2099 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			2099 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /*
 | |
|  * Misc utility routines for accessing chip-specific features
 | |
|  * of the SiliconBackplane-based Broadcom chips.
 | |
|  *
 | |
|  * Copyright (C) 1999-2019, Broadcom.
 | |
|  *
 | |
|  *      Unless you and Broadcom execute a separate written software license
 | |
|  * agreement governing use of this software, this software is licensed to you
 | |
|  * under the terms of the GNU General Public License version 2 (the "GPL"),
 | |
|  * available at http://www.broadcom.com/licenses/GPLv2.php, with the
 | |
|  * following added to such license:
 | |
|  *
 | |
|  *      As a special exception, the copyright holders of this software give you
 | |
|  * permission to link this software with independent modules, and to copy and
 | |
|  * distribute the resulting executable under terms of your choice, provided that
 | |
|  * you also meet, for each linked independent module, the terms and conditions of
 | |
|  * the license of that module.  An independent module is a module which is not
 | |
|  * derived from this software.  The special exception does not apply to any
 | |
|  * modifications of the software.
 | |
|  *
 | |
|  *      Notwithstanding the above, under no circumstances may you combine this
 | |
|  * software in any way with any other Broadcom software provided under a license
 | |
|  * other than the GPL, without Broadcom's express prior written consent.
 | |
|  *
 | |
|  *
 | |
|  * <<Broadcom-WL-IPTag/Open:>>
 | |
|  *
 | |
|  * $Id: aiutils.c 823201 2019-06-03 03:49:36Z $
 | |
|  */
 | |
| #include <bcm_cfg.h>
 | |
| #include <typedefs.h>
 | |
| #include <bcmdefs.h>
 | |
| #include <osl.h>
 | |
| #include <bcmutils.h>
 | |
| #include <siutils.h>
 | |
| #include <hndsoc.h>
 | |
| #include <sbchipc.h>
 | |
| #include <pcicfg.h>
 | |
| 
 | |
| #include "siutils_priv.h"
 | |
| #include <bcmdevs.h>
 | |
| 
 | |
| #define BCM53573_DMP() (0)
 | |
| #define BCM4707_DMP() (0)
 | |
| #define PMU_DMP() (0)
 | |
| #define GCI_DMP() (0)
 | |
| 
 | |
| #if defined(BCM_BACKPLANE_TIMEOUT)
 | |
| static bool ai_get_apb_bridge(si_t *sih, uint32 coreidx, uint32 *apb_id, uint32 *apb_coreuinit);
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| #if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
 | |
| static void ai_reset_axi_to(si_info_t *sii, aidmp_t *ai);
 | |
| #endif	/* defined (AXI_TIMEOUTS) || defined (BCM_BACKPLANE_TIMEOUT) */
 | |
| 
 | |
| /* EROM parsing */
 | |
| 
 | |
| static uint32
 | |
| get_erom_ent(si_t *sih, uint32 **eromptr, uint32 mask, uint32 match)
 | |
| {
 | |
| 	uint32 ent;
 | |
| 	uint inv = 0, nom = 0;
 | |
| 	uint32 size = 0;
 | |
| 
 | |
| 	while (TRUE) {
 | |
| 		ent = R_REG(si_osh(sih), *eromptr);
 | |
| 		(*eromptr)++;
 | |
| 
 | |
| 		if (mask == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if ((ent & ER_VALID) == 0) {
 | |
| 			inv++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ent == (ER_END | ER_VALID))
 | |
| 			break;
 | |
| 
 | |
| 		if ((ent & mask) == match)
 | |
| 			break;
 | |
| 
 | |
| 		/* escape condition related EROM size if it has invalid values */
 | |
| 		size += sizeof(*eromptr);
 | |
| 		if (size >= ER_SZ_MAX) {
 | |
| 			SI_ERROR(("Failed to find end of EROM marker\n"));
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		nom++;
 | |
| 	}
 | |
| 
 | |
| 	SI_VMSG(("%s: Returning ent 0x%08x\n", __FUNCTION__, ent));
 | |
| 	if (inv + nom) {
 | |
| 		SI_VMSG(("  after %d invalid and %d non-matching entries\n", inv, nom));
 | |
| 	}
 | |
| 	return ent;
 | |
| }
 | |
| 
 | |
| static uint32
 | |
| get_asd(si_t *sih, uint32 **eromptr, uint sp, uint ad, uint st, uint32 *addrl, uint32 *addrh,
 | |
| 	uint32 *sizel, uint32 *sizeh)
 | |
| {
 | |
| 	uint32 asd, sz, szd;
 | |
| 
 | |
| 	BCM_REFERENCE(ad);
 | |
| 
 | |
| 	asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID);
 | |
| 	if (((asd & ER_TAG1) != ER_ADD) ||
 | |
| 	    (((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) ||
 | |
| 	    ((asd & AD_ST_MASK) != st)) {
 | |
| 		/* This is not what we want, "push" it back */
 | |
| 		(*eromptr)--;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	*addrl = asd & AD_ADDR_MASK;
 | |
| 	if (asd & AD_AG32)
 | |
| 		*addrh = get_erom_ent(sih, eromptr, 0, 0);
 | |
| 	else
 | |
| 		*addrh = 0;
 | |
| 	*sizeh = 0;
 | |
| 	sz = asd & AD_SZ_MASK;
 | |
| 	if (sz == AD_SZ_SZD) {
