nt9856x/BSP/linux-kernel/drivers/mtd/spiflash/spinor.c
2023-03-28 15:07:53 +08:00

961 lines
27 KiB
C
Executable File

/*
* device driver for Serial NOR Flash on Novatek platform
* The serial nor interface is largely based on drivers/mtd/m25p80.c,
* however the SPI interface has been replaced by Novatek.
*
* Copyright © 2017 Novatek Microelectronics.
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/param.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <plat/nvt_flash.h>
#include <plat/nvt-sramctl.h>
#include "../nvt_flash_spi/nvt_flash_spi_reg.h"
#include "../nvt_flash_spi/nvt_flash_spi_int.h"
#include "ext_flash_table.h"
#define NOR_VERSION "1.07.122"
/* SMI clock rate */
#define NVT_FLASH_MAX_CLOCK_FREQ 50000000 /* 50 MHz */
/* MAX time out to safely come out of a erase or write busy conditions */
#define NVT_FLASH_PROBE_TIMEOUT (HZ / 10)
#define NVT_FLASH_MAX_TIME_OUT (3 * HZ)
/* timeout for command completion */
#define NVT_FLASH_CMD_TIMEOUT (HZ / 10)
#define ERASE_MASK_64K 0xFFFF
#define ERASE_64K 0x10000
#ifndef CONFIG_MTD_EXTERNAL_FLASH_TABLE
static struct flash_device flash_devices[] = {
FLASH_ID("st m25p16" , 0xd8, 0x00152020, 0x100, 0x10000, 0x200000, 0, 0),
FLASH_ID("st m25p32" , 0xd8, 0x00162020, 0x100, 0x10000, 0x400000, 0, 0),
FLASH_ID("st m25p64" , 0xd8, 0x00172020, 0x100, 0x10000, 0x800000, 0, 0),
FLASH_ID("st m25p128" , 0xd8, 0x00182020, 0x100, 0x40000, 0x1000000, 0, 0),
FLASH_ID("st m25p05" , 0xd8, 0x00102020, 0x80 , 0x8000 , 0x10000, 0, 0),
FLASH_ID("st m25p10" , 0xd8, 0x00112020, 0x80 , 0x8000 , 0x20000, 0, 0),
FLASH_ID("st m25p20" , 0xd8, 0x00122020, 0x100, 0x10000, 0x40000, 0, 0),
FLASH_ID("st m25p40" , 0xd8, 0x00132020, 0x100, 0x10000, 0x80000, 0, 0),
FLASH_ID("st m25p80" , 0xd8, 0x00142020, 0x100, 0x10000, 0x100000, 0, 0),
FLASH_ID("st m45pe10" , 0xd8, 0x00114020, 0x100, 0x10000, 0x20000, 0, 0),
FLASH_ID("st m45pe20" , 0xd8, 0x00124020, 0x100, 0x10000, 0x40000, 0, 0),
FLASH_ID("st m45pe40" , 0xd8, 0x00134020, 0x100, 0x10000, 0x80000, 0, 0),
FLASH_ID("st m45pe80" , 0xd8, 0x00144020, 0x100, 0x10000, 0x100000, 0, 0),
FLASH_ID("sp s25fl004" , 0xd8, 0x00120201, 0x100, 0x10000, 0x80000, 0, 0),
FLASH_ID("sp s25fl008" , 0xd8, 0x00130201, 0x100, 0x10000, 0x100000, 0, 0),
FLASH_ID("sp s25fl016" , 0xd8, 0x00140201, 0x100, 0x10000, 0x200000, 0, 0),
FLASH_ID("sp s25fl032" , 0xd8, 0x00150201, 0x100, 0x10000, 0x400000, 0, 0),
FLASH_ID("sp s25fl064" , 0xd8, 0x00160201, 0x100, 0x10000, 0x800000, 0, 0),
FLASH_ID("sp s25fl128" , 0xd8, 0x00182001, 0x100, 0x10000, 0x1000000, 0, 0),
FLASH_ID("atmel 25f512" , 0x52, 0x0065001F, 0x80 , 0x8000 , 0x10000, 0, 0),
FLASH_ID("atmel 25f1024" , 0x52, 0x0060001F, 0x100, 0x8000 , 0x20000, 0, 0),
FLASH_ID("atmel 25f2048" , 0x52, 0x0063001F, 0x100, 0x10000, 0x40000, 0, 0),
FLASH_ID("atmel 25f4096" , 0x52, 0x0064001F, 0x100, 0x10000, 0x80000, 0, 0),
FLASH_ID("atmel 25fs040" , 0xd7, 0x0004661F, 0x100, 0x10000, 0x80000, 0, 0),
FLASH_ID("mac 25l512" , 0xd8, 0x001020C2, 0x010, 0x10000, 0x10000, 0, 0),
FLASH_ID("mac 25l1005" , 0xd8, 0x001120C2, 0x010, 0x10000, 0x20000, 0, 0),
FLASH_ID("mac 25l2005" , 0xd8, 0x001220C2, 0x010, 0x10000, 0x40000, 0, 0),
