmd_pool_bits + (i / BITS_PER_LONG));
 | |
| 		break; /* it's ours now. */
 | |
| 	}
 | |
| 	hpsa_cmd_partial_init(h, i, c);
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the complementary operation to cmd_alloc().  Note, however, in some
 | |
|  * corner cases it may also be used to free blocks allocated by
 | |
|  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
 | |
|  * the clear-bit is harmless.
 | |
|  */
 | |
| static void cmd_free(struct ctlr_info *h, struct CommandList *c)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&c->refcount)) {
 | |
| 		int i;
 | |
| 
 | |
| 		i = c - h->cmd_pool;
 | |
| 		clear_bit(i & (BITS_PER_LONG - 1),
 | |
| 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| 
 | |
| static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
 | |
| 	void __user *arg)
 | |
| {
 | |
| 	IOCTL32_Command_struct __user *arg32 =
 | |
| 	    (IOCTL32_Command_struct __user *) arg;
 | |
| 	IOCTL_Command_struct arg64;
 | |
| 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
 | |
| 	int err;
 | |
| 	u32 cp;
 | |
| 
 | |
| 	memset(&arg64, 0, sizeof(arg64));
 | |
| 	err = 0;
 | |
| 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
 | |
| 			   sizeof(arg64.LUN_info));
 | |
| 	err |= copy_from_user(&arg64.Request, &arg32->Request,
 | |
| 			   sizeof(arg64.Request));
 | |
| 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
 | |
| 			   sizeof(arg64.error_info));
 | |
| 	err |= get_user(arg64.buf_size, &arg32->buf_size);
 | |
| 	err |= get_user(cp, &arg32->buf);
 | |
| 	arg64.buf = compat_ptr(cp);
 | |
| 	err |= copy_to_user(p, &arg64, sizeof(arg64));
 | |
| 
 | |
| 	if (err)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err |= copy_in_user(&arg32->error_info, &p->error_info,
 | |
| 			 sizeof(arg32->error_info));
 | |
| 	if (err)
 | |
| 		return -EFAULT;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
 | |
| 	int cmd, void __user *arg)
 | |
| {
 | |
| 	BIG_IOCTL32_Command_struct __user *arg32 =
 | |
| 	    (BIG_IOCTL32_Command_struct __user *) arg;
 | |
| 	BIG_IOCTL_Command_struct arg64;
 | |
| 	BIG_IOCTL_Command_struct __user *p =
 | |
| 	    compat_alloc_user_space(sizeof(arg64));
 | |
| 	int err;
 | |
| 	u32 cp;
 | |
| 
 | |
| 	memset(&arg64, 0, sizeof(arg64));
 | |
| 	err = 0;
 | |
| 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
 | |
| 			   sizeof(arg64.LUN_info));
 | |
| 	err |= copy_from_user(&arg64.Request, &arg32->Request,
 | |
| 			   sizeof(arg64.Request));
 | |
| 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
 | |
| 			   sizeof(arg64.error_info));
 | |
| 	err |= get_user(arg64.buf_size, &arg32->buf_size);
 | |
| 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
 | |
| 	err |= get_user(cp, &arg32->buf);
 | |
| 	arg64.buf = compat_ptr(cp);
 | |
| 	err |= copy_to_user(p, &arg64, sizeof(arg64));
 | |
| 
 | |
| 	if (err)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	err |= copy_in_user(&arg32->error_info, &p->error_info,
 | |
| 			 sizeof(arg32->error_info));
 | |
| 	if (err)
 | |
| 		return -EFAULT;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 	case CCISS_GETPCIINFO:
 | |
| 	case CCISS_GETINTINFO:
 | |
| 	case CCISS_SETINTINFO:
 | |
| 	case CCISS_GETNODENAME:
 | |
| 	case CCISS_SETNODENAME:
 | |
| 	case CCISS_GETHEARTBEAT:
 | |
| 	case CCISS_GETBUSTYPES:
 | |
| 	case CCISS_GETFIRMVER:
 | |
| 	case CCISS_GETDRIVVER:
 | |
| 	case CCISS_REVALIDVOLS:
 | |
| 	case CCISS_DEREGDISK:
 | |
| 	case CCISS_REGNEWDISK:
 | |
| 	case CCISS_REGNEWD:
 | |
| 	case CCISS_RESCANDISK:
 | |
| 	case CCISS_GETLUNINFO:
 | |
| 		return hpsa_ioctl(dev, cmd, arg);
 | |
| 
 | |
| 	case CCISS_PASSTHRU32:
 | |
| 		return hpsa_ioctl32_passthru(dev, cmd, arg);
 | |
| 	case CCISS_BIG_PASSTHRU32:
 | |
| 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOIOCTLCMD;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
 | |
| {
 | |
| 	struct hpsa_pci_info pciinfo;
 | |
| 
 | |
| 	if (!argp)
 | |
| 		return -EINVAL;
 | |
| 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
 | |
| 	pciinfo.bus = h->pdev->bus->number;
 | |
| 	pciinfo.dev_fn = h->pdev->devfn;
 | |
| 	pciinfo.board_id = h->board_id;
 | |
| 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
 | |
| {
 | |
| 	DriverVer_type DriverVer;
 | |
| 	unsigned char vmaj, vmin, vsubmin;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
 | |
| 		&vmaj, &vmin, &vsubmin);
 | |
| 	if (rc != 3) {
 | |
| 		dev_info(&h->pdev->dev, "driver version string '%s' "
 | |
| 			"unrecognized.", HPSA_DRIVER_VERSION);
 | |
| 		vmaj = 0;
 | |
| 		vmin = 0;
 | |
| 		vsubmin = 0;
 | |
| 	}
 | |
| 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
 | |
| 	if (!argp)
 | |
| 		return -EINVAL;
 | |
| 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
 | |
| {
 | |
| 	IOCTL_Command_struct iocommand;
 | |
| 	struct CommandList *c;
 | |
| 	char *buff = NULL;
 | |
| 	u64 temp64;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (!argp)
 | |
| 		return -EINVAL;
 | |
| 	if (!capable(CAP_SYS_RAWIO))
 | |
| 		return -EPERM;
 | |
| 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
 | |
| 		return -EFAULT;
 | |
| 	if ((iocommand.buf_size < 1) &&
 | |
| 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (iocommand.buf_size > 0) {
 | |
| 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
 | |
| 		if (buff == NULL)
 | |
| 			return -ENOMEM;
 | |
| 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
 | |
| 			/* Copy the data into the buffer we created */
 | |
| 			if (copy_from_user(buff, iocommand.buf,
 | |
| 				iocommand.buf_size)) {
 | |
| 				rc = -EFAULT;
 | |
| 				goto out_kfree;
 | |
| 			}
 | |
| 		} else {
 | |
| 			memset(buff, 0, iocommand.buf_size);
 | |
| 		}
 | |
| 	}
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	/* Fill in the command type */
 | |
| 	c->cmd_type = CMD_IOCTL_PEND;
 | |
| 	c->scsi_cmd = SCSI_CMD_BUSY;
 | |
| 	/* Fill in Command Header */
 | |
| 	c->Header.ReplyQueue = 0; /* unused in simple mode */
 | |
| 	if (iocommand.buf_size > 0) {	/* buffer to fill */
 | |
| 		c->Header.SGList = 1;
 | |
| 		c->Header.SGTotal = cpu_to_le16(1);
 | |
| 	} else	{ /* no buffers to fill */
 | |
| 		c->Header.SGList = 0;
 | |
| 		c->Header.SGTotal = cpu_to_le16(0);
 | |
| 	}
 | |
| 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
 | |
| 
 | |
| 	/* Fill in Request block */
 | |
| 	memcpy(&c->Request, &iocommand.Request,
 | |
| 		sizeof(c->Request));
 | |
| 
 | |
| 	/* Fill in the scatter gather information */
 | |
| 	if (iocommand.buf_size > 0) {
 | |
| 		temp64 = pci_map_single(h->pdev, buff,
 | |
| 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
 | |
| 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
 | |
| 			c->SG[0].Addr = cpu_to_le64(0);
 | |
| 			c->SG[0].Len = cpu_to_le32(0);
 | |
| 			rc = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		c->SG[0].Addr = cpu_to_le64(temp64);
 | |
| 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
 | |
| 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
 | |
| 	}
 | |
| 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 | |
| 					NO_TIMEOUT);
 | |
| 	if (iocommand.buf_size > 0)
 | |
| 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
 | |
| 	check_ioctl_unit_attention(h, c);
 | |
| 	if (rc) {
 | |
| 		rc = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the error information out */
 | |
| 	memcpy(&iocommand.error_info, c->err_info,
 | |
| 		sizeof(iocommand.error_info));
 | |
| 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
 | |
| 		rc = -EFAULT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
 | |
| 		iocommand.buf_size > 0) {
 | |
| 		/* Copy the data out of the buffer we created */
 | |
| 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
 | |
| 			rc = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| out_kfree:
 | |
| 	kfree(buff);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
 | |
| {
 | |
| 	BIG_IOCTL_Command_struct *ioc;
 | |
| 	struct CommandList *c;
 | |
| 	unsigned char **buff = NULL;
 | |
| 	int *buff_size = NULL;
 | |
| 	u64 temp64;
 | |
| 	BYTE sg_used = 0;
 | |
| 	int status = 0;
 | |
| 	u32 left;
 | |
| 	u32 sz;
 | |
| 	BYTE __user *data_ptr;
 | |
| 
 | |
| 	if (!argp)
 | |
| 		return -EINVAL;
 | |
| 	if (!capable(CAP_SYS_RAWIO))
 | |
| 		return -EPERM;
 | |
| 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
 | |
| 	if (!ioc) {
 | |
| 		status = -ENOMEM;
 | |
| 		goto cleanup1;
 | |
| 	}
 | |
| 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
 | |
| 		status = -EFAULT;
 | |
| 		goto cleanup1;
 | |
| 	}
 | |
| 	if ((ioc->buf_size < 1) &&
 | |
| 	    (ioc->Request.Type.Direction != XFER_NONE)) {
 | |
| 		status = -EINVAL;
 | |
| 		goto cleanup1;
 | |
| 	}
 | |
| 	/* Check kmalloc limits  using all SGs */
 | |
| 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
 | |
| 		status = -EINVAL;
 | |
| 		goto cleanup1;
 | |
| 	}
 | |
| 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
 | |
| 		status = -EINVAL;
 | |
| 		goto cleanup1;
 | |
| 	}
 | |
| 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
 | |
| 	if (!buff) {
 | |
| 		status = -ENOMEM;
 | |
| 		goto cleanup1;
 | |
| 	}
 | |
| 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
 | |
| 	if (!buff_size) {
 | |
| 		status = -ENOMEM;
 | |
| 		goto cleanup1;
 | |
| 	}
 | |
| 	left = ioc->buf_size;
 | |
| 	data_ptr = ioc->buf;
 | |
| 	while (left) {
 | |
| 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
 | |
| 		buff_size[sg_used] = sz;
 | |
| 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
 | |
| 		if (buff[sg_used] == NULL) {
 | |
| 			status = -ENOMEM;
 | |
| 			goto cleanup1;
 | |
| 		}
 | |
| 		if (ioc->Request.Type.Direction & XFER_WRITE) {
 | |
| 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
 | |
| 				status = -EFAULT;
 | |
| 				goto cleanup1;
 | |
| 			}
 | |
| 		} else
 | |
| 			memset(buff[sg_used], 0, sz);
 | |
| 		left -= sz;
 | |
| 		data_ptr += sz;
 | |
| 		sg_used++;
 | |
| 	}
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	c->cmd_type = CMD_IOCTL_PEND;
 | |
| 	c->scsi_cmd = SCSI_CMD_BUSY;
 | |
| 	c->Header.ReplyQueue = 0;
 | |
| 	c->Header.SGList = (u8) sg_used;
 | |
| 	c->Header.SGTotal = cpu_to_le16(sg_used);
 | |
| 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
 | |
| 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
 | |
| 	if (ioc->buf_size > 0) {
 | |
| 		int i;
 | |
| 		for (i = 0; i < sg_used; i++) {
 | |
| 			temp64 = pci_map_single(h->pdev, buff[i],
 | |
| 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
 | |
| 			if (dma_mapping_error(&h->pdev->dev,
 | |
| 							(dma_addr_t) temp64)) {
 | |
| 				c->SG[i].Addr = cpu_to_le64(0);
 | |
| 				c->SG[i].Len = cpu_to_le32(0);
 | |
| 				hpsa_pci_unmap(h->pdev, c, i,
 | |
| 					PCI_DMA_BIDIRECTIONAL);
 | |
| 				status = -ENOMEM;
 | |
| 				goto cleanup0;
 | |
| 			}
 | |
| 			c->SG[i].Addr = cpu_to_le64(temp64);
 | |
| 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
 | |
| 			c->SG[i].Ext = cpu_to_le32(0);
 | |
| 		}
 | |
| 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
 | |
| 	}
 | |
| 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 | |
| 						NO_TIMEOUT);
 | |
| 	if (sg_used)
 | |
| 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
 | |
| 	check_ioctl_unit_attention(h, c);
 | |
| 	if (status) {
 | |
| 		status = -EIO;
 | |
| 		goto cleanup0;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the error information out */
 | |
| 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
 | |
| 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
 | |
| 		status = -EFAULT;
 | |
| 		goto cleanup0;
 | |
| 	}
 | |
| 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
 | |
| 		int i;
 | |
| 
 | |
| 		/* Copy the data out of the buffer we created */
 | |
| 		BYTE __user *ptr = ioc->buf;
 | |
| 		for (i = 0; i < sg_used; i++) {
 | |
| 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
 | |
| 				status = -EFAULT;
 | |
| 				goto cleanup0;
 | |
| 			}
 | |
| 			ptr += buff_size[i];
 | |
| 		}
 | |
| 	}
 | |
| 	status = 0;
 | |
| cleanup0:
 | |
| 	cmd_free(h, c);
 | |
| cleanup1:
 | |
| 	if (buff) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < sg_used; i++)
 | |
| 			kfree(buff[i]);
 | |
| 		kfree(buff);
 | |
| 	}
 | |
| 	kfree(buff_size);
 | |
| 	kfree(ioc);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static void check_ioctl_unit_attention(struct ctlr_info *h,
 | |
| 	struct CommandList *c)
 | |
| {
 | |
| 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
 | |
| 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
 | |
| 		(void) check_for_unit_attention(h, c);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ioctl
 | |
|  */
 | |
| static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int rc;
 | |
| 
 | |
| 	h = sdev_to_hba(dev);
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case CCISS_DEREGDISK:
 | |
| 	case CCISS_REGNEWDISK:
 | |
| 	case CCISS_REGNEWD:
 | |
| 		hpsa_scan_start(h->scsi_host);
 | |
| 		return 0;
 | |
| 	case CCISS_GETPCIINFO:
 | |
| 		return hpsa_getpciinfo_ioctl(h, argp);
 | |
| 	case CCISS_GETDRIVVER:
 | |
| 		return hpsa_getdrivver_ioctl(h, argp);
 | |
| 	case CCISS_PASSTHRU:
 | |
| 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
 | |
| 			return -EAGAIN;
 | |
| 		rc = hpsa_passthru_ioctl(h, argp);
 | |
| 		atomic_inc(&h->passthru_cmds_avail);
 | |
| 		return rc;
 | |
| 	case CCISS_BIG_PASSTHRU:
 | |
| 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
 | |
| 			return -EAGAIN;
 | |
| 		rc = hpsa_big_passthru_ioctl(h, argp);
 | |
| 		atomic_inc(&h->passthru_cmds_avail);
 | |
| 		return rc;
 | |
| 	default:
 | |
| 		return -ENOTTY;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
 | |
| 				u8 reset_type)
 | |
| {
 | |
| 	struct CommandList *c;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	/* fill_cmd can't fail here, no data buffer to map */
 | |
| 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
 | |
| 		RAID_CTLR_LUNID, TYPE_MSG);
 | |
| 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
 | |
| 	c->waiting = NULL;
 | |
| 	enqueue_cmd_and_start_io(h, c);
 | |
| 	/* Don't wait for completion, the reset won't complete.  Don't free
 | |
| 	 * the command either.  This is the last command we will send before
 | |
| 	 * re-initializing everything, so it doesn't matter and won't leak.