 | |
| 		szd = get_erom_ent(sih, eromptr, 0, 0);
 | |
| 		*sizel = szd & SD_SZ_MASK;
 | |
| 		if (szd & SD_SG32)
 | |
| 			*sizeh = get_erom_ent(sih, eromptr, 0, 0);
 | |
| 	} else
 | |
| 		*sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT);
 | |
| 
 | |
| 	SI_VMSG(("  SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n",
 | |
| 	        sp, ad, st, *sizeh, *sizel, *addrh, *addrl));
 | |
| 
 | |
| 	return asd;
 | |
| }
 | |
| 
 | |
| /* Parse the enumeration rom to identify all cores
 | |
|  * Erom content format can be found in:
 | |
|  * http://hwnbu-twiki.broadcom.com/twiki/pub/Mwgroup/ArmDocumentation/SystemDiscovery.pdf
 | |
|  */
 | |
| void
 | |
| ai_scan(si_t *sih, void *regs, uint devid)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 	chipcregs_t *cc = (chipcregs_t *)regs;
 | |
| 	uint32 erombase, *eromptr, *eromlim;
 | |
| 	axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
 | |
| 
 | |
| 	BCM_REFERENCE(devid);
 | |
| 
 | |
| 	erombase = R_REG(sii->osh, &cc->eromptr);
 | |
| 
 | |
| 	switch (BUSTYPE(sih->bustype)) {
 | |
| 	case SI_BUS:
 | |
| 		eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
 | |
| 		break;
 | |
| 
 | |
| 	case PCI_BUS:
 | |
| 		/* Set wrappers address */
 | |
| 		sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE);
 | |
| 
 | |
| 		/* Now point the window at the erom */
 | |
| 		OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, erombase);
 | |
| 		eromptr = regs;
 | |
| 		break;
 | |
| 
 | |
| #ifdef BCMSDIO
 | |
| 	case SPI_BUS:
 | |
| 	case SDIO_BUS:
 | |
| 		eromptr = (uint32 *)(uintptr)erombase;
 | |
| 		break;
 | |
| #endif	/* BCMSDIO */
 | |
| 
 | |
| 	case PCMCIA_BUS:
 | |
| 	default:
 | |
| 		SI_ERROR(("Don't know how to do AXI enumeration on bus %d\n", sih->bustype));
 | |
| 		ASSERT(0);
 | |
| 		return;
 | |
| 	}
 | |
| 	eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));
 | |
| 	sii->axi_num_wrappers = 0;
 | |
| 
 | |
| 	SI_VMSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%p, eromlim = 0x%p\n",
 | |
| 	         OSL_OBFUSCATE_BUF(regs), erombase,
 | |
| 		OSL_OBFUSCATE_BUF(eromptr), OSL_OBFUSATE_BUF(eromlim)));
 | |
| 	while (eromptr < eromlim) {
 | |
| 		uint32 cia, cib, cid, mfg, crev, nmw, nsw, nmp, nsp;
 | |
| 		uint32 mpd, asd, addrl, addrh, sizel, sizeh;
 | |
| 		uint i, j, idx;
 | |
| 		bool br;
 | |
| 
 | |
| 		br = FALSE;
 | |
| 
 | |
| 		/* Grok a component */
 | |
| 		cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI);
 | |
| 		if (cia == (ER_END | ER_VALID)) {
 | |
| 			SI_VMSG(("Found END of erom after %d cores\n", sii->numcores));
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		cib = get_erom_ent(sih, &eromptr, 0, 0);
 | |
| 
 | |
| 		if ((cib & ER_TAG) != ER_CI) {
 | |
| 			SI_ERROR(("CIA not followed by CIB\n"));
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT;
 | |
| 		mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT;
 | |
| 		crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
 | |
| 		nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT;
 | |
| 		nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT;
 | |
| 		nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
 | |
| 		nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
 | |
| 
 | |
| #ifdef BCMDBG_SI
 | |
| 		SI_VMSG(("Found component 0x%04x/0x%04x rev %d at erom addr 0x%p, with nmw = %d, "
 | |
| 		         "nsw = %d, nmp = %d & nsp = %d\n",
 | |
| 		         mfg, cid, crev, OSL_OBFUSCATE_BUF(eromptr - 1), nmw, nsw, nmp, nsp));
 | |
| #else
 | |
| 		BCM_REFERENCE(crev);
 | |
| #endif // endif
 | |
| 
 | |
| 		if (BCM4347_CHIP(sih->chip)) {
 | |
| 			/* 4347 has more entries for ARM core
 | |
| 			 * This should apply to all chips but crashes on router
 | |
| 			 * This is a temp fix to be further analyze
 | |
| 			 */
 | |
| 			if (nsp == 0)
 | |
| 				continue;
 | |
| 		} else
 | |
| 		{
 | |
| 			/* Include Default slave wrapper for timeout monitoring */
 | |
| 			if ((nsp == 0) ||
 | |
| #if !defined(AXI_TIMEOUTS) && !defined(BCM_BACKPLANE_TIMEOUT)
 | |
| 				((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) ||
 | |
| #else
 | |
| 				((CHIPTYPE(sii->pub.socitype) == SOCI_NAI) &&
 | |
| 				(mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) ||
 | |
| #endif /* !defined(AXI_TIMEOUTS) && !defined(BCM_BACKPLANE_TIMEOUT) */
 | |
| 				FALSE) {
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if ((nmw + nsw == 0)) {
 | |
| 			/* A component which is not a core */