FLASH_ID("mac 25l4005" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000, 0, 0),
FLASH_ID("mac 25l4005a" , 0xd8, 0x001320C2, 0x010, 0x10000, 0x80000, 0, 0),
FLASH_ID("mac 25l8005" , 0xd8, 0x001420C2, 0x010, 0x10000, 0x100000, 0, 0),
FLASH_ID("mac 25l1605" , 0xd8, 0x001520C2, 0x100, 0x10000, 0x200000, 0, 0),
FLASH_ID("mac 25l1605a" , 0xd8, 0x001520C2, 0x010, 0x10000, 0x200000, 0, 0),
FLASH_ID("mac 25l3205" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000, 0, 0),
FLASH_ID("mac 25l3205a" , 0xd8, 0x001620C2, 0x100, 0x10000, 0x400000, 0, 0),
FLASH_ID("mac 25l6405" , 0xd8, 0x001720C2, 0x100, 0x10000, 0x800000, 0, SPI_NOR_DUAL_READ),
FLASH_ID("mx 25l12835f" , 0xd8, 0x001820C2, 0x100, 0x10000, 0x1000000, 0, SPI_NOR_QUAD_READ),
FLASH_ID("mx 25l25645g" , 0xd8, 0x001920C2, 0x100, 0x10000, 0x2000000, 0, SPI_NOR_QUAD_READ),
FLASH_ID("mx 25l51245g" , 0xd8, 0x001A20C2, 0x100, 0x10000, 0x4000000, 0, 0),
FLASH_ID("wb W25Q32FV" , 0xd8, 0x001640EF, 0x100, 0x10000, 0x400000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("wb W25Q64FV" , 0xd8, 0x001740EF, 0x100, 0x10000, 0x800000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("wb W25Q128BV" , 0xd8, 0x001840EF, 0x100, 0x10000, 0x1000000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("wb W25Q256BV" , 0xd8, 0x001940EF, 0x100, 0x10000, 0x2000000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("wb W25Q256BV" , 0xd8, 0x001970EF, 0x100, 0x10000, 0x2000000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("wb W25Q512JV" , 0xd8, 0x002040EF, 0x100, 0x10000, 0x4000000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("gd W25Q64C" , 0xd8, 0x001740C8, 0x100, 0x10000, 0x800000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("gd W25Q127C" , 0xd8, 0x001840C8, 0x100, 0x10000, 0x1000000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("gd W25Q256C" , 0xd8, 0x001940C8, 0x100, 0x10000, 0x2000000, 0, SPI_NOR_DUAL_READ),
FLASH_ID("eon en25qh64" , 0xd8, 0x0017701C, 0x100, 0x10000, 0x800000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("eon en25qh128" , 0xd8, 0x0018701C, 0x100, 0x10000, 0x1000000, WR_QPP, SPI_NOR_QUAD_READ),
FLASH_ID("xmc xm25qh128a", 0xd8, 0x00187020, 0x100, 0x10000, 0x1000000, WR_QPP, SPI_NOR_QUAD_READ),
};
#endif
static struct flash_device flash_std_devices[] = {
FLASH_ID("STDR04FW" , 0xd8, 0x0013FFFF, 0x100, 0x10000, 0x80000, 0, SPI_NOR_DUAL_READ),
FLASH_ID("STDR08FW" , 0xd8, 0x0014FFFF, 0x100, 0x10000, 0x100000, 0, SPI_NOR_DUAL_READ),
FLASH_ID("STDR16FW" , 0xd8, 0x0015FFFF, 0x100, 0x10000, 0x200000, 0, SPI_NOR_DUAL_READ),
FLASH_ID("STDR32FW" , 0xd8, 0x0016FFFF, 0x100, 0x10000, 0x400000, 0, SPI_NOR_DUAL_READ),
FLASH_ID("STDR64FW" , 0xd8, 0x0017FFFF, 0x100, 0x10000, 0x800000, 0, SPI_NOR_DUAL_READ),
FLASH_ID("STDR128FW" , 0xd8, 0x0018FFFF, 0x100, 0x10000, 0x1000000, 0, SPI_NOR_DUAL_READ),
FLASH_ID("STDR256FW" , 0xd8, 0x0019FFFF, 0x100, 0x10000, 0x2000000, 0, SPI_NOR_DUAL_READ),
FLASH_ID("STDR512FW" , 0xd8, 0x001AFFFF, 0x100, 0x10000, 0x4000000, 0, SPI_NOR_DUAL_READ),
};
/* Define spear specific structures */
struct nvt_spinor_flash;
u8 std_path = 0;
/**
* struct nvt_flash - Structure for NVT Flash Device
*
* @clk: functional clock
* @status: current status register of NVT Flash.