 | |
| 	 */
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 | |
| 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 | |
| 	int cmd_type)
 | |
| {
 | |
| 	int pci_dir = XFER_NONE;
 | |
| 
 | |
| 	c->cmd_type = CMD_IOCTL_PEND;
 | |
| 	c->scsi_cmd = SCSI_CMD_BUSY;
 | |
| 	c->Header.ReplyQueue = 0;
 | |
| 	if (buff != NULL && size > 0) {
 | |
| 		c->Header.SGList = 1;
 | |
| 		c->Header.SGTotal = cpu_to_le16(1);
 | |
| 	} else {
 | |
| 		c->Header.SGList = 0;
 | |
| 		c->Header.SGTotal = cpu_to_le16(0);
 | |
| 	}
 | |
| 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
 | |
| 
 | |
| 	if (cmd_type == TYPE_CMD) {
 | |
| 		switch (cmd) {
 | |
| 		case HPSA_INQUIRY:
 | |
| 			/* are we trying to read a vital product page */
 | |
| 			if (page_code & VPD_PAGE) {
 | |
| 				c->Request.CDB[1] = 0x01;
 | |
| 				c->Request.CDB[2] = (page_code & 0xff);
 | |
| 			}
 | |
| 			c->Request.CDBLen = 6;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = HPSA_INQUIRY;
 | |
| 			c->Request.CDB[4] = size & 0xFF;
 | |
| 			break;
 | |
| 		case RECEIVE_DIAGNOSTIC:
 | |
| 			c->Request.CDBLen = 6;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = cmd;
 | |
| 			c->Request.CDB[1] = 1;
 | |
| 			c->Request.CDB[2] = 1;
 | |
| 			c->Request.CDB[3] = (size >> 8) & 0xFF;
 | |
| 			c->Request.CDB[4] = size & 0xFF;
 | |
| 			break;
 | |
| 		case HPSA_REPORT_LOG:
 | |
| 		case HPSA_REPORT_PHYS:
 | |
| 			/* Talking to controller so It's a physical command
 | |
| 			   mode = 00 target = 0.  Nothing to write.
 | |
| 			 */
 | |
| 			c->Request.CDBLen = 12;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = cmd;
 | |
| 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
 | |
| 			c->Request.CDB[7] = (size >> 16) & 0xFF;
 | |
| 			c->Request.CDB[8] = (size >> 8) & 0xFF;
 | |
| 			c->Request.CDB[9] = size & 0xFF;
 | |
| 			break;
 | |
| 		case BMIC_SENSE_DIAG_OPTIONS:
 | |
| 			c->Request.CDBLen = 16;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			/* Spec says this should be BMIC_WRITE */
 | |
| 			c->Request.CDB[0] = BMIC_READ;
 | |
| 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
 | |
| 			break;
 | |
| 		case BMIC_SET_DIAG_OPTIONS:
 | |
| 			c->Request.CDBLen = 16;
 | |
| 			c->Request.type_attr_dir =
 | |
| 					TYPE_ATTR_DIR(cmd_type,
 | |
| 						ATTR_SIMPLE, XFER_WRITE);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = BMIC_WRITE;
 | |
| 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
 | |
| 			break;
 | |
| 		case HPSA_CACHE_FLUSH:
 | |
| 			c->Request.CDBLen = 12;
 | |
| 			c->Request.type_attr_dir =
 | |
| 					TYPE_ATTR_DIR(cmd_type,
 | |
| 						ATTR_SIMPLE, XFER_WRITE);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = BMIC_WRITE;
 | |
| 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
 | |
| 			c->Request.CDB[7] = (size >> 8) & 0xFF;
 | |
| 			c->Request.CDB[8] = size & 0xFF;
 | |
| 			break;
 | |
| 		case TEST_UNIT_READY:
 | |
| 			c->Request.CDBLen = 6;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			break;
 | |
| 		case HPSA_GET_RAID_MAP:
 | |
| 			c->Request.CDBLen = 12;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = HPSA_CISS_READ;
 | |
| 			c->Request.CDB[1] = cmd;
 | |
| 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
 | |
| 			c->Request.CDB[7] = (size >> 16) & 0xFF;
 | |
| 			c->Request.CDB[8] = (size >> 8) & 0xFF;
 | |
| 			c->Request.CDB[9] = size & 0xFF;
 | |
| 			break;
 | |
| 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
 | |
| 			c->Request.CDBLen = 10;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = BMIC_READ;
 | |
| 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
 | |
| 			c->Request.CDB[7] = (size >> 16) & 0xFF;
 | |
| 			c->Request.CDB[8] = (size >> 8) & 0xFF;
 | |
| 			break;
 | |
| 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
 | |
| 			c->Request.CDBLen = 10;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = BMIC_READ;
 | |
| 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
 | |
| 			c->Request.CDB[7] = (size >> 16) & 0xFF;
 | |
| 			c->Request.CDB[8] = (size >> 8) & 0XFF;
 | |
| 			break;
 | |
| 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
 | |
| 			c->Request.CDBLen = 10;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = BMIC_READ;
 | |
| 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
 | |
| 			c->Request.CDB[7] = (size >> 16) & 0xFF;
 | |
| 			c->Request.CDB[8] = (size >> 8) & 0XFF;
 | |
| 			break;
 | |
| 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
 | |
| 			c->Request.CDBLen = 10;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = BMIC_READ;
 | |
| 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
 | |
| 			c->Request.CDB[7] = (size >> 16) & 0xFF;
 | |
| 			c->Request.CDB[8] = (size >> 8) & 0XFF;
 | |
| 			break;
 | |
| 		case BMIC_IDENTIFY_CONTROLLER:
 | |
| 			c->Request.CDBLen = 10;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 | |
| 			c->Request.Timeout = 0;
 | |
| 			c->Request.CDB[0] = BMIC_READ;
 | |
| 			c->Request.CDB[1] = 0;
 | |
| 			c->Request.CDB[2] = 0;
 | |
| 			c->Request.CDB[3] = 0;
 | |
| 			c->Request.CDB[4] = 0;
 | |
| 			c->Request.CDB[5] = 0;
 | |
| 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
 | |
| 			c->Request.CDB[7] = (size >> 16) & 0xFF;
 | |
| 			c->Request.CDB[8] = (size >> 8) & 0XFF;
 | |
| 			c->Request.CDB[9] = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	} else if (cmd_type == TYPE_MSG) {
 | |
| 		switch (cmd) {
 | |
| 
 | |
| 		case  HPSA_PHYS_TARGET_RESET:
 | |
| 			c->Request.CDBLen = 16;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 | |
| 			c->Request.Timeout = 0; /* Don't time out */
 | |
| 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
 | |
| 			c->Request.CDB[0] = HPSA_RESET;
 | |
| 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
 | |
| 			/* Physical target reset needs no control bytes 4-7*/
 | |
| 			c->Request.CDB[4] = 0x00;
 | |
| 			c->Request.CDB[5] = 0x00;
 | |
| 			c->Request.CDB[6] = 0x00;
 | |
| 			c->Request.CDB[7] = 0x00;
 | |
| 			break;
 | |
| 		case  HPSA_DEVICE_RESET_MSG:
 | |
| 			c->Request.CDBLen = 16;
 | |
| 			c->Request.type_attr_dir =
 | |
| 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 | |
| 			c->Request.Timeout = 0; /* Don't time out */
 | |
| 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
 | |
| 			c->Request.CDB[0] =  cmd;
 | |
| 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
 | |
| 			/* If bytes 4-7 are zero, it means reset the */
 | |
| 			/* LunID device */
 | |
| 			c->Request.CDB[4] = 0x00;
 | |
| 			c->Request.CDB[5] = 0x00;
 | |
| 			c->Request.CDB[6] = 0x00;
 | |
| 			c->Request.CDB[7] = 0x00;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
 | |
| 				cmd);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	} else {
 | |
| 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	switch (GET_DIR(c->Request.type_attr_dir)) {
 | |
| 	case XFER_READ:
 | |
| 		pci_dir = PCI_DMA_FROMDEVICE;
 | |
| 		break;
 | |
| 	case XFER_WRITE:
 | |
| 		pci_dir = PCI_DMA_TODEVICE;
 | |
| 		break;
 | |
| 	case XFER_NONE:
 | |
| 		pci_dir = PCI_DMA_NONE;
 | |
| 		break;
 | |
| 	default:
 | |
| 		pci_dir = PCI_DMA_BIDIRECTIONAL;
 | |
| 	}
 | |
| 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map (physical) PCI mem into (virtual) kernel space
 | |
|  */
 | |
| static void __iomem *remap_pci_mem(ulong base, ulong size)
 | |
| {
 | |
| 	ulong page_base = ((ulong) base) & PAGE_MASK;
 | |
| 	ulong page_offs = ((ulong) base) - page_base;
 | |
| 	void __iomem *page_remapped = ioremap_nocache(page_base,
 | |
| 		page_offs + size);
 | |
| 
 | |
| 	return page_remapped ? (page_remapped + page_offs) : NULL;
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
 | |
| {
 | |
| 	return h->access.command_completed(h, q);
 | |
| }
 | |
| 
 | |
| static inline bool interrupt_pending(struct ctlr_info *h)
 | |
| {
 | |
| 	return h->access.intr_pending(h);
 | |
| }
 | |
| 
 | |
| static inline long interrupt_not_for_us(struct ctlr_info *h)
 | |
| {
 | |
| 	return (h->access.intr_pending(h) == 0) ||
 | |
| 		(h->interrupts_enabled == 0);
 | |
| }
 | |
| 
 | |
| static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
 | |
| 	u32 raw_tag)
 | |
| {
 | |
| 	if (unlikely(tag_index >= h->nr_cmds)) {
 | |
| 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void finish_cmd(struct CommandList *c)
 | |
| {
 | |
| 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
 | |
| 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
 | |
| 			|| c->cmd_type == CMD_IOACCEL2))
 | |
| 		complete_scsi_command(c);
 | |
| 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
 | |
| 		complete(c->waiting);
 | |
| }
 | |
| 
 | |
| /* process completion of an indexed ("direct lookup") command */
 | |
| static inline void process_indexed_cmd(struct ctlr_info *h,
 | |
| 	u32 raw_tag)
 | |
| {
 | |
| 	u32 tag_index;
 | |
| 	struct CommandList *c;
 | |
| 
 | |
| 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
 | |
| 	if (!bad_tag(h, tag_index, raw_tag)) {
 | |
| 		c = h->cmd_pool + tag_index;
 | |
| 		finish_cmd(c);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Some controllers, like p400, will give us one interrupt
 | |
|  * after a soft reset, even if we turned interrupts off.
 | |
|  * Only need to check for this in the hpsa_xxx_discard_completions
 | |
|  * functions.
 | |
|  */
 | |
| static int ignore_bogus_interrupt(struct ctlr_info *h)
 | |
| {
 | |
| 	if (likely(!reset_devices))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (likely(h->interrupts_enabled))
 | |
| 		return 0;
 | |
| 
 | |
| 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
 | |
| 		"(known firmware bug.)  Ignoring.\n");
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert &h->q[x] (passed to interrupt handlers) back to h.
 | |
|  * Relies on (h-q[x] == x) being true for x such that
 | |
|  * 0 <= x < MAX_REPLY_QUEUES.
 | |
|  */
 | |
| static struct ctlr_info *queue_to_hba(u8 *queue)
 | |
| {
 | |
| 	return container_of((queue - *queue), struct ctlr_info, q[0]);
 | |
| }
 | |
| 
 | |
| static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
 | |
| {
 | |
| 	struct ctlr_info *h = queue_to_hba(queue);
 | |
| 	u8 q = *(u8 *) queue;
 | |
| 	u32 raw_tag;
 | |
| 
 | |
| 	if (ignore_bogus_interrupt(h))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (interrupt_not_for_us(h))
 | |
| 		return IRQ_NONE;
 | |
| 	h->last_intr_timestamp = get_jiffies_64();
 | |
| 	while (interrupt_pending(h)) {
 | |
| 		raw_tag = get_next_completion(h, q);
 | |
| 		while (raw_tag != FIFO_EMPTY)
 | |
| 			raw_tag = next_command(h, q);
 | |
| 	}
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
 | |
| {
 | |
| 	struct ctlr_info *h = queue_to_hba(queue);
 | |
| 	u32 raw_tag;
 | |
| 	u8 q = *(u8 *) queue;
 | |
| 
 | |
| 	if (ignore_bogus_interrupt(h))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	h->last_intr_timestamp = get_jiffies_64();
 | |
| 	raw_tag = get_next_completion(h, q);
 | |
| 	while (raw_tag != FIFO_EMPTY)
 | |
| 		raw_tag = next_command(h, q);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
 | |
| {
 | |
| 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
 | |
| 	u32 raw_tag;
 | |
| 	u8 q = *(u8 *) queue;
 | |
| 
 | |
| 	if (interrupt_not_for_us(h))
 | |
| 		return IRQ_NONE;
 | |
| 	h->last_intr_timestamp = get_jiffies_64();
 | |
| 	while (interrupt_pending(h)) {
 | |
| 		raw_tag = get_next_completion(h, q);
 | |
| 		while (raw_tag != FIFO_EMPTY) {
 | |
| 			process_indexed_cmd(h, raw_tag);
 | |
| 			raw_tag = next_command(h, q);
 | |
| 		}
 | |
| 	}
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
 | |
| {
 | |
| 	struct ctlr_info *h = queue_to_hba(queue);
 | |
| 	u32 raw_tag;
 | |
| 	u8 q = *(u8 *) queue;
 | |
| 
 | |
| 	h->last_intr_timestamp = get_jiffies_64();
 | |
| 	raw_tag = get_next_completion(h, q);
 | |
| 	while (raw_tag != FIFO_EMPTY) {
 | |
| 		process_indexed_cmd(h, raw_tag);
 | |
| 		raw_tag = next_command(h, q);
 | |
| 	}
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Send a message CDB to the firmware. Careful, this only works
 | |
|  * in simple mode, not performant mode due to the tag lookup.
 | |
|  * We only ever use this immediately after a controller reset.
 | |
|  */
 | |
| static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
 | |
| 			unsigned char type)
 | |
| {
 | |
| 	struct Command {
 | |
| 		struct CommandListHeader CommandHeader;
 | |
| 		struct RequestBlock Request;
 | |
| 		struct ErrDescriptor ErrorDescriptor;
 | |
| 	};
 | |
| 	struct Command *cmd;
 | |
| 	static const size_t cmd_sz = sizeof(*cmd) +
 | |
| 					sizeof(cmd->ErrorDescriptor);
 | |
| 	dma_addr_t paddr64;
 | |
| 	__le32 paddr32;
 | |
| 	u32 tag;
 | |
| 	void __iomem *vaddr;
 | |
| 	int i, err;
 | |
| 
 | |
| 	vaddr = pci_ioremap_bar(pdev, 0);
 | |
| 	if (vaddr == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
 | |
| 	 * CCISS commands, so they must be allocated from the lower 4GiB of
 | |
| 	 * memory.
 | |
| 	 */
 | |
| 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
 | |
| 	if (err) {
 | |
| 		iounmap(vaddr);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
 | |
| 	if (cmd == NULL) {
 | |
| 		iounmap(vaddr);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
 | |
| 	 * although there's no guarantee, we assume that the address is at
 | |
| 	 * least 4-byte aligned (most likely, it's page-aligned).
 | |
| 	 */
 | |
| 	paddr32 = cpu_to_le32(paddr64);
 | |
| 
 | |
| 	cmd->CommandHeader.ReplyQueue = 0;
 | |
| 	cmd->CommandHeader.SGList = 0;
 | |
| 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
 | |
| 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
 | |
| 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
 | |
| 
 | |
| 	cmd->Request.CDBLen = 16;
 | |
| 	cmd->Request.type_attr_dir =
 | |
| 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
 | |
| 	cmd->Request.Timeout = 0; /* Don't time out */
 | |
| 	cmd->Request.CDB[0] = opcode;
 | |
| 	cmd->Request.CDB[1] = type;
 | |
| 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
 | |
| 	cmd->ErrorDescriptor.Addr =
 | |
| 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
 | |
| 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
 | |
| 
 | |
| 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
 | |
| 
 | |
| 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
 | |
| 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
 | |
| 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
 | |
| 			break;
 | |
| 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
 | |
| 	}
 | |
| 
 | |
| 	iounmap(vaddr);
 | |
| 
 | |
| 	/* we leak the DMA buffer here ... no choice since the controller could
 | |
| 	 *  still complete the command.