 | |
| 			if (cid == OOB_ROUTER_CORE_ID) {
 | |
| 				asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE,
 | |
| 					&addrl, &addrh, &sizel, &sizeh);
 | |
| 				if (asd != 0) {
 | |
| 					if ((sii->oob_router != 0) && (sii->oob_router != addrl)) {
 | |
| 						sii->oob_router1 = addrl;
 | |
| 					} else {
 | |
| 						sii->oob_router = addrl;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			if (cid != NS_CCB_CORE_ID &&
 | |
| 				cid != PMU_CORE_ID && cid != GCI_CORE_ID && cid != SR_CORE_ID &&
 | |
| 				cid != HUB_CORE_ID && cid != HND_OOBR_CORE_ID)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		idx = sii->numcores;
 | |
| 
 | |
| 		cores_info->cia[idx] = cia;
 | |
| 		cores_info->cib[idx] = cib;
 | |
| 		cores_info->coreid[idx] = cid;
 | |
| 
 | |
| 		for (i = 0; i < nmp; i++) {
 | |
| 			mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
 | |
| 			if ((mpd & ER_TAG) != ER_MP) {
 | |
| 				SI_ERROR(("Not enough MP entries for component 0x%x\n", cid));
 | |
| 				goto error;
 | |
| 			}
 | |
| 			SI_VMSG(("  Master port %d, mp: %d id: %d\n", i,
 | |
| 			         (mpd & MPD_MP_MASK) >> MPD_MP_SHIFT,
 | |
| 			         (mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT));
 | |
| 		}
 | |
| 
 | |
| 		/* First Slave Address Descriptor should be port 0:
 | |
| 		 * the main register space for the core
 | |
| 		 */
 | |
| 		asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
 | |
| 		if (asd == 0) {
 | |
| 			do {
 | |
| 			/* Try again to see if it is a bridge */
 | |
| 			asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
 | |
| 			              &sizel, &sizeh);
 | |
| 			if (asd != 0)
 | |
| 				br = TRUE;
 | |
| 			else {
 | |
| 					if (br == TRUE) {
 | |
| 						break;
 | |
| 					}
 | |
| 					else if ((addrh != 0) || (sizeh != 0) ||
 | |
| 						(sizel != SI_CORE_SIZE)) {
 | |
| 						SI_ERROR(("addrh = 0x%x\t sizeh = 0x%x\t size1 ="
 | |
| 							"0x%x\n", addrh, sizeh, sizel));
 | |
| 						SI_ERROR(("First Slave ASD for"
 | |
| 							"core 0x%04x malformed "
 | |
| 							"(0x%08x)\n", cid, asd));
 | |
| 						goto error;
 | |
| 					}
 | |
| 				}
 | |
| 			} while (1);
 | |
| 		}
 | |
| 		cores_info->coresba[idx] = addrl;
 | |
| 		cores_info->coresba_size[idx] = sizel;
 | |
| 		/* Get any more ASDs in first port */
 | |
| 		j = 1;
 | |
| 		do {
 | |
| 			asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
 | |
| 			              &sizel, &sizeh);
 | |
| 			if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) {
 | |
| 				cores_info->coresba2[idx] = addrl;
 | |
| 				cores_info->coresba2_size[idx] = sizel;
 | |
| 			}
 | |
| 			j++;
 | |
| 		} while (asd != 0);
 | |
| 
 | |
| 		/* Go through the ASDs for other slave ports */
 | |
| 		for (i = 1; i < nsp; i++) {
 | |
| 			j = 0;
 | |
| 			do {
 | |
| 				asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
 | |
| 				              &sizel, &sizeh);
 | |
| 				/* To get the first base address of second slave port */
 | |
| 				if ((asd != 0) && (i == 1) && (j == 0)) {
 | |
| 					cores_info->csp2ba[idx] = addrl;
 | |
| 					cores_info->csp2ba_size[idx] = sizel;
 | |
| 				}
 | |
| 				if (asd == 0)
 | |
| 					break;
 | |
| 				j++;
 | |
| 			} while (1);
 | |
| 			if (j == 0) {
 | |
| 				SI_ERROR((" SP %d has no address descriptors\n", i));
 | |
| 				goto error;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Now get master wrappers */
 | |
| 		for (i = 0; i < nmw; i++) {
 | |
| 			asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh,
 | |
| 			              &sizel, &sizeh);
 | |
| 			if (asd == 0) {
 | |
| 				SI_ERROR(("Missing descriptor for MW %d\n", i));
 | |
| 				goto error;
 | |
| 			}
 | |
| 			if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
 | |
| 				SI_ERROR(("Master wrapper %d is not 4KB\n", i));
 | |
| 				goto error;
 | |
| 			}
 | |
| 			if (i == 0) {
 | |
| 				cores_info->wrapba[idx] = addrl;
 | |
| 			} else if (i == 1) {
 | |
| 				cores_info->wrapba2[idx] = addrl;
 | |
| 			} else if (i == 2) {
 | |
| 				cores_info->wrapba3[idx] = addrl;
 | |
| 			}
 | |
| 
 | |
| 			if (axi_wrapper &&
 | |
| 				(sii->axi_num_wrappers < SI_MAX_AXI_WRAPPERS)) {
 | |
| 				axi_wrapper[sii->axi_num_wrappers].mfg = mfg;
 | |
| 				axi_wrapper[sii->axi_num_wrappers].cid = cid;
 | |
| 				axi_wrapper[sii->axi_num_wrappers].rev = crev;
 | |
| 				axi_wrapper[sii->axi_num_wrappers].wrapper_type = AI_MASTER_WRAPPER;
 | |