* @clk_rate: functional clock rate of NVT Flash (default: NVT_FLASH_MAX_CLOCK_FREQ)
* @lock: lock to prevent parallel access of NVT Flash.
* @info: drv_nand_dev_info of NVT Flash.
* @pdev: platform device
* @flash: separate structure for each Serial NOR-flash attached to NVT Flash.
*/
struct nvt_flash {
struct clk *clk;
unsigned long clk_rate;
struct mutex lock;
struct drv_nand_dev_info *info;
struct platform_device *pdev;
struct nvt_spinor_flash *flash;
};
/**
* struct nvt_spinor_flash - Structure for Serial NOR Flash
*
* @dev_id: Device ID of NOR-flash.
* @mtd: MTD info for each NOR-flash.
* @parts: Partition info of NOR-flash.
* @page_size: Page size of NOR-flash.
* @base_addr: Base address of NOR-flash.
* @erase_cmd: erase command may vary on different flash types
*/
struct nvt_spinor_flash {
u32 dev_id;
struct mtd_info mtd;
struct mtd_partition *parts;
u32 page_size;
u8 erase_cmd;
void __iomem *base_addr;
};
static void nvt_spinor_check_fastboot(void)
{
u32 m_fastboot = 0x0, preload = 0x0;
struct device_node* of_node = of_find_node_by_path("/fastboot");
int ret = 0;
if (of_node) {
of_property_read_u32(of_node, "enable", &m_fastboot);
}
of_node = of_find_node_by_path("/fastboot/spi-nor");
if (of_node) {
of_property_read_u32(of_node, "preload", &preload);
}
if (m_fastboot && preload) {
ret = nvt_check_preload_finish();
if (ret != 1)
pr_err("error with waiting preload %d\n", ret);
}
}
static inline struct nvt_spinor_flash *get_flash_data(struct mtd_info *mtd)
{
return container_of(mtd, struct nvt_spinor_flash, mtd);
}
/**
* nvt_flash_int_handler - NVT Flash Interrupt Handler.
* @irq: irq number
* @dev_id: structure of NVT Flash device, embedded in dev_id.
*
* The handler clears all interrupt conditions and records the status in
* dev->status which is used by the driver later.
*/
static irqreturn_t nvt_flash_int_handler(int irq, void *dev_id)
{
struct nvt_flash *dev = dev_id;
dev->info->nand_int_status = NAND_GETREG(dev->info, NAND_CTRL_STS_REG_OFS);
if (dev->info->nand_int_status) {
NAND_SETREG(dev->info, NAND_CTRL_STS_REG_OFS, dev->info->nand_int_status);
complete(&dev->info->cmd_complete);
return IRQ_HANDLED;
} else
return IRQ_NONE;
}
/**
* nvt_flash_hw_init - initializes the NVT Flash controller.