 | |
| 	 */
 | |
| 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
 | |
| 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
 | |
| 			opcode, type);
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
 | |
| 
 | |
| 	if (tag & HPSA_ERROR_BIT) {
 | |
| 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
 | |
| 			opcode, type);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
 | |
| 		opcode, type);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define hpsa_noop(p) hpsa_message(p, 3, 0)
 | |
| 
 | |
| static int hpsa_controller_hard_reset(struct pci_dev *pdev,
 | |
| 	void __iomem *vaddr, u32 use_doorbell)
 | |
| {
 | |
| 
 | |
| 	if (use_doorbell) {
 | |
| 		/* For everything after the P600, the PCI power state method
 | |
| 		 * of resetting the controller doesn't work, so we have this
 | |
| 		 * other way using the doorbell register.
 | |
| 		 */
 | |
| 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
 | |
| 		writel(use_doorbell, vaddr + SA5_DOORBELL);
 | |
| 
 | |
| 		/* PMC hardware guys tell us we need a 10 second delay after
 | |
| 		 * doorbell reset and before any attempt to talk to the board
 | |
| 		 * at all to ensure that this actually works and doesn't fall
 | |
| 		 * over in some weird corner cases.
 | |
| 		 */
 | |
| 		msleep(10000);
 | |
| 	} else { /* Try to do it the PCI power state way */
 | |
| 
 | |
| 		/* Quoting from the Open CISS Specification: "The Power
 | |
| 		 * Management Control/Status Register (CSR) controls the power
 | |
| 		 * state of the device.  The normal operating state is D0,
 | |
| 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
 | |
| 		 * the controller, place the interface device in D3 then to D0,
 | |
| 		 * this causes a secondary PCI reset which will reset the
 | |
| 		 * controller." */
 | |
| 
 | |
| 		int rc = 0;
 | |
| 
 | |
| 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
 | |
| 
 | |
| 		/* enter the D3hot power management state */
 | |
| 		rc = pci_set_power_state(pdev, PCI_D3hot);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		msleep(500);
 | |
| 
 | |
| 		/* enter the D0 power management state */
 | |
| 		rc = pci_set_power_state(pdev, PCI_D0);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		/*
 | |
| 		 * The P600 requires a small delay when changing states.
 | |
| 		 * Otherwise we may think the board did not reset and we bail.
 | |
| 		 * This for kdump only and is particular to the P600.
 | |
| 		 */
 | |
| 		msleep(500);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void init_driver_version(char *driver_version, int len)
 | |
| {
 | |
| 	memset(driver_version, 0, len);
 | |
| 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
 | |
| }
 | |
| 
 | |
| static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
 | |
| {
 | |
| 	char *driver_version;
 | |
| 	int i, size = sizeof(cfgtable->driver_version);
 | |
| 
 | |
| 	driver_version = kmalloc(size, GFP_KERNEL);
 | |
| 	if (!driver_version)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	init_driver_version(driver_version, size);
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		writeb(driver_version[i], &cfgtable->driver_version[i]);
 | |
| 	kfree(driver_version);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
 | |
| 					  unsigned char *driver_ver)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
 | |
| 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
 | |
| }
 | |
| 
 | |
| static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
 | |
| {
 | |
| 
 | |
| 	char *driver_ver, *old_driver_ver;
 | |
| 	int rc, size = sizeof(cfgtable->driver_version);
 | |
| 
 | |
| 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
 | |
| 	if (!old_driver_ver)
 | |
| 		return -ENOMEM;
 | |
| 	driver_ver = old_driver_ver + size;
 | |
| 
 | |
| 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
 | |
| 	 * should have been changed, otherwise we know the reset failed.
 | |
| 	 */
 | |
| 	init_driver_version(old_driver_ver, size);
 | |
| 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
 | |
| 	rc = !memcmp(driver_ver, old_driver_ver, size);
 | |
| 	kfree(old_driver_ver);
 | |
| 	return rc;
 | |
| }
 | |
| /* This does a hard reset of the controller using PCI power management
 | |
|  * states or the using the doorbell register.
 | |
|  */
 | |
| static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
 | |
| {
 | |
| 	u64 cfg_offset;
 | |
| 	u32 cfg_base_addr;
 | |
| 	u64 cfg_base_addr_index;
 | |
| 	void __iomem *vaddr;
 | |
| 	unsigned long paddr;
 | |
| 	u32 misc_fw_support;
 | |
| 	int rc;
 | |
| 	struct CfgTable __iomem *cfgtable;
 | |
| 	u32 use_doorbell;
 | |
| 	u16 command_register;
 | |
| 
 | |
| 	/* For controllers as old as the P600, this is very nearly
 | |
| 	 * the same thing as
 | |
| 	 *
 | |
| 	 * pci_save_state(pci_dev);
 | |
| 	 * pci_set_power_state(pci_dev, PCI_D3hot);
 | |
| 	 * pci_set_power_state(pci_dev, PCI_D0);
 | |
| 	 * pci_restore_state(pci_dev);
 | |
| 	 *
 | |
| 	 * For controllers newer than the P600, the pci power state
 | |
| 	 * method of resetting doesn't work so we have another way
 | |
| 	 * using the doorbell register.
 | |
| 	 */
 | |
| 
 | |
| 	if (!ctlr_is_resettable(board_id)) {
 | |
| 		dev_warn(&pdev->dev, "Controller not resettable\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* if controller is soft- but not hard resettable... */
 | |
| 	if (!ctlr_is_hard_resettable(board_id))
 | |
| 		return -ENOTSUPP; /* try soft reset later. */
 | |
| 
 | |
| 	/* Save the PCI command register */
 | |
| 	pci_read_config_word(pdev, 4, &command_register);
 | |
| 	pci_save_state(pdev);
 | |
| 
 | |
| 	/* find the first memory BAR, so we can find the cfg table */
 | |
| 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	vaddr = remap_pci_mem(paddr, 0x250);
 | |
| 	if (!vaddr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* find cfgtable in order to check if reset via doorbell is supported */
 | |
| 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
 | |
| 					&cfg_base_addr_index, &cfg_offset);
 | |
| 	if (rc)
 | |
| 		goto unmap_vaddr;
 | |
| 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
 | |
| 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
 | |
| 	if (!cfgtable) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto unmap_vaddr;
 | |
| 	}
 | |
| 	rc = write_driver_ver_to_cfgtable(cfgtable);
 | |
| 	if (rc)
 | |
| 		goto unmap_cfgtable;
 | |
| 
 | |
| 	/* If reset via doorbell register is supported, use that.
 | |
| 	 * There are two such methods.  Favor the newest method.
 | |
| 	 */
 | |
| 	misc_fw_support = readl(&cfgtable->misc_fw_support);
 | |
| 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
 | |
| 	if (use_doorbell) {
 | |
| 		use_doorbell = DOORBELL_CTLR_RESET2;
 | |
| 	} else {
 | |
| 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
 | |
| 		if (use_doorbell) {
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				"Soft reset not supported. Firmware update is required.\n");
 | |
| 			rc = -ENOTSUPP; /* try soft reset */
 | |
| 			goto unmap_cfgtable;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
 | |
| 	if (rc)
 | |
| 		goto unmap_cfgtable;
 | |
| 
 | |
| 	pci_restore_state(pdev);
 | |
| 	pci_write_config_word(pdev, 4, command_register);
 | |
| 
 | |
| 	/* Some devices (notably the HP Smart Array 5i Controller)
 | |
| 	   need a little pause here */
 | |
| 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
 | |
| 
 | |
| 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
 | |
| 	if (rc) {
 | |
| 		dev_warn(&pdev->dev,
 | |
| 			"Failed waiting for board to become ready after hard reset\n");
 | |
| 		goto unmap_cfgtable;
 | |
| 	}
 | |
| 
 | |
| 	rc = controller_reset_failed(vaddr);
 | |
| 	if (rc < 0)
 | |
| 		goto unmap_cfgtable;
 | |
| 	if (rc) {
 | |
| 		dev_warn(&pdev->dev, "Unable to successfully reset "
 | |
| 			"controller. Will try soft reset.\n");
 | |
| 		rc = -ENOTSUPP;
 | |
| 	} else {
 | |
| 		dev_info(&pdev->dev, "board ready after hard reset.\n");
 | |
| 	}
 | |
| 
 | |
| unmap_cfgtable:
 | |
| 	iounmap(cfgtable);
 | |
| 
 | |
| unmap_vaddr:
 | |
| 	iounmap(vaddr);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  We cannot read the structure directly, for portability we must use
 | |
|  *   the io functions.
 | |
|  *   This is for debug only.
 | |
|  */
 | |
| static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
 | |
| {
 | |
| #ifdef HPSA_DEBUG
 | |
| 	int i;
 | |
| 	char temp_name[17];
 | |
| 
 | |
| 	dev_info(dev, "Controller Configuration information\n");
 | |
| 	dev_info(dev, "------------------------------------\n");
 | |
| 	for (i = 0; i < 4; i++)
 | |
| 		temp_name[i] = readb(&(tb->Signature[i]));
 | |
| 	temp_name[4] = '\0';
 | |
| 	dev_info(dev, "   Signature = %s\n", temp_name);
 | |
| 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
 | |
| 	dev_info(dev, "   Transport methods supported = 0x%x\n",
 | |
| 	       readl(&(tb->TransportSupport)));
 | |
| 	dev_info(dev, "   Transport methods active = 0x%x\n",
 | |
| 	       readl(&(tb->TransportActive)));
 | |
| 	dev_info(dev, "   Requested transport Method = 0x%x\n",
 | |
| 	       readl(&(tb->HostWrite.TransportRequest)));
 | |
| 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
 | |
| 	       readl(&(tb->HostWrite.CoalIntDelay)));
 | |
| 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
 | |
| 	       readl(&(tb->HostWrite.CoalIntCount)));
 | |
| 	dev_info(dev, "   Max outstanding commands = %d\n",
 | |
| 	       readl(&(tb->CmdsOutMax)));
 | |
| 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
 | |
| 	for (i = 0; i < 16; i++)
 | |
| 		temp_name[i] = readb(&(tb->ServerName[i]));
 | |
| 	temp_name[16] = '\0';
 | |
| 	dev_info(dev, "   Server Name = %s\n", temp_name);
 | |
| 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
 | |
| 		readl(&(tb->HeartBeat)));
 | |
| #endif				/* HPSA_DEBUG */
 | |
| }
 | |
| 
 | |
| static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
 | |
| {
 | |
| 	int i, offset, mem_type, bar_type;
 | |
| 
 | |
| 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
 | |
| 		return 0;
 | |
| 	offset = 0;
 | |
| 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
 | |
| 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
 | |
| 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
 | |
| 			offset += 4;
 | |
| 		else {
 | |
| 			mem_type = pci_resource_flags(pdev, i) &
 | |
| 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
 | |
| 			switch (mem_type) {
 | |
| 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
 | |
| 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
 | |
| 				offset += 4;	/* 32 bit */
 | |
| 				break;
 | |
| 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
 | |
| 				offset += 8;
 | |
| 				break;
 | |
| 			default:	/* reserved in PCI 2.2 */
 | |
| 				dev_warn(&pdev->dev,
 | |
| 				       "base address is invalid\n");
 | |
| 				return -1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
 | |
| 			return i + 1;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
 | |
| {
 | |
| 	pci_free_irq_vectors(h->pdev);
 | |
| 	h->msix_vectors = 0;
 | |
| }
 | |
| 
 | |
| static void hpsa_setup_reply_map(struct ctlr_info *h)
 | |
| {
 | |
| 	const struct cpumask *mask;
 | |
| 	unsigned int queue, cpu;
 | |
| 
 | |
| 	for (queue = 0; queue < h->msix_vectors; queue++) {
 | |
| 		mask = pci_irq_get_affinity(h->pdev, queue);
 | |
| 		if (!mask)
 | |
| 			goto fallback;
 | |
| 
 | |
| 		for_each_cpu(cpu, mask)
 | |
| 			h->reply_map[cpu] = queue;
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| fallback:
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		h->reply_map[cpu] = 0;
 | |
| }
 | |
| 
 | |
| /* If MSI/MSI-X is supported by the kernel we will try to enable it on
 | |
|  * controllers that are capable. If not, we use legacy INTx mode.
 | |
|  */
 | |
| static int hpsa_interrupt_mode(struct ctlr_info *h)
 | |
| {
 | |
| 	unsigned int flags = PCI_IRQ_LEGACY;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Some boards advertise MSI but don't really support it */
 | |
| 	switch (h->board_id) {
 | |
| 	case 0x40700E11:
 | |
| 	case 0x40800E11:
 | |
| 	case 0x40820E11:
 | |
| 	case 0x40830E11:
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
 | |
| 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
 | |
| 		if (ret > 0) {
 | |
| 			h->msix_vectors = ret;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		flags |= PCI_IRQ_MSI;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 | |
| 				bool *legacy_board)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 subsystem_vendor_id, subsystem_device_id;
 | |
| 
 | |
| 	subsystem_vendor_id = pdev->subsystem_vendor;
 | |
| 	subsystem_device_id = pdev->subsystem_device;
 | |
| 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
 | |
| 		    subsystem_vendor_id;
 | |
| 
 | |
| 	if (legacy_board)
 | |
| 		*legacy_board = false;
 | |
| 	for (i = 0; i < ARRAY_SIZE(products); i++)
 | |
| 		if (*board_id == products[i].board_id) {
 | |
| 			if (products[i].access != &SA5A_access &&
 | |
| 			    products[i].access != &SA5B_access)
 | |
| 				return i;
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "legacy board ID: 0x%08x\n",
 | |
| 				 *board_id);
 | |
| 			if (legacy_board)
 | |
| 			    *legacy_board = true;
 | |
| 			return i;
 | |
| 		}
 | |
| 
 | |
| 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
 | |
| 	if (legacy_board)
 | |
| 		*legacy_board = true;
 | |
| 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
 | |
| }
 | |
| 
 | |
| static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 | |
| 				    unsigned long *memory_bar)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
 | |
| 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
 | |
| 			/* addressing mode bits already removed */
 | |
| 			*memory_bar = pci_resource_start(pdev, i);
 | |
| 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
 | |
| 				*memory_bar);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	dev_warn(&pdev->dev, "no memory BAR found\n");
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 | |
| 				     int wait_for_ready)
 | |
| {
 | |
| 	int i, iterations;
 | |
| 	u32 scratchpad;
 | |
| 	if (wait_for_ready)
 | |
| 		iterations = HPSA_BOARD_READY_ITERATIONS;
 | |
| 	else
 | |
| 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
 | |
| 
 | |
| 	for (i = 0; i < iterations; i++) {
 | |
| 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
 | |
| 		if (wait_for_ready) {
 | |
| 			if (scratchpad == HPSA_FIRMWARE_READY)
 | |
| 				return 0;
 | |
| 		} else {
 | |
| 			if (scratchpad != HPSA_FIRMWARE_READY)
 | |
| 				return 0;
 | |
| 		}
 | |
| 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
 | |
| 	}
 | |
| 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 | |
| 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 | |
| 			       u64 *cfg_offset)
 | |
| {
 | |
| 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
 | |
| 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
 | |
| 	*cfg_base_addr &= (u32) 0x0000ffff;
 | |
| 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
 | |
| 	if (*cfg_base_addr_index == -1) {
 | |
| 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hpsa_free_cfgtables(struct ctlr_info *h)
 | |
| {
 | |
| 	if (h->transtable) {
 | |
| 		iounmap(h->transtable);
 | |
| 		h->transtable = NULL;
 | |
| 	}
 | |
| 	if (h->cfgtable) {
 | |
| 		iounmap(h->cfgtable);
 | |
| 		h->cfgtable = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Find and map CISS config table and transfer table
 | |
| + * several items must be unmapped (freed) later
 | |
| + * */
 | |
| static int hpsa_find_cfgtables(struct ctlr_info *h)
 | |
| {
 | |
| 	u64 cfg_offset;
 | |
| 	u32 cfg_base_addr;
 | |
| 	u64 cfg_base_addr_index;
 | |
| 	u32 trans_offset;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
 | |
| 		&cfg_base_addr_index, &cfg_offset);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
 | |
| 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
 | |
| 	if (!h->cfgtable) {
 | |
| 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	/* Find performant mode table. */
 | |
| 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
 | |
| 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
 | |
| 				cfg_base_addr_index)+cfg_offset+trans_offset,
 | |
| 				sizeof(*h->transtable));
 | |
| 	if (!h->transtable) {
 | |
| 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
 | |
| 		hpsa_free_cfgtables(h);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
 | |
| {
 | |
| #define MIN_MAX_COMMANDS 16
 | |
| 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
 | |
| 
 | |
| 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
 | |
| 
 | |
| 	/* Limit commands in memory limited kdump scenario. */
 | |
| 	if (reset_devices && h->max_commands > 32)
 | |
| 		h->max_commands = 32;
 | |
| 
 | |
| 	if (h->max_commands < MIN_MAX_COMMANDS) {
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
 | |
| 			h->max_commands,
 | |
| 			MIN_MAX_COMMANDS);
 | |
| 		h->max_commands = MIN_MAX_COMMANDS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* If the controller reports that the total max sg entries is greater than 512,
 | |
|  * then we know that chained SG blocks work.  (Original smart arrays did not
 | |
|  * support chained SG blocks and would return zero for max sg entries.)