| 				axi_wrapper[sii->axi_num_wrappers].wrapper_addr = addrl;
 | |
| 				sii->axi_num_wrappers++;
 | |
| 				SI_VMSG(("MASTER WRAPPER: %d, mfg:%x, cid:%x,"
 | |
| 					"rev:%x, addr:%x, size:%x\n",
 | |
| 					sii->axi_num_wrappers, mfg, cid, crev, addrl, sizel));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* And finally slave wrappers */
 | |
| 		for (i = 0; i < nsw; i++) {
 | |
| 			uint fwp = (nsp == 1) ? 0 : 1;
 | |
| 			asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh,
 | |
| 			              &sizel, &sizeh);
 | |
| 
 | |
| 			/* cache APB bridge wrapper address for set/clear timeout */
 | |
| 			if ((mfg == MFGID_ARM) && (cid == APB_BRIDGE_ID)) {
 | |
| 				ASSERT(sii->num_br < SI_MAXBR);
 | |
| 				sii->br_wrapba[sii->num_br++] = addrl;
 | |
| 			}
 | |
| 
 | |
| 			if (asd == 0) {
 | |
| 				SI_ERROR(("Missing descriptor for SW %d\n", i));
 | |
| 				goto error;
 | |
| 			}
 | |
| 			if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
 | |
| 				SI_ERROR(("Slave wrapper %d is not 4KB\n", i));
 | |
| 				goto error;
 | |
| 			}
 | |
| 			if ((nmw == 0) && (i == 0)) {
 | |
| 				cores_info->wrapba[idx] = addrl;
 | |
| 			} else if ((nmw == 0) && (i == 1)) {
 | |
| 				cores_info->wrapba2[idx] = addrl;
 | |
| 			} else if ((nmw == 0) && (i == 2)) {
 | |
| 				cores_info->wrapba3[idx] = addrl;
 | |
| 			}
 | |
| 
 | |
| 			/* Include all slave wrappers to the list to
 | |
| 			 * enable and monitor watchdog timeouts
 | |
| 			 */
 | |
| 
 | |
| 			if (axi_wrapper &&
 | |
| 				(sii->axi_num_wrappers < SI_MAX_AXI_WRAPPERS)) {
 | |
| 				axi_wrapper[sii->axi_num_wrappers].mfg = mfg;
 | |
| 				axi_wrapper[sii->axi_num_wrappers].cid = cid;
 | |
| 				axi_wrapper[sii->axi_num_wrappers].rev = crev;
 | |
| 				axi_wrapper[sii->axi_num_wrappers].wrapper_type = AI_SLAVE_WRAPPER;
 | |
| 
 | |
| 			/* Software WAR as discussed with hardware team, to ensure proper
 | |
| 			* Slave Wrapper Base address is set for 4364 Chip ID.
 | |
| 			* Current address is 0x1810c000, Corrected the same to 0x1810e000.
 | |
| 			* This ensures AXI default slave wrapper is registered along with
 | |
| 			* other slave wrapper cores and is useful while generating trap info
 | |
| 			* when write operation is tried on Invalid Core / Wrapper register
 | |
| 			*/
 | |
| 
 | |
| 				if ((CHIPID(sih->chip) == BCM4364_CHIP_ID) &&
 | |
| 						(cid == DEF_AI_COMP)) {
 | |
| 					axi_wrapper[sii->axi_num_wrappers].wrapper_addr =
 | |
| 						0x1810e000;
 | |
| 				} else {
 | |
| 					axi_wrapper[sii->axi_num_wrappers].wrapper_addr = addrl;
 | |
| 				}
 | |
| 
 | |
| 				sii->axi_num_wrappers++;
 | |
| 
 | |
| 				SI_VMSG(("SLAVE WRAPPER: %d,  mfg:%x, cid:%x,"
 | |
| 					"rev:%x, addr:%x, size:%x\n",
 | |
| 					sii->axi_num_wrappers,  mfg, cid, crev, addrl, sizel));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #ifndef BCM_BACKPLANE_TIMEOUT
 | |
| 		/* Don't record bridges */
 | |
| 		if (br)
 | |
| 			continue;
 | |
| #endif // endif
 | |
| 
 | |
| 		/* Done with core */
 | |
| 		sii->numcores++;
 | |
| 	}
 | |
| 
 | |
| 	SI_ERROR(("Reached end of erom without finding END\n"));
 | |
| 
 | |
| error:
 | |
| 	sii->numcores = 0;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| #define AI_SETCOREIDX_MAPSIZE(coreid) \
 | |
| 	(((coreid) == NS_CCB_CORE_ID) ? 15 * SI_CORE_SIZE : SI_CORE_SIZE)
 | |
| 
 | |
| /* This function changes the logical "focus" to the indicated core.
 | |
|  * Return the current core's virtual address.
 | |
|  */
 | |
| static volatile void *
 | |
| _ai_setcoreidx(si_t *sih, uint coreidx, uint use_wrapn)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 	uint32 addr, wrap, wrap2, wrap3;
 | |
| 	volatile void *regs;
 | |
| 
 | |
| 	if (coreidx >= MIN(sii->numcores, SI_MAXCORES))
 | |
| 		return (NULL);
 | |
| 
 | |
| 	addr = cores_info->coresba[coreidx];
 | |
| 	wrap = cores_info->wrapba[coreidx];
 | |
| 	wrap2 = cores_info->wrapba2[coreidx];
 | |
| 	wrap3 = cores_info->wrapba3[coreidx];
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 	/* No need to disable interrupts while entering/exiting APB bridge core */
 | |
| 	if ((cores_info->coreid[coreidx] != APB_BRIDGE_CORE_ID) &&
 | |
| 		(cores_info->coreid[sii->curidx] != APB_BRIDGE_CORE_ID))
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 	{
 | |
| 		/*
 | |
| 		 * If the user has provided an interrupt mask enabled function,
 | |
| 		 * then assert interrupts are disabled before switching the core.