* @dev: structure of NVT Flash device
*
* this routine initializes the nvt flash controller wit the default values
*/
static void nvt_flash_hw_init(struct nvt_flash *dev)
{
mutex_lock(&dev->lock);
NAND_SETREG(dev->info, NAND_TIME0_REG_OFS, 0x06002222);
NAND_SETREG(dev->info, NAND_TIME1_REG_OFS, 0x7f0f);
clk_set_rate(dev->clk, dev->info->flash_freq);
/* Release SRAM */
nvt_disable_sram_shutdown(NAND_SD);
nand_host_set_nand_type(dev->info, NANDCTRL_SPI_NOR_TYPE);
nand_host_settiming2(dev->info, 0x5F51);
nand_phy_config(dev->info);
nand_dll_reset(dev->info);
mutex_unlock(&dev->lock);
}
/**
* get_flash_index - match chip id from a flash list.
* @flash_id: a valid nor flash chip id obtained from board.
*
* try to validate the chip id by matching from a list, if not found then simply
* returns negative. In case of success returns index in to the flash devices
* array.
*/
static int get_flash_index(struct nvt_flash *dev, u32 flash_id)
{
int index;
u32 std_id = flash_id & 0xFF0000;
if (dev->info->trace_stdtable) {
/* Matches chip-id to entire list of standard table*/
for (index = 0; index < ARRAY_SIZE(flash_std_devices); index++) {
if ((flash_std_devices[index].device_id & 0xFF0000) == std_id) {
std_path = 1;
return index;
}
}
}
/* Matches chip-id to entire list of 'serial-nor flash' ids */
for (index = 0; index < ARRAY_SIZE(flash_devices); index++) {
if (flash_devices[index].device_id == flash_id)
return index;
}
/* Memory chip is not listed and not supported */
return -ENODEV;
}
/**
* nvt_flash_erase_sector - erase one sector of flash
* @dev: structure of nvt flash information
* @command: erase command to be send
* @bytes: size of command
*
* Erase one sector of flash memory at offset ``offset'' which is any
* address within the sector which should be erased.
* Returns 0 if successful, non-zero otherwise.
*/
static int nvt_flash_erase_sector(struct nvt_flash *dev, u8 cmd, u32 addr)
{
return spinor_erase_sector(dev->info, cmd, addr);
}
/**
* nvt_flash_mtd_erase - perform flash erase operation as requested by user
* @mtd: Provides the memory characteristics
* @e_info: Provides the erase information
*
* Erase an address range on the flash chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int nvt_flash_mtd_erase(struct mtd_info *mtd, struct erase_info *e_info)
{
struct nvt_spinor_flash *flash = get_flash_data(mtd);
struct nvt_flash *dev = mtd->priv;
u32 addr;
int len, ret, blk_erase;
if (!flash || !dev)
return -ENODEV;
addr = e_info->addr;
len = e_info->len;
if (len & ERASE_MASK_64K)
blk_erase = 0;
else
blk_erase = 1;
mutex_lock(&dev->lock);
/* now erase sectors in loop */
while (len) {
/* preparing the command for flash */
if (blk_erase)
ret = nvt_flash_erase_sector(dev, flash->erase_cmd, addr);
else {
if (flash->mtd.size > SPI_FLASH_16MB_BOUN)
if (dev->info->enter_4byte_addr_mode == 1)
ret = nvt_flash_erase_sector(dev, FLASH_CMD_SECTOR_ERASE, addr);
else
ret = nvt_flash_erase_sector(dev, FLASH_CMD_SECTOR_ERASE_4BYTE, addr);
else
ret = nvt_flash_erase_sector(dev, FLASH_CMD_SECTOR_ERASE, addr);
}
if (ret) {
mutex_unlock(&dev->lock);
return ret;
}
if (blk_erase) {
addr += ERASE_64K;
len -= ERASE_64K;
} else {
addr += mtd->erasesize;
len -= mtd->erasesize;
}
}
mutex_unlock(&dev->lock);
return 0;
}
/**
* nvt_flash_mtd_read - performs flash read operation as requested by the user
* @mtd: MTD information
* @from: Address from which to start read
* @len: Number of bytes to be read
* @retlen: Fills the Number of bytes actually read
* @buf: Fills this after reading
*
* Read an address range from the flash chip. The address range
* may be any size provided it is within the physical boundaries.