 | |
|  */
 | |
| static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
 | |
| {
 | |
| 	return h->maxsgentries > 512;
 | |
| }
 | |
| 
 | |
| /* Interrogate the hardware for some limits:
 | |
|  * max commands, max SG elements without chaining, and with chaining,
 | |
|  * SG chain block size, etc.
 | |
|  */
 | |
| static void hpsa_find_board_params(struct ctlr_info *h)
 | |
| {
 | |
| 	hpsa_get_max_perf_mode_cmds(h);
 | |
| 	h->nr_cmds = h->max_commands;
 | |
| 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
 | |
| 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
 | |
| 	if (hpsa_supports_chained_sg_blocks(h)) {
 | |
| 		/* Limit in-command s/g elements to 32 save dma'able memory. */
 | |
| 		h->max_cmd_sg_entries = 32;
 | |
| 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
 | |
| 		h->maxsgentries--; /* save one for chain pointer */
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Original smart arrays supported at most 31 s/g entries
 | |
| 		 * embedded inline in the command (trying to use more
 | |
| 		 * would lock up the controller)
 | |
| 		 */
 | |
| 		h->max_cmd_sg_entries = 31;
 | |
| 		h->maxsgentries = 31; /* default to traditional values */
 | |
| 		h->chainsize = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Find out what task management functions are supported and cache */
 | |
| 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
 | |
| 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
 | |
| 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
 | |
| 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
 | |
| 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
 | |
| 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
 | |
| 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
 | |
| }
 | |
| 
 | |
| static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
 | |
| {
 | |
| 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
 | |
| 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
 | |
| {
 | |
| 	u32 driver_support;
 | |
| 
 | |
| 	driver_support = readl(&(h->cfgtable->driver_support));
 | |
| 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
 | |
| #ifdef CONFIG_X86
 | |
| 	driver_support |= ENABLE_SCSI_PREFETCH;
 | |
| #endif
 | |
| 	driver_support |= ENABLE_UNIT_ATTN;
 | |
| 	writel(driver_support, &(h->cfgtable->driver_support));
 | |
| }
 | |
| 
 | |
| /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 | |
|  * in a prefetch beyond physical memory.
 | |
|  */
 | |
| static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
 | |
| {
 | |
| 	u32 dma_prefetch;
 | |
| 
 | |
| 	if (h->board_id != 0x3225103C)
 | |
| 		return;
 | |
| 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
 | |
| 	dma_prefetch |= 0x8000;
 | |
| 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
 | |
| }
 | |
| 
 | |
| static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 doorbell_value;
 | |
| 	unsigned long flags;
 | |
| 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
 | |
| 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
 | |
| 		spin_lock_irqsave(&h->lock, flags);
 | |
| 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
 | |
| 			goto done;
 | |
| 		/* delay and try again */
 | |
| 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
 | |
| 	}
 | |
| 	return -ENODEV;
 | |
| done:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 doorbell_value;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* under certain very rare conditions, this can take awhile.
 | |
| 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
 | |
| 	 * as we enter this code.)
 | |
| 	 */
 | |
| 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
 | |
| 		if (h->remove_in_progress)
 | |
| 			goto done;
 | |
| 		spin_lock_irqsave(&h->lock, flags);
 | |
| 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		if (!(doorbell_value & CFGTBL_ChangeReq))
 | |
| 			goto done;
 | |
| 		/* delay and try again */
 | |
| 		msleep(MODE_CHANGE_WAIT_INTERVAL);
 | |
| 	}
 | |
| 	return -ENODEV;
 | |
| done:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* return -ENODEV or other reason on error, 0 on success */
 | |
| static int hpsa_enter_simple_mode(struct ctlr_info *h)
 | |
| {
 | |
| 	u32 trans_support;
 | |
| 
 | |
| 	trans_support = readl(&(h->cfgtable->TransportSupport));
 | |
| 	if (!(trans_support & SIMPLE_MODE))
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
 | |
| 
 | |
| 	/* Update the field, and then ring the doorbell */
 | |
| 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
 | |
| 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
 | |
| 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 | |
| 	if (hpsa_wait_for_mode_change_ack(h))
 | |
| 		goto error;
 | |
| 	print_cfg_table(&h->pdev->dev, h->cfgtable);
 | |
| 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
 | |
| 		goto error;
 | |
| 	h->transMethod = CFGTBL_Trans_Simple;
 | |
| 	return 0;
 | |
| error:
 | |
| 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /* free items allocated or mapped by hpsa_pci_init */
 | |
| static void hpsa_free_pci_init(struct ctlr_info *h)
 | |
| {
 | |
| 	hpsa_free_cfgtables(h);			/* pci_init 4 */
 | |
| 	iounmap(h->vaddr);			/* pci_init 3 */
 | |
| 	h->vaddr = NULL;
 | |
| 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
 | |
| 	/*
 | |
| 	 * call pci_disable_device before pci_release_regions per
 | |
| 	 * Documentation/PCI/pci.txt
 | |
| 	 */
 | |
| 	pci_disable_device(h->pdev);		/* pci_init 1 */
 | |
| 	pci_release_regions(h->pdev);		/* pci_init 2 */
 | |
| }
 | |
| 
 | |
| /* several items must be freed later */
 | |
| static int hpsa_pci_init(struct ctlr_info *h)
 | |
| {
 | |
| 	int prod_index, err;
 | |
| 	bool legacy_board;
 | |
| 
 | |
| 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
 | |
| 	if (prod_index < 0)
 | |
| 		return prod_index;
 | |
| 	h->product_name = products[prod_index].product_name;
 | |
| 	h->access = *(products[prod_index].access);
 | |
| 	h->legacy_board = legacy_board;
 | |
| 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
 | |
| 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
 | |
| 
 | |
| 	err = pci_enable_device(h->pdev);
 | |
| 	if (err) {
 | |
| 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
 | |
| 		pci_disable_device(h->pdev);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = pci_request_regions(h->pdev, HPSA);
 | |
| 	if (err) {
 | |
| 		dev_err(&h->pdev->dev,
 | |
| 			"failed to obtain PCI resources\n");
 | |
| 		pci_disable_device(h->pdev);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(h->pdev);
 | |
| 
 | |
| 	err = hpsa_interrupt_mode(h);
 | |
| 	if (err)
 | |
| 		goto clean1;
 | |
| 
 | |
| 	/* setup mapping between CPU and reply queue */
 | |
| 	hpsa_setup_reply_map(h);
 | |
| 
 | |
| 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
 | |
| 	if (err)
 | |
| 		goto clean2;	/* intmode+region, pci */
 | |
| 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
 | |
| 	if (!h->vaddr) {
 | |
| 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
 | |
| 		err = -ENOMEM;
 | |
| 		goto clean2;	/* intmode+region, pci */
 | |
| 	}
 | |
| 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
 | |
| 	if (err)
 | |
| 		goto clean3;	/* vaddr, intmode+region, pci */
 | |
| 	err = hpsa_find_cfgtables(h);
 | |
| 	if (err)
 | |
| 		goto clean3;	/* vaddr, intmode+region, pci */
 | |
| 	hpsa_find_board_params(h);
 | |
| 
 | |
| 	if (!hpsa_CISS_signature_present(h)) {
 | |
| 		err = -ENODEV;
 | |
| 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
 | |
| 	}
 | |
| 	hpsa_set_driver_support_bits(h);
 | |
| 	hpsa_p600_dma_prefetch_quirk(h);
 | |
| 	err = hpsa_enter_simple_mode(h);
 | |
| 	if (err)
 | |
| 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
 | |
| 	return 0;
 | |
| 
 | |
| clean4:	/* cfgtables, vaddr, intmode+region, pci */
 | |
| 	hpsa_free_cfgtables(h);
 | |
| clean3:	/* vaddr, intmode+region, pci */
 | |
| 	iounmap(h->vaddr);
 | |
| 	h->vaddr = NULL;
 | |
| clean2:	/* intmode+region, pci */
 | |
| 	hpsa_disable_interrupt_mode(h);
 | |
| clean1:
 | |
| 	/*
 | |
| 	 * call pci_disable_device before pci_release_regions per
 | |
| 	 * Documentation/PCI/pci.txt
 | |
| 	 */
 | |
| 	pci_disable_device(h->pdev);
 | |
| 	pci_release_regions(h->pdev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void hpsa_hba_inquiry(struct ctlr_info *h)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| #define HBA_INQUIRY_BYTE_COUNT 64
 | |
| 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
 | |
| 	if (!h->hba_inquiry_data)
 | |
| 		return;
 | |
| 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
 | |
| 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
 | |
| 	if (rc != 0) {
 | |
| 		kfree(h->hba_inquiry_data);
 | |
| 		h->hba_inquiry_data = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
 | |
| {
 | |
| 	int rc, i;
 | |
| 	void __iomem *vaddr;
 | |
| 
 | |
| 	if (!reset_devices)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* kdump kernel is loading, we don't know in which state is
 | |
| 	 * the pci interface. The dev->enable_cnt is equal zero
 | |
| 	 * so we call enable+disable, wait a while and switch it on.
 | |
| 	 */
 | |
| 	rc = pci_enable_device(pdev);
 | |
| 	if (rc) {
 | |
| 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	pci_disable_device(pdev);
 | |
| 	msleep(260);			/* a randomly chosen number */
 | |
| 	rc = pci_enable_device(pdev);
 | |
| 	if (rc) {
 | |
| 		dev_warn(&pdev->dev, "failed to enable device.\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	vaddr = pci_ioremap_bar(pdev, 0);
 | |
| 	if (vaddr == NULL) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
 | |
| 	iounmap(vaddr);
 | |
| 
 | |
| 	/* Reset the controller with a PCI power-cycle or via doorbell */
 | |
| 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
 | |
| 
 | |
| 	/* -ENOTSUPP here means we cannot reset the controller
 | |
| 	 * but it's already (and still) up and running in
 | |
| 	 * "performant mode".  Or, it might be 640x, which can't reset
 | |
| 	 * due to concerns about shared bbwc between 6402/6404 pair.
 | |
| 	 */
 | |
| 	if (rc)
 | |
| 		goto out_disable;
 | |
| 
 | |
| 	/* Now try to get the controller to respond to a no-op */
 | |
| 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
 | |
| 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
 | |
| 		if (hpsa_noop(pdev) == 0)
 | |
| 			break;
 | |
| 		else
 | |
| 			dev_warn(&pdev->dev, "no-op failed%s\n",
 | |
| 					(i < 11 ? "; re-trying" : ""));
 | |
| 	}
 | |
| 
 | |
| out_disable:
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void hpsa_free_cmd_pool(struct ctlr_info *h)
 | |
| {
 | |
| 	kfree(h->cmd_pool_bits);
 | |
| 	h->cmd_pool_bits = NULL;
 | |
| 	if (h->cmd_pool) {
 | |
| 		pci_free_consistent(h->pdev,
 | |
| 				h->nr_cmds * sizeof(struct CommandList),
 | |
| 				h->cmd_pool,
 | |
| 				h->cmd_pool_dhandle);
 | |
| 		h->cmd_pool = NULL;
 | |
| 		h->cmd_pool_dhandle = 0;
 | |
| 	}
 | |
| 	if (h->errinfo_pool) {
 | |
| 		pci_free_consistent(h->pdev,
 | |
| 				h->nr_cmds * sizeof(struct ErrorInfo),
 | |
| 				h->errinfo_pool,
 | |
| 				h->errinfo_pool_dhandle);
 | |
| 		h->errinfo_pool = NULL;
 | |
| 		h->errinfo_pool_dhandle = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
 | |
| {
 | |
| 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
 | |
| 				   sizeof(unsigned long),
 | |
| 				   GFP_KERNEL);
 | |
| 	h->cmd_pool = pci_alloc_consistent(h->pdev,
 | |
| 		    h->nr_cmds * sizeof(*h->cmd_pool),
 | |
| 		    &(h->cmd_pool_dhandle));
 | |
| 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
 | |
| 		    h->nr_cmds * sizeof(*h->errinfo_pool),
 | |
| 		    &(h->errinfo_pool_dhandle));
 | |
| 	if ((h->cmd_pool_bits == NULL)
 | |
| 	    || (h->cmd_pool == NULL)
 | |
| 	    || (h->errinfo_pool == NULL)) {
 | |
| 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
 | |
| 		goto clean_up;
 | |
| 	}
 | |
| 	hpsa_preinitialize_commands(h);
 | |
| 	return 0;
 | |
| clean_up:
 | |
| 	hpsa_free_cmd_pool(h);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
 | |
| static void hpsa_free_irqs(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
 | |
| 		/* Single reply queue, only one irq to free */
 | |
| 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
 | |
| 		h->q[h->intr_mode] = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < h->msix_vectors; i++) {
 | |
| 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
 | |
| 		h->q[i] = 0;
 | |
| 	}
 | |
| 	for (; i < MAX_REPLY_QUEUES; i++)
 | |
| 		h->q[i] = 0;
 | |
| }
 | |
| 
 | |
| /* returns 0 on success; cleans up and returns -Enn on error */
 | |
| static int hpsa_request_irqs(struct ctlr_info *h,
 | |
| 	irqreturn_t (*msixhandler)(int, void *),
 | |
| 	irqreturn_t (*intxhandler)(int, void *))
 | |
| {
 | |
| 	int rc, i;
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize h->q[x] = x so that interrupt handlers know which
 | |
| 	 * queue to process.