 | |
| 		 */
 | |
| 		ASSERT((sii->intrsenabled_fn == NULL) ||
 | |
| 			!(*(sii)->intrsenabled_fn)((sii)->intr_arg));
 | |
| 	}
 | |
| 
 | |
| 	switch (BUSTYPE(sih->bustype)) {
 | |
| 	case SI_BUS:
 | |
| 		/* map new one */
 | |
| 		if (!cores_info->regs[coreidx]) {
 | |
| 			cores_info->regs[coreidx] = REG_MAP(addr,
 | |
| 				AI_SETCOREIDX_MAPSIZE(cores_info->coreid[coreidx]));
 | |
| 			ASSERT(GOODREGS(cores_info->regs[coreidx]));
 | |
| 		}
 | |
| 		sii->curmap = regs = cores_info->regs[coreidx];
 | |
| 		if (!cores_info->wrappers[coreidx] && (wrap != 0)) {
 | |
| 			cores_info->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE);
 | |
| 			ASSERT(GOODREGS(cores_info->wrappers[coreidx]));
 | |
| 		}
 | |
| 		if (!cores_info->wrappers2[coreidx] && (wrap2 != 0)) {
 | |
| 			cores_info->wrappers2[coreidx] = REG_MAP(wrap2, SI_CORE_SIZE);
 | |
| 			ASSERT(GOODREGS(cores_info->wrappers2[coreidx]));
 | |
| 		}
 | |
| 		if (!cores_info->wrappers3[coreidx] && (wrap3 != 0)) {
 | |
| 			cores_info->wrappers3[coreidx] = REG_MAP(wrap3, SI_CORE_SIZE);
 | |
| 			ASSERT(GOODREGS(cores_info->wrappers3[coreidx]));
 | |
| 		}
 | |
| 
 | |
| 		if (use_wrapn == 2) {
 | |
| 			sii->curwrap = cores_info->wrappers3[coreidx];
 | |
| 		} else if (use_wrapn == 1) {
 | |
| 			sii->curwrap = cores_info->wrappers2[coreidx];
 | |
| 		} else {
 | |
| 			sii->curwrap = cores_info->wrappers[coreidx];
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case PCI_BUS:
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 		/* No need to set the BAR0 if core is APB Bridge.
 | |
| 		 * This is to reduce 2 PCI writes while checkng for errlog
 | |
| 		 */
 | |
| 		if (cores_info->coreid[coreidx] != APB_BRIDGE_CORE_ID)
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 		{
 | |
| 			/* point bar0 window */
 | |
| 			OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, addr);
 | |
| 		}
 | |
| 
 | |
| 		regs = sii->curmap;
 | |
| 		/* point bar0 2nd 4KB window to the primary wrapper */
 | |
| 		if (use_wrapn)
 | |
| 			wrap = wrap2;
 | |
| 		if (PCIE_GEN2(sii))
 | |
| 			OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_WIN2, 4, wrap);
 | |
| 		else
 | |
| 			OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN2, 4, wrap);
 | |
| 		break;
 | |
| 
 | |
| #ifdef BCMSDIO
 | |
| 	case SPI_BUS:
 | |
| 	case SDIO_BUS:
 | |
| 		sii->curmap = regs = (void *)((uintptr)addr);
 | |
| 		if (use_wrapn)
 | |
| 			sii->curwrap = (void *)((uintptr)wrap2);
 | |
| 		else
 | |
| 			sii->curwrap = (void *)((uintptr)wrap);
 | |
| 		break;
 | |
| #endif	/* BCMSDIO */
 | |
| 
 | |
| 	case PCMCIA_BUS:
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		regs = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	sii->curmap = regs;
 | |
| 	sii->curidx = coreidx;
 | |
| 
 | |
| 	return regs;
 | |
| }
 | |
| 
 | |
| volatile void *
 | |
| ai_setcoreidx(si_t *sih, uint coreidx)
 | |
| {
 | |
| 	return _ai_setcoreidx(sih, coreidx, 0);
 | |
| }
 | |
| 
 | |
| volatile void *
 | |
| ai_setcoreidx_2ndwrap(si_t *sih, uint coreidx)
 | |
| {
 | |
| 	return _ai_setcoreidx(sih, coreidx, 1);
 | |
| }
 | |
| 
 | |
| volatile void *
 | |
| ai_setcoreidx_3rdwrap(si_t *sih, uint coreidx)
 | |
| {
 | |
| 	return _ai_setcoreidx(sih, coreidx, 2);
 | |
| }
 | |
| 
 | |
| void
 | |
| ai_coreaddrspaceX(si_t *sih, uint asidx, uint32 *addr, uint32 *size)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 	chipcregs_t *cc = NULL;
 | |
| 	uint32 erombase, *eromptr, *eromlim;
 | |
| 	uint i, j, cidx;
 | |
| 	uint32 cia, cib, nmp, nsp;
 | |
| 	uint32 asd, addrl, addrh, sizel, sizeh;
 | |
| 
 | |
| 	for (i = 0; i < sii->numcores; i++) {
 | |
| 		if (cores_info->coreid[i] == CC_CORE_ID) {
 | |
| 			cc = (chipcregs_t *)cores_info->regs[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (cc == NULL)
 | |
| 		goto error;
 | |
| 
 | |
| 	BCM_REFERENCE(erombase);
 | |
| 	erombase = R_REG(sii->osh, &cc->eromptr);
 | |
| 	eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE);
 | |
| 	eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32));
 | |
| 
 | |
| 	cidx = sii->curidx;
 | |
| 	cia = cores_info->cia[cidx];
 | |
| 	cib = cores_info->cib[cidx];
 | |
| 
 | |
| 	nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
 | |
| 	nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
 | |
| 
 | |
| 	/* scan for cores */