* Returns 0 on success, non zero otherwise
*/
static int nvt_flash_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u8 *buf)
{
struct nvt_spinor_flash *flash = get_flash_data(mtd);
struct nvt_flash *dev = mtd->priv;
int ret;
void *src;
if (!flash || !dev)
return -ENODEV;
src = flash->base_addr;
mutex_lock(&dev->lock);
/*Read operation*/
do {
if (len > PAGE_SIZE)
ret = spinor_read_operation(dev->info, from, PAGE_SIZE, (u8 *)src);
else
ret = spinor_read_operation(dev->info, from, len, (u8 *)src);
if (ret) {
mutex_unlock(&dev->lock);
return ret;
}
if (len > PAGE_SIZE) {
memcpy_fromio(buf, (u8 *)src, PAGE_SIZE);
buf += PAGE_SIZE;
*retlen += PAGE_SIZE;
from += PAGE_SIZE;
len -= PAGE_SIZE;
} else {
memcpy_fromio(buf, (u8 *)src, len);
*retlen += len;
len = 0;
}
} while (len > 0);
mutex_unlock(&dev->lock);
return 0;
}
static inline int nvt_flash_cpy_toio(struct nvt_flash *dev,
loff_t dest, const void *src, size_t len)
{
return spinor_program_operation(dev->info, dest, len, (u8 *)src);
}
/**
* nvt_flash_mtd_write - performs write operation as requested by the user.
* @mtd: MTD information.
* @to: Address to write.
* @len: Number of bytes to be written.
* @retlen: Number of bytes actually wrote.
* @buf: Buffer from which the data to be taken.
*
* Write an address range to the flash chip. Data must be written in
* flash_page_size chunks. The address range may be any size provided
* it is within the physical boundaries.
* Returns 0 on success, non zero otherwise
*/
static int nvt_flash_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u8 *sr_buf)
{
struct nvt_spinor_flash *flash = get_flash_data(mtd);
struct nvt_flash *dev = mtd->priv;
u32 page_offset, page_size;
int ret;
void *buf;
if (!flash || !dev)
return -ENODEV;
buf = flash->base_addr;
mutex_lock(&dev->lock);
page_offset = (u32)to % flash->page_size;
// /* do if all the bytes fit onto one page */
if (page_offset + len <= flash->page_size) {
memcpy_toio(buf, sr_buf, len);
ret = nvt_flash_cpy_toio(dev, to, buf, len);
if (!ret)
*retlen += len;
} else {
u32 i;
/* the size of data remaining on the first page */
page_size = flash->page_size - page_offset;
memcpy_toio(buf, sr_buf, page_size);
ret = nvt_flash_cpy_toio(dev, to, buf,
page_size);
if (ret)
goto err_write;
else
*retlen += page_size;
/* write everything in pagesize chunks */
for (i = page_size; i < len; i += page_size) {
page_size = len - i;
if (page_size > flash->page_size)
page_size = flash->page_size;
memcpy_toio(buf, sr_buf + i, page_size);
ret = nvt_flash_cpy_toio(dev, to + i,
buf, page_size);
if (ret)
break;
else
*retlen += page_size;
}
}
err_write:
mutex_unlock(&dev->lock);
return ret;
}
static int nvt_spinor_read_id(struct drv_nand_dev_info *info, uint32_t *id)
{
uint8_t card_id[8] = {0};
if (nand_cmd_read_id(card_id, info) != 0) {
printk("NOR cmd timeout\r\n");
return -1;
} else {
printk("id = 0x%02x 0x%02x 0x%02x 0x%02x\n",
card_id[0], card_id[1], card_id[2], card_id[3]);
*id = card_id[0] | (card_id[1] << 8) | (card_id[2] << 16);
if (*id == WINBOND_W25Q256FV) {
info->enter_4byte_addr_mode = 1;
} else {
info->enter_4byte_addr_mode = 0;
}
return 0;
}
return 0;
}
/**
* nvt_flash_detect - Detects the NOR Flash chip.
* @dev: structure of NVT Flash information.