 | |
| 	 */
 | |
| 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
 | |
| 		h->q[i] = (u8) i;
 | |
| 
 | |
| 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
 | |
| 		/* If performant mode and MSI-X, use multiple reply queues */
 | |
| 		for (i = 0; i < h->msix_vectors; i++) {
 | |
| 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
 | |
| 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
 | |
| 					0, h->intrname[i],
 | |
| 					&h->q[i]);
 | |
| 			if (rc) {
 | |
| 				int j;
 | |
| 
 | |
| 				dev_err(&h->pdev->dev,
 | |
| 					"failed to get irq %d for %s\n",
 | |
| 				       pci_irq_vector(h->pdev, i), h->devname);
 | |
| 				for (j = 0; j < i; j++) {
 | |
| 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
 | |
| 					h->q[j] = 0;
 | |
| 				}
 | |
| 				for (; j < MAX_REPLY_QUEUES; j++)
 | |
| 					h->q[j] = 0;
 | |
| 				return rc;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Use single reply pool */
 | |
| 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
 | |
| 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
 | |
| 				h->msix_vectors ? "x" : "");
 | |
| 			rc = request_irq(pci_irq_vector(h->pdev, 0),
 | |
| 				msixhandler, 0,
 | |
| 				h->intrname[0],
 | |
| 				&h->q[h->intr_mode]);
 | |
| 		} else {
 | |
| 			sprintf(h->intrname[h->intr_mode],
 | |
| 				"%s-intx", h->devname);
 | |
| 			rc = request_irq(pci_irq_vector(h->pdev, 0),
 | |
| 				intxhandler, IRQF_SHARED,
 | |
| 				h->intrname[0],
 | |
| 				&h->q[h->intr_mode]);
 | |
| 		}
 | |
| 	}
 | |
| 	if (rc) {
 | |
| 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
 | |
| 		       pci_irq_vector(h->pdev, 0), h->devname);
 | |
| 		hpsa_free_irqs(h);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpsa_kdump_soft_reset(struct ctlr_info *h)
 | |
| {
 | |
| 	int rc;
 | |
| 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
 | |
| 
 | |
| 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
 | |
| 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
 | |
| 	if (rc) {
 | |
| 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
 | |
| 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
 | |
| 	if (rc) {
 | |
| 		dev_warn(&h->pdev->dev, "Board failed to become ready "
 | |
| 			"after soft reset.\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hpsa_free_reply_queues(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < h->nreply_queues; i++) {
 | |
| 		if (!h->reply_queue[i].head)
 | |
| 			continue;
 | |
| 		pci_free_consistent(h->pdev,
 | |
| 					h->reply_queue_size,
 | |
| 					h->reply_queue[i].head,
 | |
| 					h->reply_queue[i].busaddr);
 | |
| 		h->reply_queue[i].head = NULL;
 | |
| 		h->reply_queue[i].busaddr = 0;
 | |
| 	}
 | |
| 	h->reply_queue_size = 0;
 | |
| }
 | |
| 
 | |
| static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
 | |
| {
 | |
| 	hpsa_free_performant_mode(h);		/* init_one 7 */
 | |
| 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
 | |
| 	hpsa_free_cmd_pool(h);			/* init_one 5 */
 | |
| 	hpsa_free_irqs(h);			/* init_one 4 */
 | |
| 	scsi_host_put(h->scsi_host);		/* init_one 3 */
 | |
| 	h->scsi_host = NULL;			/* init_one 3 */
 | |
| 	hpsa_free_pci_init(h);			/* init_one 2_5 */
 | |
| 	free_percpu(h->lockup_detected);	/* init_one 2 */
 | |
| 	h->lockup_detected = NULL;		/* init_one 2 */
 | |
| 	if (h->resubmit_wq) {
 | |
| 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
 | |
| 		h->resubmit_wq = NULL;
 | |
| 	}
 | |
| 	if (h->rescan_ctlr_wq) {
 | |
| 		destroy_workqueue(h->rescan_ctlr_wq);
 | |
| 		h->rescan_ctlr_wq = NULL;
 | |
| 	}
 | |
| 	kfree(h);				/* init_one 1 */
 | |
| }
 | |
| 
 | |
| /* Called when controller lockup detected. */
 | |
| static void fail_all_outstanding_cmds(struct ctlr_info *h)
 | |
| {
 | |
| 	int i, refcount;
 | |
| 	struct CommandList *c;
 | |
| 	int failcount = 0;
 | |
| 
 | |
| 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
 | |
| 	for (i = 0; i < h->nr_cmds; i++) {
 | |
| 		c = h->cmd_pool + i;
 | |
| 		refcount = atomic_inc_return(&c->refcount);
 | |
| 		if (refcount > 1) {
 | |
| 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
 | |
| 			finish_cmd(c);
 | |
| 			atomic_dec(&h->commands_outstanding);
 | |
| 			failcount++;
 | |
| 		}
 | |
| 		cmd_free(h, c);
 | |
| 	}
 | |
| 	dev_warn(&h->pdev->dev,
 | |
| 		"failed %d commands in fail_all\n", failcount);
 | |
| }
 | |
| 
 | |
| static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		u32 *lockup_detected;
 | |
| 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
 | |
| 		*lockup_detected = value;
 | |
| 	}
 | |
| 	wmb(); /* be sure the per-cpu variables are out to memory */
 | |
| }
 | |
| 
 | |
| static void controller_lockup_detected(struct ctlr_info *h)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 lockup_detected;
 | |
| 
 | |
| 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
 | |
| 	if (!lockup_detected) {
 | |
| 		/* no heartbeat, but controller gave us a zero. */
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"lockup detected after %d but scratchpad register is zero\n",
 | |
| 			h->heartbeat_sample_interval / HZ);
 | |
| 		lockup_detected = 0xffffffff;
 | |
| 	}
 | |
| 	set_lockup_detected_for_all_cpus(h, lockup_detected);
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
 | |
| 			lockup_detected, h->heartbeat_sample_interval / HZ);
 | |
| 	if (lockup_detected == 0xffff0000) {
 | |
| 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
 | |
| 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
 | |
| 	}
 | |
| 	pci_disable_device(h->pdev);
 | |
| 	fail_all_outstanding_cmds(h);
 | |
| }
 | |
| 
 | |
| static int detect_controller_lockup(struct ctlr_info *h)
 | |
| {
 | |
| 	u64 now;
 | |
| 	u32 heartbeat;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	now = get_jiffies_64();
 | |
| 	/* If we've received an interrupt recently, we're ok. */
 | |
| 	if (time_after64(h->last_intr_timestamp +
 | |
| 				(h->heartbeat_sample_interval), now))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we've already checked the heartbeat recently, we're ok.
 | |
| 	 * This could happen if someone sends us a signal. We
 | |
| 	 * otherwise don't care about signals in this thread.
 | |
| 	 */
 | |
| 	if (time_after64(h->last_heartbeat_timestamp +
 | |
| 				(h->heartbeat_sample_interval), now))
 | |
| 		return false;
 | |
| 
 | |
| 	/* If heartbeat has not changed since we last looked, we're not ok. */
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	heartbeat = readl(&h->cfgtable->HeartBeat);
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	if (h->last_heartbeat == heartbeat) {
 | |
| 		controller_lockup_detected(h);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* We're ok. */
 | |
| 	h->last_heartbeat = heartbeat;
 | |
| 	h->last_heartbeat_timestamp = now;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set ioaccel status for all ioaccel volumes.
 | |
|  *
 | |
|  * Called from monitor controller worker (hpsa_event_monitor_worker)
 | |
|  *
 | |
|  * A Volume (or Volumes that comprise an Array set may be undergoing a
 | |
|  * transformation, so we will be turning off ioaccel for all volumes that
 | |
|  * make up the Array.
 | |
|  */
 | |
| static void hpsa_set_ioaccel_status(struct ctlr_info *h)
 | |
| {
 | |
| 	int rc;
 | |
| 	int i;
 | |
| 	u8 ioaccel_status;
 | |
| 	unsigned char *buf;
 | |
| 	struct hpsa_scsi_dev_t *device;
 | |
| 
 | |
| 	if (!h)
 | |
| 		return;
 | |
| 
 | |
| 	buf = kmalloc(64, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Run through current device list used during I/O requests.
 | |
| 	 */
 | |
| 	for (i = 0; i < h->ndevices; i++) {
 | |
| 		device = h->dev[i];
 | |
| 
 | |
| 		if (!device)
 | |
| 			continue;
 | |
| 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
 | |
| 						HPSA_VPD_LV_IOACCEL_STATUS))
 | |
| 			continue;
 | |
| 
 | |
| 		memset(buf, 0, 64);
 | |
| 
 | |
| 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
 | |
| 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
 | |
| 					buf, 64);
 | |
| 		if (rc != 0)
 | |
| 			continue;
 | |
| 
 | |
| 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
 | |
| 		device->offload_config =
 | |
| 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
 | |
| 		if (device->offload_config)
 | |
| 			device->offload_to_be_enabled =
 | |
| 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
 | |
| 
 | |
| 		/*
 | |
| 		 * Immediately turn off ioaccel for any volume the
 | |
| 		 * controller tells us to. Some of the reasons could be:
 | |
| 		 *    transformation - change to the LVs of an Array.
 | |
| 		 *    degraded volume - component failure
 | |
| 		 *
 | |
| 		 * If ioaccel is to be re-enabled, re-enable later during the
 | |
| 		 * scan operation so the driver can get a fresh raidmap
 | |
| 		 * before turning ioaccel back on.
 | |
| 		 *
 | |
| 		 */
 | |
| 		if (!device->offload_to_be_enabled)
 | |
| 			device->offload_enabled = 0;
 | |
| 	}
 | |
| 
 | |
| 	kfree(buf);
 | |
| }
 | |
| 
 | |
| static void hpsa_ack_ctlr_events(struct ctlr_info *h)
 | |
| {
 | |
| 	char *event_type;
 | |
| 
 | |
| 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
 | |
| 		return;
 | |
| 
 | |
| 	/* Ask the controller to clear the events we're handling. */
 | |
| 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
 | |
| 			| CFGTBL_Trans_io_accel2)) &&
 | |
| 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
 | |
| 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
 | |
| 
 | |
| 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
 | |
| 			event_type = "state change";
 | |
| 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
 | |
| 			event_type = "configuration change";
 | |
| 		/* Stop sending new RAID offload reqs via the IO accelerator */
 | |
| 		scsi_block_requests(h->scsi_host);
 | |
| 		hpsa_set_ioaccel_status(h);
 | |
| 		hpsa_drain_accel_commands(h);
 | |
| 		/* Set 'accelerator path config change' bit */
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
 | |
| 			h->events, event_type);
 | |
| 		writel(h->events, &(h->cfgtable->clear_event_notify));
 | |
| 		/* Set the "clear event notify field update" bit 6 */
 | |
| 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
 | |
| 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
 | |
| 		hpsa_wait_for_clear_event_notify_ack(h);
 | |
| 		scsi_unblock_requests(h->scsi_host);
 | |
| 	} else {
 | |
| 		/* Acknowledge controller notification events. */
 | |
| 		writel(h->events, &(h->cfgtable->clear_event_notify));
 | |
| 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
 | |
| 		hpsa_wait_for_clear_event_notify_ack(h);
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /* Check a register on the controller to see if there are configuration
 | |
|  * changes (added/changed/removed logical drives, etc.) which mean that
 | |
|  * we should rescan the controller for devices.
 | |
|  * Also check flag for driver-initiated rescan.
 | |
|  */
 | |
| static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
 | |
| {
 | |
| 	if (h->drv_req_rescan) {
 | |
| 		h->drv_req_rescan = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
 | |
| 		return 0;
 | |
| 
 | |
| 	h->events = readl(&(h->cfgtable->event_notify));
 | |
| 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if any of the offline devices have become ready
 | |
|  */
 | |
| static int hpsa_offline_devices_ready(struct ctlr_info *h)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct offline_device_entry *d;
 | |
| 	struct list_head *this, *tmp;
 | |
| 
 | |
| 	spin_lock_irqsave(&h->offline_device_lock, flags);
 | |
| 	list_for_each_safe(this, tmp, &h->offline_device_list) {
 | |
| 		d = list_entry(this, struct offline_device_entry,
 | |
| 				offline_list);
 | |
| 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
 | |
| 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
 | |
| 			spin_lock_irqsave(&h->offline_device_lock, flags);
 | |
| 			list_del(&d->offline_list);
 | |
| 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		spin_lock_irqsave(&h->offline_device_lock, flags);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hpsa_luns_changed(struct ctlr_info *h)
 | |
| {
 | |
| 	int rc = 1; /* assume there are changes */
 | |
| 	struct ReportLUNdata *logdev = NULL;
 | |
| 
 | |
| 	/* if we can't find out if lun data has changed,
 | |
| 	 * assume that it has.
 | |
| 	 */
 | |
| 
 | |
| 	if (!h->lastlogicals)
 | |
| 		return rc;
 | |
| 
 | |
| 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
 | |
| 	if (!logdev)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"report luns failed, can't track lun changes.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"Lun changes detected.\n");
 | |
| 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
 | |
| 		goto out;
 | |
| 	} else
 | |
| 		rc = 0; /* no changes detected. */
 | |
| out:
 | |
| 	kfree(logdev);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void hpsa_perform_rescan(struct ctlr_info *h)
 | |
| {
 | |
| 	struct Scsi_Host *sh = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do the scan after the reset
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&h->reset_lock, flags);
 | |
| 	if (h->reset_in_progress) {
 | |
| 		h->drv_req_rescan = 1;
 | |
| 		spin_unlock_irqrestore(&h->reset_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&h->reset_lock, flags);
 | |
| 
 | |
| 	sh = scsi_host_get(h->scsi_host);
 | |
| 	if (sh != NULL) {
 | |
| 		hpsa_scan_start(sh);
 | |
| 		scsi_host_put(sh);
 | |
| 		h->drv_req_rescan = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * watch for controller events
 | |
|  */
 | |
| static void hpsa_event_monitor_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct ctlr_info *h = container_of(to_delayed_work(work),
 | |
| 					struct ctlr_info, event_monitor_work);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	if (h->remove_in_progress) {
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 
 | |
| 	if (hpsa_ctlr_needs_rescan(h)) {
 | |
| 		hpsa_ack_ctlr_events(h);
 | |
| 		hpsa_perform_rescan(h);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	if (!h->remove_in_progress)
 | |
| 		schedule_delayed_work(&h->event_monitor_work,
 | |
| 					HPSA_EVENT_MONITOR_INTERVAL);
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| }
 | |
| 
 | |
| static void hpsa_rescan_ctlr_worker(struct work_struct *work)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct ctlr_info *h = container_of(to_delayed_work(work),
 | |
| 					struct ctlr_info, rescan_ctlr_work);
 | |
| 
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	if (h->remove_in_progress) {
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 
 | |
| 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
 | |
| 		hpsa_perform_rescan(h);
 | |
| 	} else if (h->discovery_polling) {
 | |
| 		if (hpsa_luns_changed(h)) {
 | |
| 			dev_info(&h->pdev->dev,
 | |
| 				"driver discovery polling rescan.\n");
 | |
| 			hpsa_perform_rescan(h);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	if (!h->remove_in_progress)
 | |
| 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
 | |
| 				h->heartbeat_sample_interval);
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| }
 | |
| 
 | |
| static void hpsa_monitor_ctlr_worker(struct work_struct *work)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct ctlr_info *h = container_of(to_delayed_work(work),
 | |
| 					struct ctlr_info, monitor_ctlr_work);
 | |
| 
 | |
| 	detect_controller_lockup(h);
 | |
| 	if (lockup_detected(h))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	if (!h->remove_in_progress)
 | |
| 		schedule_delayed_work(&h->monitor_ctlr_work,
 | |
| 				h->heartbeat_sample_interval);
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| }
 | |
| 
 | |
| static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
 | |
| 						char *name)
 | |
| {
 | |
| 	struct workqueue_struct *wq = NULL;
 | |
| 
 | |
| 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
 | |
| 	if (!wq)
 | |
| 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
 | |
| 
 | |
| 	return wq;
 | |
| }
 | |
| 
 | |
| static void hpda_free_ctlr_info(struct ctlr_info *h)
 | |
| {
 | |
| 	kfree(h->reply_map);
 | |
| 	kfree(h);
 | |
| }
 | |
| 
 | |
| static struct ctlr_info *hpda_alloc_ctlr_info(void)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 
 | |
| 	h = kzalloc(sizeof(*h), GFP_KERNEL);
 | |
| 	if (!h)
 | |
| 		return NULL;
 | |
| 
 | |
| 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
 | |
| 	if (!h->reply_map) {
 | |
| 		kfree(h);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return h;
 | |
| }
 | |
| 
 | |
| static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 | |
| {
 | |
| 	int dac, rc;
 | |
| 	struct ctlr_info *h;
 | |
| 	int try_soft_reset = 0;
 | |
| 	unsigned long flags;
 | |
| 	u32 board_id;
 | |
| 
 | |
| 	if (number_of_controllers == 0)
 | |
| 		printk(KERN_INFO DRIVER_NAME "\n");
 | |
| 
 | |
| 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
 | |
| 	if (rc < 0) {
 | |
| 		dev_warn(&pdev->dev, "Board ID not found\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	rc = hpsa_init_reset_devices(pdev, board_id);
 | |
| 	if (rc) {
 | |
| 		if (rc != -ENOTSUPP)
 | |
| 			return rc;
 | |
| 		/* If the reset fails in a particular way (it has no way to do
 | |
| 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
 | |
| 		 * a soft reset once we get the controller configured up to the
 | |
| 		 * point that it can accept a command.