 | |
| 	while (eromptr < eromlim) {
 | |
| 		if ((get_erom_ent(sih, &eromptr, ER_TAG, ER_CI) == cia) &&
 | |
| 			(get_erom_ent(sih, &eromptr, 0, 0) == cib)) {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* skip master ports */
 | |
| 	for (i = 0; i < nmp; i++)
 | |
| 		get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
 | |
| 
 | |
| 	/* Skip ASDs in port 0 */
 | |
| 	asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh);
 | |
| 	if (asd == 0) {
 | |
| 		/* Try again to see if it is a bridge */
 | |
| 		asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh,
 | |
| 		              &sizel, &sizeh);
 | |
| 	}
 | |
| 
 | |
| 	j = 1;
 | |
| 	do {
 | |
| 		asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh,
 | |
| 		              &sizel, &sizeh);
 | |
| 		j++;
 | |
| 	} while (asd != 0);
 | |
| 
 | |
| 	/* Go through the ASDs for other slave ports */
 | |
| 	for (i = 1; i < nsp; i++) {
 | |
| 		j = 0;
 | |
| 		do {
 | |
| 			asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh,
 | |
| 				&sizel, &sizeh);
 | |
| 			if (asd == 0)
 | |
| 				break;
 | |
| 
 | |
| 			if (!asidx--) {
 | |
| 				*addr = addrl;
 | |
| 				*size = sizel;
 | |
| 				return;
 | |
| 			}
 | |
| 			j++;
 | |
| 		} while (1);
 | |
| 
 | |
| 		if (j == 0) {
 | |
| 			SI_ERROR((" SP %d has no address descriptors\n", i));
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| error:
 | |
| 	*size = 0;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /* Return the number of address spaces in current core */
 | |
| int
 | |
| ai_numaddrspaces(si_t *sih)
 | |
| {
 | |
| 
 | |
| 	BCM_REFERENCE(sih);
 | |
| 
 | |
| 	return 2;
 | |
| }
 | |
| 
 | |
| /* Return the address of the nth address space in the current core
 | |
|  * Arguments:
 | |
|  * sih : Pointer to struct si_t
 | |
|  * spidx : slave port index
 | |
|  * baidx : base address index
 | |
|  */
 | |
| uint32
 | |
| ai_addrspace(si_t *sih, uint spidx, uint baidx)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 	uint cidx;
 | |
| 
 | |
| 	cidx = sii->curidx;
 | |
| 
 | |
| 	if (spidx == CORE_SLAVE_PORT_0) {
 | |
| 		if (baidx == CORE_BASE_ADDR_0)
 | |
| 			return cores_info->coresba[cidx];
 | |
| 		else if (baidx == CORE_BASE_ADDR_1)
 | |
| 			return cores_info->coresba2[cidx];
 | |
| 	} else if (spidx == CORE_SLAVE_PORT_1) {
 | |
| 		if (baidx == CORE_BASE_ADDR_0)
 | |
| 			return cores_info->csp2ba[cidx];
 | |
| 	}
 | |
| 
 | |
| 	SI_ERROR(("%s: Need to parse the erom again to find %d base addr in %d slave port\n",
 | |
| 	      __FUNCTION__, baidx, spidx));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Return the size of the nth address space in the current core
 | |
| * Arguments:
 | |
| * sih : Pointer to struct si_t
 | |
| * spidx : slave port index
 | |
| * baidx : base address index
 | |
| */
 | |
| uint32
 | |
| ai_addrspacesize(si_t *sih, uint spidx, uint baidx)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 	uint cidx;
 | |
| 
 | |
| 	cidx = sii->curidx;
 | |
| 	if (spidx == CORE_SLAVE_PORT_0) {
 | |
| 		if (baidx == CORE_BASE_ADDR_0)
 | |
| 			return cores_info->coresba_size[cidx];
 | |
| 		else if (baidx == CORE_BASE_ADDR_1)
 | |
| 			return cores_info->coresba2_size[cidx];
 | |
| 	} else if (spidx == CORE_SLAVE_PORT_1) {
 | |
| 		if (baidx == CORE_BASE_ADDR_0)
 | |
| 			return cores_info->csp2ba_size[cidx];
 | |
| 	}
 | |
| 
 | |
| 	SI_ERROR(("%s: Need to parse the erom again to find %d base addr in %d slave port\n",
 | |
| 	      __FUNCTION__, baidx, spidx));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| uint
 | |
| ai_flag(si_t *sih)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	aidmp_t *ai;
 | |
| 
 | |
| 	if (BCM4707_DMP()) {
 | |
| 		SI_ERROR(("%s: Attempting to read CHIPCOMMONB DMP registers on 4707\n",
 | |
| 			__FUNCTION__));
 | |
| 		return sii->curidx;
 | |
| 	}
 | |
| 	if (BCM53573_DMP()) {
 | |
| 		SI_ERROR(("%s: Attempting to read DMP registers on 53573\n", __FUNCTION__));
 | |
| 		return sii->curidx;
 | |
| 	}
 | |
| 	if (PMU_DMP()) {
 | |
| 		uint idx, flag;
 | |
| 		idx = sii->curidx;
 | |
| 		ai_setcoreidx(sih, SI_CC_IDX);
 | |
| 		flag = ai_flag_alt(sih);
 | |
| 		ai_setcoreidx(sih, idx);
 | |
| 		return flag;
 | |
| 	}
 | |
| 
 | |
| 	ai = sii->curwrap;
 | |
| 	ASSERT(ai != NULL);
 | |
| 
 | |