*
* This routine will check whether there exists a flash chip
* Return index of the probed flash in flash devices structure
*/
static int nvt_flash_detect(struct nvt_flash *dev)
{
int ret;
u32 val = 0;
mutex_lock(&dev->lock);
/* send readid command in sw mode */
ret = nvt_spinor_read_id(dev->info, (uint32_t *)&val);
if (ret)
goto err_probe;
/* get memory chip id */
val &= 0x00ffffff;
ret = get_flash_index(dev, val);
err_probe:
mutex_unlock(&dev->lock);
return ret;
}
#ifdef CONFIG_OF
static int nvt_flash_probe_config_dt(struct platform_device *pdev,
struct device_node *np)
{
struct nvt_flash_plat_data *pdata = dev_get_platdata(&pdev->dev);
struct device_node *pp = NULL;
const __be32 *addr;
u32 val;
int len;
if (!np)
return -ENODEV;
of_property_read_u32(np, "clock-frequency", &val);
pdata->clk_rate = val;
pdata->board_flash_info = devm_kzalloc(&pdev->dev,
sizeof(*pdata->board_flash_info),
GFP_KERNEL);
/* Fill structs for each subnode (flash device) */
while ((pp = of_get_next_child(np, pp))) {
struct nvt_flash_info *flash_info;
flash_info = (void*) &pdata->board_flash_info;
pdata->np = pp;
/* Read base-addr and size from DT */
addr = of_get_property(pp, "reg", &len);
if (addr) {
pdata->board_flash_info->mem_base = be32_to_cpup(&addr[1]);
pdata->board_flash_info->size = be32_to_cpup(&addr[3]);
}
}
return 0;
}
#else
static int nvt_flash_probe_config_dt(struct platform_device *pdev,
struct device_node *np)
{
return -ENOSYS;
}
#endif
static int nvt_read_sfdp(struct drv_nand_dev_info *info)
{
int ret;
u8 sfdp_data;
u32 address = 0x32;
ret = spinor_read_sfdp(info, address, 1, &sfdp_data);
if (ret)
return ret;
if (sfdp_data == MXIC25L25635F_SFDP)
info->hspeed_dummy_cycle = 10;
return E_OK;
}
static int nvt_flash_setup(struct platform_device *pdev,
struct device_node *np)
{
struct nvt_flash *dev = platform_get_drvdata(pdev);
struct nvt_flash_info *flash_info;
struct nvt_flash_plat_data *pdata;
struct nvt_spinor_flash *flash;
#ifndef CONFIG_OF
struct mtd_part_parser_data ppdata = {};
struct mtd_partition *parts = NULL;
int count = 0;
#endif
int flash_index;
int ret = 0;
struct flash_device *trace_flash_devices;
pdata = dev_get_platdata(&pdev->dev);
flash_info = pdata->board_flash_info;
if (!flash_info)
return -ENODEV;
flash = devm_kzalloc(&pdev->dev, sizeof(*flash), GFP_ATOMIC);
if (!flash)
return -ENOMEM;
/* verify whether nor flash is really present on board */
flash_index = nvt_flash_detect(dev);
if (flash_index < 0) {
dev_info(&pdev->dev, "spinor not found\n");
return flash_index;
}
/* map the memory for nor flash chip */
flash->base_addr = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!flash->base_addr)
return -EIO;
dev->flash = flash;
flash->mtd.priv = dev;
#ifdef CONFIG_OF
of_property_read_string_index(pdev->dev.of_node, "nvt-devname", 0, (void *)&flash_info->name);
#endif
if (std_path)
trace_flash_devices = flash_std_devices;
else
trace_flash_devices = flash_devices;
if (flash_info->name)
flash->mtd.name = flash_info->name;
else
flash->mtd.name = trace_flash_devices[flash_index].name;
flash->mtd.type = MTD_NORFLASH;
flash->mtd.writesize = 1;
flash->mtd.flags = MTD_CAP_NORFLASH;
flash->mtd.size = trace_flash_devices[flash_index].size_in_bytes;;
flash->mtd.erasesize = trace_flash_devices[flash_index].sectorsize;
flash->page_size = trace_flash_devices[flash_index].pagesize;
flash->mtd.writebufsize = flash->page_size;
if (flash->mtd.size > SPI_FLASH_16MB_BOUN) {