 | |
| 		 */
 | |
| 		try_soft_reset = 1;
 | |
| 		rc = 0;
 | |
| 	}
 | |
| 
 | |
| reinit_after_soft_reset:
 | |
| 
 | |
| 	/* Command structures must be aligned on a 32-byte boundary because
 | |
| 	 * the 5 lower bits of the address are used by the hardware. and by
 | |
| 	 * the driver.  See comments in hpsa.h for more info.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
 | |
| 	h = hpda_alloc_ctlr_info();
 | |
| 	if (!h) {
 | |
| 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	h->pdev = pdev;
 | |
| 
 | |
| 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
 | |
| 	INIT_LIST_HEAD(&h->offline_device_list);
 | |
| 	spin_lock_init(&h->lock);
 | |
| 	spin_lock_init(&h->offline_device_lock);
 | |
| 	spin_lock_init(&h->scan_lock);
 | |
| 	spin_lock_init(&h->reset_lock);
 | |
| 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
 | |
| 
 | |
| 	/* Allocate and clear per-cpu variable lockup_detected */
 | |
| 	h->lockup_detected = alloc_percpu(u32);
 | |
| 	if (!h->lockup_detected) {
 | |
| 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto clean1;	/* aer/h */
 | |
| 	}
 | |
| 	set_lockup_detected_for_all_cpus(h, 0);
 | |
| 
 | |
| 	rc = hpsa_pci_init(h);
 | |
| 	if (rc)
 | |
| 		goto clean2;	/* lu, aer/h */
 | |
| 
 | |
| 	/* relies on h-> settings made by hpsa_pci_init, including
 | |
| 	 * interrupt_mode h->intr */
 | |
| 	rc = hpsa_scsi_host_alloc(h);
 | |
| 	if (rc)
 | |
| 		goto clean2_5;	/* pci, lu, aer/h */
 | |
| 
 | |
| 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
 | |
| 	h->ctlr = number_of_controllers;
 | |
| 	number_of_controllers++;
 | |
| 
 | |
| 	/* configure PCI DMA stuff */
 | |
| 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
 | |
| 	if (rc == 0) {
 | |
| 		dac = 1;
 | |
| 	} else {
 | |
| 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
 | |
| 		if (rc == 0) {
 | |
| 			dac = 0;
 | |
| 		} else {
 | |
| 			dev_err(&pdev->dev, "no suitable DMA available\n");
 | |
| 			goto clean3;	/* shost, pci, lu, aer/h */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* make sure the board interrupts are off */
 | |
| 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 | |
| 
 | |
| 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
 | |
| 	if (rc)
 | |
| 		goto clean3;	/* shost, pci, lu, aer/h */
 | |
| 	rc = hpsa_alloc_cmd_pool(h);
 | |
| 	if (rc)
 | |
| 		goto clean4;	/* irq, shost, pci, lu, aer/h */
 | |
| 	rc = hpsa_alloc_sg_chain_blocks(h);
 | |
| 	if (rc)
 | |
| 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
 | |
| 	init_waitqueue_head(&h->scan_wait_queue);
 | |
| 	init_waitqueue_head(&h->event_sync_wait_queue);
 | |
| 	mutex_init(&h->reset_mutex);
 | |
| 	h->scan_finished = 1; /* no scan currently in progress */
 | |
| 	h->scan_waiting = 0;
 | |
| 
 | |
| 	pci_set_drvdata(pdev, h);
 | |
| 	h->ndevices = 0;
 | |
| 
 | |
| 	spin_lock_init(&h->devlock);
 | |
| 	rc = hpsa_put_ctlr_into_performant_mode(h);
 | |
| 	if (rc)
 | |
| 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
 | |
| 
 | |
| 	/* create the resubmit workqueue */
 | |
| 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
 | |
| 	if (!h->rescan_ctlr_wq) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto clean7;
 | |
| 	}
 | |
| 
 | |
| 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
 | |
| 	if (!h->resubmit_wq) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto clean7;	/* aer/h */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, the controller is ready to take commands.
 | |
| 	 * Now, if reset_devices and the hard reset didn't work, try
 | |
| 	 * the soft reset and see if that works.
 | |
| 	 */
 | |
| 	if (try_soft_reset) {
 | |
| 
 | |
| 		/* This is kind of gross.  We may or may not get a completion
 | |
| 		 * from the soft reset command, and if we do, then the value
 | |
| 		 * from the fifo may or may not be valid.  So, we wait 10 secs
 | |
| 		 * after the reset throwing away any completions we get during
 | |
| 		 * that time.  Unregister the interrupt handler and register
 | |
| 		 * fake ones to scoop up any residual completions.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&h->lock, flags);
 | |
| 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
 | |
| 		spin_unlock_irqrestore(&h->lock, flags);
 | |
| 		hpsa_free_irqs(h);
 | |
| 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
 | |
| 					hpsa_intx_discard_completions);
 | |
| 		if (rc) {
 | |
| 			dev_warn(&h->pdev->dev,
 | |
| 				"Failed to request_irq after soft reset.\n");
 | |
| 			/*
 | |
| 			 * cannot goto clean7 or free_irqs will be called
 | |
| 			 * again. Instead, do its work
 | |
| 			 */
 | |
| 			hpsa_free_performant_mode(h);	/* clean7 */
 | |
| 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
 | |
| 			hpsa_free_cmd_pool(h);		/* clean5 */
 | |
| 			/*
 | |
| 			 * skip hpsa_free_irqs(h) clean4 since that
 | |
| 			 * was just called before request_irqs failed
 | |
| 			 */
 | |
| 			goto clean3;
 | |
| 		}
 | |
| 
 | |
| 		rc = hpsa_kdump_soft_reset(h);
 | |
| 		if (rc)
 | |
| 			/* Neither hard nor soft reset worked, we're hosed. */
 | |
| 			goto clean7;
 | |
| 
 | |
| 		dev_info(&h->pdev->dev, "Board READY.\n");
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"Waiting for stale completions to drain.\n");
 | |
| 		h->access.set_intr_mask(h, HPSA_INTR_ON);
 | |
| 		msleep(10000);
 | |
| 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
 | |
| 
 | |
| 		rc = controller_reset_failed(h->cfgtable);
 | |
| 		if (rc)
 | |
| 			dev_info(&h->pdev->dev,
 | |
| 				"Soft reset appears to have failed.\n");
 | |
| 
 | |
| 		/* since the controller's reset, we have to go back and re-init
 | |
| 		 * everything.  Easiest to just forget what we've done and do it
 | |
| 		 * all over again.
 | |
| 		 */
 | |
| 		hpsa_undo_allocations_after_kdump_soft_reset(h);
 | |
| 		try_soft_reset = 0;
 | |
| 		if (rc)
 | |
| 			/* don't goto clean, we already unallocated */
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		goto reinit_after_soft_reset;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable Accelerated IO path at driver layer */
 | |
| 	h->acciopath_status = 1;
 | |
| 	/* Disable discovery polling.*/
 | |
| 	h->discovery_polling = 0;
 | |
| 
 | |
| 
 | |
| 	/* Turn the interrupts on so we can service requests */
 | |
| 	h->access.set_intr_mask(h, HPSA_INTR_ON);
 | |
| 
 | |
| 	hpsa_hba_inquiry(h);
 | |
| 
 | |
| 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
 | |
| 	if (!h->lastlogicals)
 | |
| 		dev_info(&h->pdev->dev,
 | |
| 			"Can't track change to report lun data\n");
 | |
| 
 | |
| 	/* hook into SCSI subsystem */
 | |
| 	rc = hpsa_scsi_add_host(h);
 | |
| 	if (rc)
 | |
| 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
 | |
| 
 | |
| 	/* Monitor the controller for firmware lockups */
 | |
| 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
 | |
| 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
 | |
| 	schedule_delayed_work(&h->monitor_ctlr_work,
 | |
| 				h->heartbeat_sample_interval);
 | |
| 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
 | |
| 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
 | |
| 				h->heartbeat_sample_interval);
 | |
| 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
 | |
| 	schedule_delayed_work(&h->event_monitor_work,
 | |
| 				HPSA_EVENT_MONITOR_INTERVAL);
 | |
| 	return 0;
 | |
| 
 | |
| clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
 | |
| 	hpsa_free_performant_mode(h);
 | |
| 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 | |
| clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
 | |
| 	hpsa_free_sg_chain_blocks(h);
 | |
| clean5: /* cmd, irq, shost, pci, lu, aer/h */
 | |
| 	hpsa_free_cmd_pool(h);
 | |
| clean4: /* irq, shost, pci, lu, aer/h */
 | |
| 	hpsa_free_irqs(h);
 | |
| clean3: /* shost, pci, lu, aer/h */
 | |
| 	scsi_host_put(h->scsi_host);
 | |
| 	h->scsi_host = NULL;
 | |
| clean2_5: /* pci, lu, aer/h */
 | |
| 	hpsa_free_pci_init(h);
 | |
| clean2: /* lu, aer/h */
 | |
| 	if (h->lockup_detected) {
 | |
| 		free_percpu(h->lockup_detected);
 | |
| 		h->lockup_detected = NULL;
 | |
| 	}
 | |
| clean1:	/* wq/aer/h */
 | |
| 	if (h->resubmit_wq) {
 | |
| 		destroy_workqueue(h->resubmit_wq);
 | |
| 		h->resubmit_wq = NULL;
 | |
| 	}
 | |
| 	if (h->rescan_ctlr_wq) {
 | |
| 		destroy_workqueue(h->rescan_ctlr_wq);
 | |
| 		h->rescan_ctlr_wq = NULL;
 | |
| 	}
 | |
| 	kfree(h);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void hpsa_flush_cache(struct ctlr_info *h)
 | |
| {
 | |
| 	char *flush_buf;
 | |
| 	struct CommandList *c;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (unlikely(lockup_detected(h)))
 | |
| 		return;
 | |
| 	flush_buf = kzalloc(4, GFP_KERNEL);
 | |
| 	if (!flush_buf)
 | |
| 		return;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
 | |
| 		RAID_CTLR_LUNID, TYPE_CMD)) {
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	if (c->err_info->CommandStatus != 0)
 | |
| out:
 | |
| 		dev_warn(&h->pdev->dev,
 | |
| 			"error flushing cache on controller\n");
 | |
| 	cmd_free(h, c);
 | |
| 	kfree(flush_buf);
 | |
| }
 | |
| 
 | |
| /* Make controller gather fresh report lun data each time we
 | |
|  * send down a report luns request
 | |
|  */
 | |
| static void hpsa_disable_rld_caching(struct ctlr_info *h)
 | |
| {
 | |
| 	u32 *options;
 | |
| 	struct CommandList *c;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Don't bother trying to set diag options if locked up */
 | |
| 	if (unlikely(h->lockup_detected))
 | |
| 		return;
 | |
| 
 | |
| 	options = kzalloc(sizeof(*options), GFP_KERNEL);
 | |
| 	if (!options)
 | |
| 		return;
 | |
| 
 | |
| 	c = cmd_alloc(h);
 | |
| 
 | |
| 	/* first, get the current diag options settings */
 | |
| 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
 | |
| 		RAID_CTLR_LUNID, TYPE_CMD))
 | |
| 		goto errout;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
 | |
| 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
 | |
| 		goto errout;
 | |
| 
 | |
| 	/* Now, set the bit for disabling the RLD caching */
 | |
| 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
 | |
| 
 | |
| 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
 | |
| 		RAID_CTLR_LUNID, TYPE_CMD))
 | |
| 		goto errout;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 		PCI_DMA_TODEVICE, NO_TIMEOUT);
 | |
| 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
 | |
| 		goto errout;
 | |
| 
 | |
| 	/* Now verify that it got set: */
 | |
| 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
 | |
| 		RAID_CTLR_LUNID, TYPE_CMD))
 | |
| 		goto errout;
 | |
| 
 | |
| 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 | |
| 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
 | |
| 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
 | |
| 		goto errout;
 | |
| 
 | |
| 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
 | |
| 		goto out;
 | |
| 
 | |
| errout:
 | |
| 	dev_err(&h->pdev->dev,
 | |
| 			"Error: failed to disable report lun data caching.\n");
 | |
| out:
 | |
| 	cmd_free(h, c);
 | |
| 	kfree(options);
 | |
| }
 | |
| 
 | |
| static void __hpsa_shutdown(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 
 | |
| 	h = pci_get_drvdata(pdev);
 | |
| 	/* Turn board interrupts off  and send the flush cache command
 | |
| 	 * sendcmd will turn off interrupt, and send the flush...
 | |
| 	 * To write all data in the battery backed cache to disks
 | |
| 	 */
 | |
| 	hpsa_flush_cache(h);
 | |
| 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 | |
| 	hpsa_free_irqs(h);			/* init_one 4 */
 | |
| 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
 | |
| }
 | |
| 
 | |
| static void hpsa_shutdown(struct pci_dev *pdev)
 | |
| {
 | |
| 	__hpsa_shutdown(pdev);
 | |
| 	pci_disable_device(pdev);
 | |
| }
 | |
| 
 | |
| static void hpsa_free_device_info(struct ctlr_info *h)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < h->ndevices; i++) {
 | |
| 		kfree(h->dev[i]);
 | |
| 		h->dev[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hpsa_remove_one(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct ctlr_info *h;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (pci_get_drvdata(pdev) == NULL) {
 | |
| 		dev_err(&pdev->dev, "unable to remove device\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	h = pci_get_drvdata(pdev);
 | |
| 
 | |
| 	/* Get rid of any controller monitoring work items */
 | |
| 	spin_lock_irqsave(&h->lock, flags);
 | |
| 	h->remove_in_progress = 1;
 | |
| 	spin_unlock_irqrestore(&h->lock, flags);
 | |
| 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
 | |
| 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
 | |
| 	cancel_delayed_work_sync(&h->event_monitor_work);
 | |
| 	destroy_workqueue(h->rescan_ctlr_wq);
 | |
| 	destroy_workqueue(h->resubmit_wq);
 | |
| 
 | |
| 	hpsa_delete_sas_host(h);
 | |
| 
 | |
| 	/*
 | |
| 	 * Call before disabling interrupts.
 | |
| 	 * scsi_remove_host can trigger I/O operations especially
 | |
| 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
 | |
| 	 * operations which cannot complete and will hang the system.
 | |
| 	 */
 | |
| 	if (h->scsi_host)
 | |
| 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
 | |
| 	/* includes hpsa_free_irqs - init_one 4 */
 | |
| 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
 | |
| 	__hpsa_shutdown(pdev);
 | |
| 
 | |
| 	hpsa_free_device_info(h);		/* scan */
 | |
| 
 | |
| 	kfree(h->hba_inquiry_data);			/* init_one 10 */
 | |
| 	h->hba_inquiry_data = NULL;			/* init_one 10 */
 | |
| 	hpsa_free_ioaccel2_sg_chain_blocks(h);
 | |
| 	hpsa_free_performant_mode(h);			/* init_one 7 */
 | |
| 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
 | |
| 	hpsa_free_cmd_pool(h);				/* init_one 5 */
 | |
| 	kfree(h->lastlogicals);
 | |
| 
 | |
| 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
 | |
| 
 | |
| 	scsi_host_put(h->scsi_host);			/* init_one 3 */
 | |
| 	h->scsi_host = NULL;				/* init_one 3 */
 | |
| 
 | |
| 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
 | |
| 	hpsa_free_pci_init(h);				/* init_one 2.5 */
 | |
| 
 | |
| 	free_percpu(h->lockup_detected);		/* init_one 2 */
 | |
| 	h->lockup_detected = NULL;			/* init_one 2 */
 | |
| 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
 | |
| 
 | |
| 	hpda_free_ctlr_info(h);				/* init_one 1 */
 | |
| }
 | |
| 
 | |
| static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
 | |
| 	__attribute__((unused)) pm_message_t state)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static struct pci_driver hpsa_pci_driver = {
 | |
| 	.name = HPSA,
 | |
| 	.probe = hpsa_init_one,
 | |
| 	.remove = hpsa_remove_one,
 | |
| 	.id_table = hpsa_pci_device_id,	/* id_table */
 | |
| 	.shutdown = hpsa_shutdown,
 | |
| 	.suspend = hpsa_suspend,
 | |
| 	.resume = hpsa_resume,
 | |
| };
 | |
| 
 | |
| /* Fill in bucket_map[], given nsgs (the max number of
 | |
|  * scatter gather elements supported) and bucket[],
 | |
|  * which is an array of 8 integers.  The bucket[] array
 | |
|  * contains 8 different DMA transfer sizes (in 16
 | |
|  * byte increments) which the controller uses to fetch
 | |
|  * commands.  This function fills in bucket_map[], which
 | |
|  * maps a given number of scatter gather elements to one of
 | |
|  * the 8 DMA transfer sizes.  The point of it is to allow the
 | |
|  * controller to only do as much DMA as needed to fetch the
 | |
|  * command, with the DMA transfer size encoded in the lower
 | |
|  * bits of the command address.