| 	return (R_REG(sii->osh, &ai->oobselouta30) & 0x1f);
 | |
| }
 | |
| 
 | |
| uint
 | |
| ai_flag_alt(si_t *sih)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	aidmp_t *ai;
 | |
| 
 | |
| 	if (BCM4707_DMP()) {
 | |
| 		SI_ERROR(("%s: Attempting to read CHIPCOMMONB DMP registers on 4707\n",
 | |
| 			__FUNCTION__));
 | |
| 		return sii->curidx;
 | |
| 	}
 | |
| 
 | |
| 	ai = sii->curwrap;
 | |
| 
 | |
| 	return ((R_REG(sii->osh, &ai->oobselouta30) >> AI_OOBSEL_1_SHIFT) & AI_OOBSEL_MASK);
 | |
| }
 | |
| 
 | |
| void
 | |
| ai_setint(si_t *sih, int siflag)
 | |
| {
 | |
| 	BCM_REFERENCE(sih);
 | |
| 	BCM_REFERENCE(siflag);
 | |
| 
 | |
| }
 | |
| 
 | |
| uint
 | |
| ai_wrap_reg(si_t *sih, uint32 offset, uint32 mask, uint32 val)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	uint32 *addr = (uint32 *) ((uchar *)(sii->curwrap) + offset);
 | |
| 
 | |
| 	if (mask || val) {
 | |
| 		uint32 w = R_REG(sii->osh, addr);
 | |
| 		w &= ~mask;
 | |
| 		w |= val;
 | |
| 		W_REG(sii->osh, addr, w);
 | |
| 	}
 | |
| 	return (R_REG(sii->osh, addr));
 | |
| }
 | |
| 
 | |
| uint
 | |
| ai_corevendor(si_t *sih)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 	uint32 cia;
 | |
| 
 | |
| 	cia = cores_info->cia[sii->curidx];
 | |
| 	return ((cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT);
 | |
| }
 | |
| 
 | |
| uint
 | |
| ai_corerev(si_t *sih)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 	uint32 cib;
 | |
| 
 | |
| 	cib = cores_info->cib[sii->curidx];
 | |
| 	return ((cib & CIB_REV_MASK) >> CIB_REV_SHIFT);
 | |
| }
 | |
| 
 | |
| uint
 | |
| ai_corerev_minor(si_t *sih)
 | |
| {
 | |
| 	return (ai_core_sflags(sih, 0, 0) >> SISF_MINORREV_D11_SHIFT) &
 | |
| 			SISF_MINORREV_D11_MASK;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ai_iscoreup(si_t *sih)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	aidmp_t *ai;
 | |
| 
 | |
| 	ai = sii->curwrap;
 | |
| 
 | |
| 	return (((R_REG(sii->osh, &ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) &&
 | |
| 	        ((R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) == 0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
 | |
|  * switch back to the original core, and return the new value.
 | |
|  *
 | |
|  * When using the silicon backplane, no fiddling with interrupts or core switches is needed.
 | |
|  *
 | |
|  * Also, when using pci/pcie, we can optimize away the core switching for pci registers
 | |
|  * and (on newer pci cores) chipcommon registers.
 | |
|  */
 | |
| uint
 | |
| ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
 | |
| {
 | |
| 	uint origidx = 0;
 | |
| 	volatile uint32 *r = NULL;
 | |
| 	uint w;
 | |
| 	uint intr_val = 0;
 | |
| 	bool fast = FALSE;
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 
 | |
| 	ASSERT(GOODIDX(coreidx));
 | |
| 	ASSERT(regoff < SI_CORE_SIZE);
 | |
| 	ASSERT((val & ~mask) == 0);
 | |
| 
 | |
| 	if (coreidx >= SI_MAXCORES)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (BUSTYPE(sih->bustype) == SI_BUS) {
 | |
| 		/* If internal bus, we can always get at everything */
 | |
| 		fast = TRUE;
 | |
| 		/* map if does not exist */
 | |
| 		if (!cores_info->regs[coreidx]) {
 | |
| 			cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
 | |
| 			                            SI_CORE_SIZE);
 | |
| 			ASSERT(GOODREGS(cores_info->regs[coreidx]));
 | |
| 		}
 | |
| 		r = (volatile uint32 *)((volatile uchar *)cores_info->regs[coreidx] + regoff);
 | |
| 	} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
 | |
| 		/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
 | |
| 
 | |
| 		if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
 | |
| 			/* Chipc registers are mapped at 12KB */
 | |
| 
 | |
| 			fast = TRUE;
 | |
| 			r = (volatile uint32 *)((volatile char *)sii->curmap +
 | |
| 			               PCI_16KB0_CCREGS_OFFSET + regoff);
 | |
| 		} else if (sii->pub.buscoreidx == coreidx) {
 | |
| 			/* pci registers are at either in the last 2KB of an 8KB window
 | |
| 			 * or, in pcie and pci rev 13 at 8KB
 | |
| 			 */
 | |
| 			fast = TRUE;
 | |
| 			if (SI_FAST(sii))
 | |
| 				r = (volatile uint32 *)((volatile char *)sii->curmap +
 | |
| 				               PCI_16KB0_PCIREGS_OFFSET + regoff);
 | |
| 			else
 | |
| 				r = (volatile uint32 *)((volatile char *)sii->curmap +
 | |
| 				               ((regoff >= SBCONFIGOFF) ?