if(trace_flash_devices[flash_index].erase_cmd == FLASH_CMD_BLOCK_ERASE)
if (dev->info->enter_4byte_addr_mode != 1)
trace_flash_devices[flash_index].erase_cmd = FLASH_CMD_BLOCK_ERASE_4BYTE;
if(trace_flash_devices[flash_index].erase_cmd == FLASH_CMD_SECTOR_ERASE)
trace_flash_devices[flash_index].erase_cmd = FLASH_CMD_SECTOR_ERASE_4BYTE;
}
flash->erase_cmd = trace_flash_devices[flash_index].erase_cmd;
flash->mtd._erase = nvt_flash_mtd_erase;
flash->mtd._read = nvt_flash_mtd_read;
flash->mtd._write = nvt_flash_mtd_write;
flash->dev_id = trace_flash_devices[flash_index].device_id;
/*Copy flash info*/
dev->info->flash_info->page_size = flash->page_size;
dev->info->flash_info->device_size = flash->mtd.size;
dev->info->flash_info->block_size = flash->mtd.erasesize;
dev->info->flash_info->chip_sel = 0;
#ifndef CONFIG_FLASH_ONLY_DUAL
dev->info->flash_info->nor_quad_support = trace_flash_devices[flash_index].quad_mode;
dev->info->flash_info->nor_read_mode = trace_flash_devices[flash_index].read_mode;
#else
if (trace_flash_devices[flash_index].quad_mode == WR_QPP)
dev->info->flash_info->nor_quad_support = 0;
if (trace_flash_devices[flash_index].read_mode == SPI_NOR_QUAD_READ)
dev->info->flash_info->nor_read_mode = SPI_NOR_DUAL_READ;
#endif
dev->info->flash_info->phy_page_ratio = 0;
dev->info->flash_info->chip_id = flash->dev_id;
dev_info(&pdev->dev, "mtd .name=%s .size=%llx(%lluM) .erasesize = 0x%x(%uK)\n",
flash->mtd.name, flash->mtd.size,
flash->mtd.size / (1024 * 1024),
flash->mtd.erasesize, flash->mtd.erasesize / 1024);
dev_info(&pdev->dev, "%d-bit mode @ %d Hz\n",
(dev->info->flash_info->nor_quad_support == WR_QPP) ? \
4 : 1, dev->info->flash_freq);
#ifndef CONFIG_OF
if (flash_info->partitions) {
parts = flash_info->partitions;
count = flash_info->nr_partitions;
}
ret = mtd_device_parse_register(&flash->mtd, NULL, &ppdata, parts, count);
#else
flash->mtd.dev.parent = &pdev->dev;
flash->mtd.dev.of_node = pdev->dev.of_node;
ret = mtd_device_register(&flash->mtd, NULL, 0);
#endif
if (ret) {
dev_err(&pdev->dev, "Err MTD partition=%d\n", ret);
return ret;
}
dev->info->hspeed_dummy_cycle = 8;
nvt_read_sfdp(dev->info);
flash_copy_info(dev->info);
return 0;
}
/**
* nvt_flash_probe - Entry routine
* @pdev: platform device structure
*
* This is the first routine which gets invoked during booting and does all
* initialization/allocation work. The routine looks for available memory banks,
* and do proper init for any found one.
* Returns 0 on success, non zero otherwise
*/
static int nvt_flash_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct nvt_flash_plat_data *pdata = NULL;
struct nvt_flash *dev;
struct resource *nvt_flash_base;
int ret = 0;
nvt_spinor_check_fastboot();
if (np) {
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
pr_err("%s: ERROR: no memory", __func__);
ret = -ENOMEM;
goto err;
}
pdev->dev.platform_data = pdata;
ret = nvt_flash_probe_config_dt(pdev, np);
if (ret) {
ret = -ENODEV;
dev_err(&pdev->dev, "no platform data\n");
goto err;
}
} else {
pdata = dev_get_platdata(&pdev->dev);
if (!pdata) {
ret = -ENODEV;
dev_err(&pdev->dev, "no platform data\n");
goto err;
}
}
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
dev_err(&pdev->dev, "mem alloc fail\n");
goto err;
}
dev->info = kzalloc(sizeof(struct drv_nand_dev_info), GFP_KERNEL);
if (!dev->info) {
dev_err(&pdev->dev, "failed to allocate drv_nand_dev_info\n");
return -ENOMEM;
}