 | |
|  */
 | |
| static void  calc_bucket_map(int bucket[], int num_buckets,
 | |
| 	int nsgs, int min_blocks, u32 *bucket_map)
 | |
| {
 | |
| 	int i, j, b, size;
 | |
| 
 | |
| 	/* Note, bucket_map must have nsgs+1 entries. */
 | |
| 	for (i = 0; i <= nsgs; i++) {
 | |
| 		/* Compute size of a command with i SG entries */
 | |
| 		size = i + min_blocks;
 | |
| 		b = num_buckets; /* Assume the biggest bucket */
 | |
| 		/* Find the bucket that is just big enough */
 | |
| 		for (j = 0; j < num_buckets; j++) {
 | |
| 			if (bucket[j] >= size) {
 | |
| 				b = j;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		/* for a command with i SG entries, use bucket b. */
 | |
| 		bucket_map[i] = b;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return -ENODEV on err, 0 on success (or no action)
 | |
|  * allocates numerous items that must be freed later
 | |
|  */
 | |
| static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long register_value;
 | |
| 	unsigned long transMethod = CFGTBL_Trans_Performant |
 | |
| 			(trans_support & CFGTBL_Trans_use_short_tags) |
 | |
| 				CFGTBL_Trans_enable_directed_msix |
 | |
| 			(trans_support & (CFGTBL_Trans_io_accel1 |
 | |
| 				CFGTBL_Trans_io_accel2));
 | |
| 	struct access_method access = SA5_performant_access;
 | |
| 
 | |
| 	/* This is a bit complicated.  There are 8 registers on
 | |
| 	 * the controller which we write to to tell it 8 different
 | |
| 	 * sizes of commands which there may be.  It's a way of
 | |
| 	 * reducing the DMA done to fetch each command.  Encoded into
 | |
| 	 * each command's tag are 3 bits which communicate to the controller
 | |
| 	 * which of the eight sizes that command fits within.  The size of
 | |
| 	 * each command depends on how many scatter gather entries there are.
 | |
| 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
 | |
| 	 * with the number of 16-byte blocks a command of that size requires.
 | |
| 	 * The smallest command possible requires 5 such 16 byte blocks.
 | |
| 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
 | |
| 	 * blocks.  Note, this only extends to the SG entries contained
 | |
| 	 * within the command block, and does not extend to chained blocks
 | |
| 	 * of SG elements.   bft[] contains the eight values we write to
 | |
| 	 * the registers.  They are not evenly distributed, but have more
 | |
| 	 * sizes for small commands, and fewer sizes for larger commands.
 | |
| 	 */
 | |
| 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
 | |
| #define MIN_IOACCEL2_BFT_ENTRY 5
 | |
| #define HPSA_IOACCEL2_HEADER_SZ 4
 | |
| 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
 | |
| 			13, 14, 15, 16, 17, 18, 19,
 | |
| 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
 | |
| 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
 | |
| 				 16 * MIN_IOACCEL2_BFT_ENTRY);
 | |
| 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
 | |
| 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
 | |
| 	/*  5 = 1 s/g entry or 4k
 | |
| 	 *  6 = 2 s/g entry or 8k
 | |
| 	 *  8 = 4 s/g entry or 16k
 | |
| 	 * 10 = 6 s/g entry or 24k
 | |
| 	 */
 | |
| 
 | |
| 	/* If the controller supports either ioaccel method then
 | |
| 	 * we can also use the RAID stack submit path that does not
 | |
| 	 * perform the superfluous readl() after each command submission.
 | |
| 	 */
 | |
| 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
 | |
| 		access = SA5_performant_access_no_read;
 | |
| 
 | |
| 	/* Controller spec: zero out this buffer. */
 | |
| 	for (i = 0; i < h->nreply_queues; i++)
 | |
| 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
 | |
| 
 | |
| 	bft[7] = SG_ENTRIES_IN_CMD + 4;
 | |
| 	calc_bucket_map(bft, ARRAY_SIZE(bft),
 | |
| 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		writel(bft[i], &h->transtable->BlockFetch[i]);
 | |
| 
 | |
| 	/* size of controller ring buffer */
 | |
| 	writel(h->max_commands, &h->transtable->RepQSize);
 | |
| 	writel(h->nreply_queues, &h->transtable->RepQCount);
 | |
| 	writel(0, &h->transtable->RepQCtrAddrLow32);
 | |
| 	writel(0, &h->transtable->RepQCtrAddrHigh32);
 | |
| 
 | |
| 	for (i = 0; i < h->nreply_queues; i++) {
 | |
| 		writel(0, &h->transtable->RepQAddr[i].upper);
 | |
| 		writel(h->reply_queue[i].busaddr,
 | |
| 			&h->transtable->RepQAddr[i].lower);
 | |
| 	}
 | |
| 
 | |
| 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
 | |
| 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
 | |
| 	/*
 | |
| 	 * enable outbound interrupt coalescing in accelerator mode;
 | |
| 	 */
 | |
| 	if (trans_support & CFGTBL_Trans_io_accel1) {
 | |
| 		access = SA5_ioaccel_mode1_access;
 | |
| 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
 | |
| 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
 | |
| 	} else
 | |
| 		if (trans_support & CFGTBL_Trans_io_accel2)
 | |
| 			access = SA5_ioaccel_mode2_access;
 | |
| 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 | |
| 	if (hpsa_wait_for_mode_change_ack(h)) {
 | |
| 		dev_err(&h->pdev->dev,
 | |
| 			"performant mode problem - doorbell timeout\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	register_value = readl(&(h->cfgtable->TransportActive));
 | |
| 	if (!(register_value & CFGTBL_Trans_Performant)) {
 | |
| 		dev_err(&h->pdev->dev,
 | |
| 			"performant mode problem - transport not active\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	/* Change the access methods to the performant access methods */
 | |
| 	h->access = access;
 | |
| 	h->transMethod = transMethod;
 | |
| 
 | |
| 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
 | |
| 		(trans_support & CFGTBL_Trans_io_accel2)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (trans_support & CFGTBL_Trans_io_accel1) {
 | |
| 		/* Set up I/O accelerator mode */
 | |
| 		for (i = 0; i < h->nreply_queues; i++) {
 | |
| 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
 | |
| 			h->reply_queue[i].current_entry =
 | |
| 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
 | |
| 		}
 | |
| 		bft[7] = h->ioaccel_maxsg + 8;
 | |
| 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
 | |
| 				h->ioaccel1_blockFetchTable);
 | |
| 
 | |
| 		/* initialize all reply queue entries to unused */
 | |
| 		for (i = 0; i < h->nreply_queues; i++)
 | |
| 			memset(h->reply_queue[i].head,
 | |
| 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
 | |
| 				h->reply_queue_size);
 | |
| 
 | |
| 		/* set all the constant fields in the accelerator command
 | |
| 		 * frames once at init time to save CPU cycles later.
 | |
| 		 */
 | |
| 		for (i = 0; i < h->nr_cmds; i++) {
 | |
| 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
 | |
| 
 | |
| 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
 | |
| 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
 | |
| 					(i * sizeof(struct ErrorInfo)));
 | |
| 			cp->err_info_len = sizeof(struct ErrorInfo);
 | |
| 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
 | |
| 			cp->host_context_flags =
 | |
| 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
 | |
| 			cp->timeout_sec = 0;
 | |
| 			cp->ReplyQueue = 0;
 | |
| 			cp->tag =
 | |
| 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
 | |
| 			cp->host_addr =
 | |
| 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
 | |
| 					(i * sizeof(struct io_accel1_cmd)));
 | |
| 		}
 | |
| 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
 | |
| 		u64 cfg_offset, cfg_base_addr_index;
 | |
| 		u32 bft2_offset, cfg_base_addr;
 | |
| 		int rc;
 | |
| 
 | |
| 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
 | |
| 			&cfg_base_addr_index, &cfg_offset);
 | |
| 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
 | |
| 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
 | |
| 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
 | |
| 				4, h->ioaccel2_blockFetchTable);
 | |
| 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
 | |
| 		BUILD_BUG_ON(offsetof(struct CfgTable,
 | |
| 				io_accel_request_size_offset) != 0xb8);
 | |
| 		h->ioaccel2_bft2_regs =
 | |
| 			remap_pci_mem(pci_resource_start(h->pdev,
 | |
| 					cfg_base_addr_index) +
 | |
| 					cfg_offset + bft2_offset,
 | |
| 					ARRAY_SIZE(bft2) *
 | |
| 					sizeof(*h->ioaccel2_bft2_regs));
 | |
| 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
 | |
| 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
 | |
| 	}
 | |
| 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 | |
| 	if (hpsa_wait_for_mode_change_ack(h)) {
 | |
| 		dev_err(&h->pdev->dev,
 | |
| 			"performant mode problem - enabling ioaccel mode\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Free ioaccel1 mode command blocks and block fetch table */
 | |
| static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
 | |
| {
 | |
| 	if (h->ioaccel_cmd_pool) {
 | |
| 		pci_free_consistent(h->pdev,
 | |
| 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
 | |
| 			h->ioaccel_cmd_pool,
 | |
| 			h->ioaccel_cmd_pool_dhandle);
 | |
| 		h->ioaccel_cmd_pool = NULL;
 | |
| 		h->ioaccel_cmd_pool_dhandle = 0;
 | |
| 	}
 | |
| 	kfree(h->ioaccel1_blockFetchTable);
 | |
| 	h->ioaccel1_blockFetchTable = NULL;
 | |
| }
 | |
| 
 | |
| /* Allocate ioaccel1 mode command blocks and block fetch table */
 | |
| static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
 | |
| {
 | |
| 	h->ioaccel_maxsg =
 | |
| 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
 | |
| 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
 | |
| 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
 | |
| 
 | |
| 	/* Command structures must be aligned on a 128-byte boundary
 | |
| 	 * because the 7 lower bits of the address are used by the
 | |
| 	 * hardware.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
 | |
| 			IOACCEL1_COMMANDLIST_ALIGNMENT);
 | |
| 	h->ioaccel_cmd_pool =
 | |
| 		pci_alloc_consistent(h->pdev,
 | |
| 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
 | |
| 			&(h->ioaccel_cmd_pool_dhandle));
 | |
| 
 | |
| 	h->ioaccel1_blockFetchTable =
 | |
| 		kmalloc(((h->ioaccel_maxsg + 1) *
 | |
| 				sizeof(u32)), GFP_KERNEL);
 | |
| 
 | |
| 	if ((h->ioaccel_cmd_pool == NULL) ||
 | |
| 		(h->ioaccel1_blockFetchTable == NULL))
 | |
| 		goto clean_up;
 | |
| 
 | |
| 	memset(h->ioaccel_cmd_pool, 0,
 | |
| 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
 | |
| 	return 0;
 | |
| 
 | |
| clean_up:
 | |
| 	hpsa_free_ioaccel1_cmd_and_bft(h);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Free ioaccel2 mode command blocks and block fetch table */
 | |
| static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
 | |
| {
 | |
| 	hpsa_free_ioaccel2_sg_chain_blocks(h);
 | |
| 
 | |
| 	if (h->ioaccel2_cmd_pool) {
 | |
| 		pci_free_consistent(h->pdev,
 | |
| 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
 | |
| 			h->ioaccel2_cmd_pool,
 | |
| 			h->ioaccel2_cmd_pool_dhandle);
 | |
| 		h->ioaccel2_cmd_pool = NULL;
 | |
| 		h->ioaccel2_cmd_pool_dhandle = 0;
 | |
| 	}
 | |
| 	kfree(h->ioaccel2_blockFetchTable);
 | |
| 	h->ioaccel2_blockFetchTable = NULL;
 | |
| }
 | |
| 
 | |
| /* Allocate ioaccel2 mode command blocks and block fetch table */
 | |
| static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Allocate ioaccel2 mode command blocks and block fetch table */
 | |
| 
 | |
| 	h->ioaccel_maxsg =
 | |
| 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
 | |
| 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
 | |
| 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
 | |
| 			IOACCEL2_COMMANDLIST_ALIGNMENT);
 | |
| 	h->ioaccel2_cmd_pool =
 | |
| 		pci_alloc_consistent(h->pdev,
 | |
| 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
 | |
| 			&(h->ioaccel2_cmd_pool_dhandle));
 | |
| 
 | |
| 	h->ioaccel2_blockFetchTable =
 | |
| 		kmalloc(((h->ioaccel_maxsg + 1) *
 | |
| 				sizeof(u32)), GFP_KERNEL);
 | |
| 
 | |
| 	if ((h->ioaccel2_cmd_pool == NULL) ||
 | |
| 		(h->ioaccel2_blockFetchTable == NULL)) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto clean_up;
 | |
| 	}
 | |
| 
 | |
| 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
 | |
| 	if (rc)
 | |
| 		goto clean_up;
 | |
| 
 | |
| 	memset(h->ioaccel2_cmd_pool, 0,
 | |
| 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
 | |
| 	return 0;
 | |
| 
 | |
| clean_up:
 | |
| 	hpsa_free_ioaccel2_cmd_and_bft(h);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
 | |
| static void hpsa_free_performant_mode(struct ctlr_info *h)
 | |
| {
 | |
| 	kfree(h->blockFetchTable);
 | |
| 	h->blockFetchTable = NULL;
 | |
| 	hpsa_free_reply_queues(h);
 | |
| 	hpsa_free_ioaccel1_cmd_and_bft(h);
 | |
| 	hpsa_free_ioaccel2_cmd_and_bft(h);
 | |
| }
 | |
| 
 | |
| /* return -ENODEV on error, 0 on success (or no action)
 | |
|  * allocates numerous items that must be freed later
 | |
|  */
 | |
| static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
 | |
| {
 | |
| 	u32 trans_support;
 | |
| 	unsigned long transMethod = CFGTBL_Trans_Performant |
 | |
| 					CFGTBL_Trans_use_short_tags;
 | |
| 	int i, rc;
 | |
| 
 | |
| 	if (hpsa_simple_mode)
 | |
| 		return 0;
 | |
| 
 | |
| 	trans_support = readl(&(h->cfgtable->TransportSupport));
 | |
| 	if (!(trans_support & PERFORMANT_MODE))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check for I/O accelerator mode support */
 | |
| 	if (trans_support & CFGTBL_Trans_io_accel1) {
 | |
| 		transMethod |= CFGTBL_Trans_io_accel1 |
 | |
| 				CFGTBL_Trans_enable_directed_msix;
 | |
| 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
 | |
| 		transMethod |= CFGTBL_Trans_io_accel2 |
 | |
| 				CFGTBL_Trans_enable_directed_msix;
 | |
| 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
 | |
| 	hpsa_get_max_perf_mode_cmds(h);
 | |
| 	/* Performant mode ring buffer and supporting data structures */
 | |
| 	h->reply_queue_size = h->max_commands * sizeof(u64);
 | |
| 
 | |
| 	for (i = 0; i < h->nreply_queues; i++) {
 | |
| 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
 | |
| 						h->reply_queue_size,
 | |
| 						&(h->reply_queue[i].busaddr));
 | |
| 		if (!h->reply_queue[i].head) {
 | |
| 			rc = -ENOMEM;
 | |
| 			goto clean1;	/* rq, ioaccel */
 | |
| 		}
 | |
| 		h->reply_queue[i].size = h->max_commands;
 | |
| 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
 | |
| 		h->reply_queue[i].current_entry = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Need a block fetch table for performant mode */
 | |
| 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
 | |
| 				sizeof(u32)), GFP_KERNEL);
 | |
| 	if (!h->blockFetchTable) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto clean1;	/* rq, ioaccel */
 | |
| 	}
 | |
| 
 | |
| 	rc = hpsa_enter_performant_mode(h, trans_support);
 | |
| 	if (rc)
 | |
| 		goto clean2;	/* bft, rq, ioaccel */
 | |
| 	return 0;
 | |
| 
 | |
| clean2:	/* bft, rq, ioaccel */
 | |
| 	kfree(h->blockFetchTable);
 | |
| 	h->blockFetchTable = NULL;
 | |
| clean1:	/* rq, ioaccel */
 | |
| 	hpsa_free_reply_queues(h);
 | |
| 	hpsa_free_ioaccel1_cmd_and_bft(h);
 | |
| 	hpsa_free_ioaccel2_cmd_and_bft(h);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int is_accelerated_cmd(struct CommandList *c)
 | |
| {
 | |
| 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
 | |
| }
 | |
| 
 | |
| static void hpsa_drain_accel_commands(struct ctlr_info *h)
 | |
| {
 | |
| 	struct CommandList *c = NULL;
 | |
| 	int i, accel_cmds_out;
 | |
| 	int refcount;
 | |
| 
 | |
| 	do { /* wait for all outstanding ioaccel commands to drain out */
 | |
| 		accel_cmds_out = 0;
 | |
| 		for (i = 0; i < h->nr_cmds; i++) {
 | |
| 			c = h->cmd_pool + i;
 | |
| 			refcount = atomic_inc_return(&c->refcount);
 | |
| 			if (refcount > 1) /* Command is allocated */
 | |
| 				accel_cmds_out += is_accelerated_cmd(c);
 | |
| 			cmd_free(h, c);
 | |
| 		}
 | |
| 		if (accel_cmds_out <= 0)
 | |
| 			break;
 | |
| 		msleep(100);
 | |
| 	} while (1);
 | |
| }
 | |
| 
 | |
| static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
 | |
| 				struct hpsa_sas_port *hpsa_sas_port)
 | |
| {
 | |
| 	struct hpsa_sas_phy *hpsa_sas_phy;
 | |
| 	struct sas_phy *phy;
 | |
| 
 | |
| 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
 | |
| 	if (!hpsa_sas_phy)
 | |
| 		return NULL;
 | |
| 
 | |
| 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
 | |
| 		hpsa_sas_port->next_phy_index);
 | |
| 	if (!phy) {
 | |
| 		kfree(hpsa_sas_phy);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	hpsa_sas_port->next_phy_index++;
 | |
| 	hpsa_sas_phy->phy = phy;
 | |
| 	hpsa_sas_phy->parent_port = hpsa_sas_port;
 | |
| 
 | |
| 	return hpsa_sas_phy;
 | |
| }
 | |
| 
 | |
| static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
 | |
| {
 | |
| 	struct sas_phy *phy = hpsa_sas_phy->phy;
 | |
| 
 | |
| 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
 | |
| 	if (hpsa_sas_phy->added_to_port)
 | |
| 		list_del(&hpsa_sas_phy->phy_list_entry);
 | |
| 	sas_phy_delete(phy);
 | |
| 	kfree(hpsa_sas_phy);
 | |
| }
 | |
| 
 | |
| static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct hpsa_sas_port *hpsa_sas_port;
 | |
| 	struct sas_phy *phy;
 | |
| 	struct sas_identify *identify;
 | |
| 
 | |
| 	hpsa_sas_port = hpsa_sas_phy->parent_port;
 | |
| 	phy = hpsa_sas_phy->phy;
 | |
| 
 | |
| 	identify = &phy->identify;
 | |
| 	memset(identify, 0, sizeof(*identify));
 | |
| 	identify->sas_address = hpsa_sas_port->sas_address;
 | |
| 	identify->device_type = SAS_END_DEVICE;
 | |
| 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
 | |
| 	identify->target_port_protocols = SAS_PROTOCOL_STP;
 | |
| 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
 | |
| 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
 | |
| 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
 | |
| 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
 | |
| 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
 | |
| 
 | |
| 	rc = sas_phy_add(hpsa_sas_phy->phy);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
 | |
| 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
 | |
| 			&hpsa_sas_port->phy_list_head);
 | |
| 	hpsa_sas_phy->added_to_port = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
 | |
| 				struct sas_rphy *rphy)
 | |
| {
 | |
| 	struct sas_identify *identify;
 | |
| 
 | |
| 	identify = &rphy->identify;
 | |
| 	identify->sas_address = hpsa_sas_port->sas_address;
 | |
| 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
 | |
| 	identify->target_port_protocols = SAS_PROTOCOL_STP;
 | |
| 
 | |
| 	return sas_rphy_add(rphy);
 | |
| }
 | |
| 
 | |
| static struct hpsa_sas_port
 | |
| 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
 | |
| 				u64 sas_address)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct hpsa_sas_port *hpsa_sas_port;
 | |
| 	struct sas_port *port;
 | |
| 
 | |
| 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
 | |
| 	if (!hpsa_sas_port)
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
 | |
| 	hpsa_sas_port->parent_node = hpsa_sas_node;
 | |
| 
 | |
| 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
 | |
| 	if (!port)
 | |
| 		goto free_hpsa_port;
 | |
| 
 | |
| 	rc = sas_port_add(port);
 | |
| 	if (rc)
 | |
| 		goto free_sas_port;
 | |
| 
 | |
| 	hpsa_sas_port->port = port;
 | |
| 	hpsa_sas_port->sas_address = sas_address;
 | |
| 	list_add_tail(&hpsa_sas_port->port_list_entry,
 | |
| 			&hpsa_sas_node->port_list_head);
 | |
| 
 | |
| 	return hpsa_sas_port;
 | |
| 
 | |
| free_sas_port:
 | |
| 	sas_port_free(port);
 | |
| free_hpsa_port:
 | |
| 	kfree(hpsa_sas_port);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
 | |
| {
 | |
| 	struct hpsa_sas_phy *hpsa_sas_phy;
 | |
| 	struct hpsa_sas_phy *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(hpsa_sas_phy, next,
 | |
| 			&hpsa_sas_port->phy_list_head, phy_list_entry)
 | |
| 		hpsa_free_sas_phy(hpsa_sas_phy);
 | |
| 
 | |
| 	sas_port_delete(hpsa_sas_port->port);
 | |
| 	list_del(&hpsa_sas_port->port_list_entry);
 | |
| 	kfree(hpsa_sas_port);
 | |
| }
 | |
| 
 | |
| static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
 | |
| {
 | |
| 	struct hpsa_sas_node *hpsa_sas_node;
 | |
| 
 | |
| 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
 | |
| 	if (hpsa_sas_node) {
 | |
| 		hpsa_sas_node->parent_dev = parent_dev;
 | |
| 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
 | |
| 	}
 | |
| 
 | |
| 	return hpsa_sas_node;
 | |
| }
 | |
| 
 | |
| static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
 | |
| {
 | |
| 	struct hpsa_sas_port *hpsa_sas_port;
 | |
| 	struct hpsa_sas_port *next;
 | |
| 
 | |
| 	if (!hpsa_sas_node)
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_entry_safe(hpsa_sas_port, next,
 | |
| 			&hpsa_sas_node->port_list_head, port_list_entry)
 | |
| 		hpsa_free_sas_port(hpsa_sas_port);
 | |
| 
 | |
| 	kfree(hpsa_sas_node);
 | |
| }
 | |
| 
 | |
| static struct hpsa_scsi_dev_t
 | |
| 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 | |
| 					struct sas_rphy *rphy)
 | |
| {
 | |
| 	int i;
 | |
| 	struct hpsa_scsi_dev_t *device;
 | |
| 
 | |
| 	for (i = 0; i < h->ndevices; i++) {
 | |
| 		device = h->dev[i];
 | |
| 		if (!device->sas_port)
 | |
| 			continue;
 | |
| 		if (device->sas_port->rphy == rphy)
 | |
| 			return device;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int hpsa_add_sas_host(struct ctlr_info *h)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct device *parent_dev;
 | |
| 	struct hpsa_sas_node *hpsa_sas_node;
 | |
| 	struct hpsa_sas_port *hpsa_sas_port;
 | |
| 	struct hpsa_sas_phy *hpsa_sas_phy;
 | |
| 
 | |
| 	parent_dev = &h->scsi_host->shost_dev;
 | |
| 
 | |
| 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
 | |
| 	if (!hpsa_sas_node)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
 | |
| 	if (!hpsa_sas_port) {
 | |
| 		rc = -ENODEV;
 | |
| 		goto free_sas_node;
 | |
| 	}
 | |
| 
 | |
| 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
 | |
| 	if (!hpsa_sas_phy) {
 | |
| 		rc = -ENODEV;
 | |
| 		goto free_sas_port;
 | |
| 	}
 | |
| 
 | |
| 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
 | |
| 	if (rc)
 | |
| 		goto free_sas_phy;
 | |
| 
 | |
| 	h->sas_host = hpsa_sas_node;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_sas_phy:
 | |
| 	hpsa_free_sas_phy(hpsa_sas_phy);
 | |
| free_sas_port:
 | |
| 	hpsa_free_sas_port(hpsa_sas_port);
 | |
| free_sas_node:
 | |
| 	hpsa_free_sas_node(hpsa_sas_node);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void hpsa_delete_sas_host(struct ctlr_info *h)
 | |
| {
 | |
| 	hpsa_free_sas_node(h->sas_host);
 | |
| }
 | |
| 
 | |
| static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 | |
| 				struct hpsa_scsi_dev_t *device)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct hpsa_sas_port *hpsa_sas_port;
 | |
| 	struct sas_rphy *rphy;
 | |
| 
 | |
| 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
 | |
| 	if (!hpsa_sas_port)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
 | |
| 	if (!rphy) {
 | |
| 		rc = -ENODEV;
 | |
| 		goto free_sas_port;
 | |
| 	}
 | |
| 
 | |
| 	hpsa_sas_port->rphy = rphy;
 | |
| 	device->sas_port = hpsa_sas_port;
 | |
| 
 | |
| 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
 | |
| 	if (rc)
 | |
| 		goto free_sas_port;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_sas_port:
 | |
| 	hpsa_free_sas_port(hpsa_sas_port);
 | |
| 	device->sas_port = NULL;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
 | |
| {
 | |
| 	if (device->sas_port) {
 | |
| 		hpsa_free_sas_port(device->sas_port);
 | |
| 		device->sas_port = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| hpsa_sas_get_linkerrors(struct sas_phy *phy)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
 | |
| {
 | |
| 	struct Scsi_Host *shost = phy_to_shost(rphy);
 | |
| 	struct ctlr_info *h;
 | |
| 	struct hpsa_scsi_dev_t *sd;
 | |
| 
 | |
| 	if (!shost)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	h = shost_to_hba(shost);
 | |
| 
 | |
| 	if (!h)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
 | |
| 	if (!sd)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	*identifier = sd->eli;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
 | |
| {
 | |
| 	return -ENXIO;
 | |
| }
 | |
| 
 | |
| static int
 | |
| hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| hpsa_sas_phy_setup(struct sas_phy *phy)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| hpsa_sas_phy_release(struct sas_phy *phy)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int
 | |
| hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static struct sas_function_template hpsa_sas_transport_functions = {
 | |
| 	.get_linkerrors = hpsa_sas_get_linkerrors,
 | |
| 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
 | |
| 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
 | |
| 	.phy_reset = hpsa_sas_phy_reset,
 | |
| 	.phy_enable = hpsa_sas_phy_enable,
 | |
| 	.phy_setup = hpsa_sas_phy_setup,
 | |
| 	.phy_release = hpsa_sas_phy_release,
 | |
| 	.set_phy_speed = hpsa_sas_phy_speed,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *  This is it.  Register the PCI driver information for the cards we control
 | |
|  *  the OS will call our registered routines when it finds one of our cards.
 | |
|  */
 | |
| static int __init hpsa_init(void)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	hpsa_sas_transport_template =
 | |
| 		sas_attach_transport(&hpsa_sas_transport_functions);
 | |
| 	if (!hpsa_sas_transport_template)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	rc = pci_register_driver(&hpsa_pci_driver);
 | |
| 
 | |
| 	if (rc)
 | |
| 		sas_release_transport(hpsa_sas_transport_template);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void __exit hpsa_cleanup(void)
 | |
| {
 | |
| 	pci_unregister_driver(&hpsa_pci_driver);
 | |
| 	sas_release_transport(hpsa_sas_transport_template);
 | |
| }
 | |
| 
 | |
| static void __attribute__((unused)) verify_offsets(void)
 | |
| {
 | |
| #define VERIFY_OFFSET(member, offset) \
 | |
| 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
 | |
| 
 | |
| 	VERIFY_OFFSET(structure_size, 0);
 | |
| 	VERIFY_OFFSET(volume_blk_size, 4);
 | |
| 	VERIFY_OFFSET(volume_blk_cnt, 8);
 | |
| 	VERIFY_OFFSET(phys_blk_shift, 16);
 | |
| 	VERIFY_OFFSET(parity_rotation_shift, 17);
 | |
| 	VERIFY_OFFSET(strip_size, 18);
 | |
| 	VERIFY_OFFSET(disk_starting_blk, 20);
 | |
| 	VERIFY_OFFSET(disk_blk_cnt, 28);
 | |
| 	VERIFY_OFFSET(data_disks_per_row, 36);
 | |
| 	VERIFY_OFFSET(metadata_disks_per_row, 38);
 | |
| 	VERIFY_OFFSET(row_cnt, 40);
 | |
| 	VERIFY_OFFSET(layout_map_count, 42);
 | |
| 	VERIFY_OFFSET(flags, 44);
 | |
| 	VERIFY_OFFSET(dekindex, 46);
 | |
| 	/* VERIFY_OFFSET(reserved, 48 */
 | |
| 	VERIFY_OFFSET(data, 64);
 | |
| 
 | |
| #undef VERIFY_OFFSET
 | |
| 
 | |
| #define VERIFY_OFFSET(member, offset) \
 | |
| 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
 | |
| 
 | |
| 	VERIFY_OFFSET(IU_type, 0);
 | |
| 	VERIFY_OFFSET(direction, 1);
 | |
| 	VERIFY_OFFSET(reply_queue, 2);
 | |
| 	/* VERIFY_OFFSET(reserved1, 3);  */
 | |
| 	VERIFY_OFFSET(scsi_nexus, 4);
 | |
| 	VERIFY_OFFSET(Tag, 8);
 | |
| 	VERIFY_OFFSET(cdb, 16);
 | |
| 	VERIFY_OFFSET(cciss_lun, 32);
 | |
| 	VERIFY_OFFSET(data_len, 40);
 | |
| 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
 | |
| 	VERIFY_OFFSET(sg_count, 45);
 | |
| 	/* VERIFY_OFFSET(reserved3 */
 | |
| 	VERIFY_OFFSET(err_ptr, 48);
 | |
| 	VERIFY_OFFSET(err_len, 56);
 | |
| 	/* VERIFY_OFFSET(reserved4  */
 | |
| 	VERIFY_OFFSET(sg, 64);
 | |
| 
 | |
| #undef VERIFY_OFFSET
 | |
| 
 | |
| #define VERIFY_OFFSET(member, offset) \
 | |
| 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
 | |
| 
 | |
| 	VERIFY_OFFSET(dev_handle, 0x00);
 | |
| 	VERIFY_OFFSET(reserved1, 0x02);
 | |
| 	VERIFY_OFFSET(function, 0x03);
 | |
| 	VERIFY_OFFSET(reserved2, 0x04);
 | |
| 	VERIFY_OFFSET(err_info, 0x0C);
 | |
| 	VERIFY_OFFSET(reserved3, 0x10);
 | |
| 	VERIFY_OFFSET(err_info_len, 0x12);
 | |
| 	VERIFY_OFFSET(reserved4, 0x13);
 | |
| 	VERIFY_OFFSET(sgl_offset, 0x14);
 | |
| 	VERIFY_OFFSET(reserved5, 0x15);
 | |
| 	VERIFY_OFFSET(transfer_len, 0x1C);
 | |
| 	VERIFY_OFFSET(reserved6, 0x20);
 | |
| 	VERIFY_OFFSET(io_flags, 0x24);
 | |
| 	VERIFY_OFFSET(reserved7, 0x26);
 | |
| 	VERIFY_OFFSET(LUN, 0x34);
 | |
| 	VERIFY_OFFSET(control, 0x3C);
 | |
| 	VERIFY_OFFSET(CDB, 0x40);
 | |
| 	VERIFY_OFFSET(reserved8, 0x50);
 | |
| 	VERIFY_OFFSET(host_context_flags, 0x60);
 | |
| 	VERIFY_OFFSET(timeout_sec, 0x62);
 | |
| 	VERIFY_OFFSET(ReplyQueue, 0x64);
 | |
| 	VERIFY_OFFSET(reserved9, 0x65);
 | |
| 	VERIFY_OFFSET(tag, 0x68);
 | |
| 	VERIFY_OFFSET(host_addr, 0x70);
 | |
| 	VERIFY_OFFSET(CISS_LUN, 0x78);
 | |
| 	VERIFY_OFFSET(SG, 0x78 + 8);
 | |
| #undef VERIFY_OFFSET
 | |
| }
 | |
| 
 | |
| module_init(hpsa_init);
 | |
| module_exit(hpsa_cleanup);
 | 