dev->info->flash_info = kzalloc(sizeof(struct nvt_nand_flash), GFP_KERNEL);
if (!dev->info->flash_info) {
dev_err(&pdev->dev, "failed to allocate nvt_nand_flash\n");
return -ENOMEM;
}
dev->info->irq = platform_get_irq(pdev, 0);
if (dev->info->irq < 0) {
ret = -ENODEV;
dev_err(&pdev->dev, "invalid smi irq\n");
goto err;
}
nvt_flash_base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev->info->mmio_base = devm_ioremap_resource(&pdev->dev, nvt_flash_base);
if (IS_ERR(dev->info->mmio_base)) {
ret = PTR_ERR(dev->info->mmio_base);
goto err;
}
dev->info->pdev = pdev;
dev->clk = clk_get(&pdev->dev, dev_name(&pdev->dev));
if (IS_ERR(dev->clk)) {
ret = PTR_ERR(dev->clk);
goto err;
} else {
clk_prepare(dev->clk);
clk_enable(dev->clk);
}
dev->info->clk = dev->clk;
of_property_read_u32(pdev->dev.of_node, "clock-frequency",
&dev->info->flash_freq);
of_property_read_u32(pdev->dev.of_node, "trace-stdtable",
&dev->info->trace_stdtable);
mutex_init(&dev->lock);
init_completion(&dev->info->cmd_complete);
ret = devm_request_irq(&pdev->dev, dev->info->irq, nvt_flash_int_handler,
0, pdev->name, dev);
if (ret) {
dev_err(&pdev->dev, "NVT SPIFLASH IRQ allocation failed\n");
goto err_irq;
}
nvt_flash_hw_init(dev);
platform_set_drvdata(pdev, dev);
ret = nvt_flash_setup(pdev, pdata->np);
if (ret) {
dev_err(&pdev->dev, "setup failed\n");
goto err_setup;
}
return 0;
err_setup:
platform_set_drvdata(pdev, NULL);
err_irq:
clk_disable_unprepare(dev->clk);
err:
return ret;
}
/**
* nvt_flash_remove - Exit routine
* @pdev: platform device structure
*
* free all allocations and delete the partitions.
*/
static int nvt_flash_remove(struct platform_device *pdev)
{
struct nvt_flash *dev;
struct nvt_spinor_flash *flash;
int ret;
dev = platform_get_drvdata(pdev);
if (!dev) {
dev_err(&pdev->dev, "dev is null\n");
return -ENODEV;
}
/* clean up for nor flash */
flash = dev->flash;
/* clean up mtd stuff */
ret = mtd_device_unregister(&flash->mtd);
if (ret)
dev_err(&pdev->dev, "error removing mtd\n");
clk_disable_unprepare(dev->clk);
platform_set_drvdata(pdev, NULL);
return 0;
}
#ifdef CONFIG_PM
static int nvt_flash_suspend(struct device *dev)
{
struct nvt_flash *sdev = dev_get_drvdata(dev);
if (sdev && sdev->clk)
clk_disable_unprepare(sdev->clk);
return 0;
}
static int nvt_flash_resume(struct device *dev)
{
struct nvt_flash *sdev = dev_get_drvdata(dev);
int ret = -EPERM;
if (sdev && sdev->clk)
ret = clk_prepare_enable(sdev->clk);
if (!ret)
nvt_flash_hw_init(sdev);
return ret;
}
static SIMPLE_DEV_PM_OPS(nvt_flash_pm_ops, nvt_flash_suspend, nvt_flash_resume);
#endif
#ifdef CONFIG_OF
static const struct of_device_id nvt_flash_id_table[] = {
{ .compatible = "nvt,nvt_spinor" },
{}
};
MODULE_DEVICE_TABLE(of, nvt_flash_id_table);
#endif
static struct platform_driver nvt_flash_driver = {
.driver = {
.name = "spi_nor",
.bus = &platform_bus_type,
.owner = THIS_MODULE,
#ifdef CONFIG_OF
.of_match_table = of_match_ptr(nvt_flash_id_table),
#endif
#ifdef CONFIG_PM
.pm = &nvt_flash_pm_ops,
#endif
},
.probe = nvt_flash_probe,
.remove = nvt_flash_remove,
};
static int __init spinor_init(void)
{
return platform_driver_register(&nvt_flash_driver);
}
static void __exit spinor_exit(void)
{
platform_driver_unregister(&nvt_flash_driver);
}
module_init(spinor_init);
module_exit(spinor_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Howard Chang");
MODULE_DESCRIPTION("MTD Flash driver for serial nor flash chips");
MODULE_VERSION("NOR_VERSION");