 | |
| 				                PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
 | |
| 				               regoff);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!fast) {
 | |
| 		INTR_OFF(sii, intr_val);
 | |
| 
 | |
| 		/* save current core index */
 | |
| 		origidx = si_coreidx(&sii->pub);
 | |
| 
 | |
| 		/* switch core */
 | |
| 		r = (volatile uint32*) ((volatile uchar*) ai_setcoreidx(&sii->pub, coreidx) +
 | |
| 		               regoff);
 | |
| 	}
 | |
| 	ASSERT(r != NULL);
 | |
| 
 | |
| 	/* mask and set */
 | |
| 	if (mask || val) {
 | |
| 		w = (R_REG(sii->osh, r) & ~mask) | val;
 | |
| 		W_REG(sii->osh, r, w);
 | |
| 	}
 | |
| 
 | |
| 	/* readback */
 | |
| 	w = R_REG(sii->osh, r);
 | |
| 
 | |
| 	if (!fast) {
 | |
| 		/* restore core index */
 | |
| 		if (origidx != coreidx)
 | |
| 			ai_setcoreidx(&sii->pub, origidx);
 | |
| 
 | |
| 		INTR_RESTORE(sii, intr_val);
 | |
| 	}
 | |
| 
 | |
| 	return (w);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
 | |
|  * switch back to the original core, and return the new value.
 | |
|  *
 | |
|  * When using the silicon backplane, no fiddling with interrupts or core switches is needed.
 | |
|  *
 | |
|  * Also, when using pci/pcie, we can optimize away the core switching for pci registers
 | |
|  * and (on newer pci cores) chipcommon registers.
 | |
|  */
 | |
| uint
 | |
| ai_corereg_writeonly(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
 | |
| {
 | |
| 	uint origidx = 0;
 | |
| 	volatile uint32 *r = NULL;
 | |
| 	uint w = 0;
 | |
| 	uint intr_val = 0;
 | |
| 	bool fast = FALSE;
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 
 | |
| 	ASSERT(GOODIDX(coreidx));
 | |
| 	ASSERT(regoff < SI_CORE_SIZE);
 | |
| 	ASSERT((val & ~mask) == 0);
 | |
| 
 | |
| 	if (coreidx >= SI_MAXCORES)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (BUSTYPE(sih->bustype) == SI_BUS) {
 | |
| 		/* If internal bus, we can always get at everything */
 | |
| 		fast = TRUE;
 | |
| 		/* map if does not exist */
 | |
| 		if (!cores_info->regs[coreidx]) {
 | |
| 			cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
 | |
| 			                            SI_CORE_SIZE);
 | |
| 			ASSERT(GOODREGS(cores_info->regs[coreidx]));
 | |
| 		}
 | |
| 		r = (volatile uint32 *)((volatile uchar *)cores_info->regs[coreidx] + regoff);
 | |
| 	} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
 | |
| 		/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
 | |
| 
 | |
| 		if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
 | |
| 			/* Chipc registers are mapped at 12KB */
 | |
| 
 | |
| 			fast = TRUE;
 | |
| 			r = (volatile uint32 *)((volatile char *)sii->curmap +
 | |
| 			               PCI_16KB0_CCREGS_OFFSET + regoff);
 | |
| 		} else if (sii->pub.buscoreidx == coreidx) {
 | |
| 			/* pci registers are at either in the last 2KB of an 8KB window
 | |
| 			 * or, in pcie and pci rev 13 at 8KB
 | |
| 			 */
 | |
| 			fast = TRUE;
 | |
| 			if (SI_FAST(sii))
 | |
| 				r = (volatile uint32 *)((volatile char *)sii->curmap +
 | |
| 				               PCI_16KB0_PCIREGS_OFFSET + regoff);
 | |
| 			else
 | |
| 				r = (volatile uint32 *)((volatile char *)sii->curmap +
 | |
| 				               ((regoff >= SBCONFIGOFF) ?
 | |
| 				                PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
 | |
| 				               regoff);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!fast) {
 | |
| 		INTR_OFF(sii, intr_val);
 | |
| 
 | |
| 		/* save current core index */
 | |
| 		origidx = si_coreidx(&sii->pub);
 | |
| 
 | |
| 		/* switch core */
 | |
| 		r = (volatile uint32*) ((volatile uchar*) ai_setcoreidx(&sii->pub, coreidx) +
 | |
| 		               regoff);
 | |
| 	}
 | |
| 	ASSERT(r != NULL);
 | |
| 
 | |
| 	/* mask and set */
 | |
| 	if (mask || val) {
 | |
| 		w = (R_REG(sii->osh, r) & ~mask) | val;
 | |
| 		W_REG(sii->osh, r, w);
 | |
| 	}
 | |
| 
 | |
| 	if (!fast) {
 | |
| 		/* restore core index */
 | |
| 		if (origidx != coreidx)
 | |
| 			ai_setcoreidx(&sii->pub, origidx);
 | |
| 
 | |
| 		INTR_RESTORE(sii, intr_val);
 | |
| 	}
 | |
| 
 | |
| 	return (w);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If there is no need for fiddling with interrupts or core switches (typically silicon
 | |
|  * back plane registers, pci registers and chipcommon registers), this function
 | |
|  * returns the register offset on this core to a mapped address. This address can
 | |
|  * be used for W_REG/R_REG directly.
 | |
|  *
 | |
|  * For accessing registers that would need a core switch, this function will return
 | |
|  * NULL.
 | |
|  */
 | |
| volatile uint32 *
 | |
| ai_corereg_addr(si_t *sih, uint coreidx, uint regoff)
 | |
| {
 | |
| 	volatile uint32 *r = NULL;
 | |
| 	bool fast = FALSE;
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 
 | |
| 	ASSERT(GOODIDX(coreidx));
 | |
| 	ASSERT(regoff < SI_CORE_SIZE);
 | |
| 
 | |
| 	if (coreidx >= SI_MAXCORES)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (BUSTYPE(sih->bustype) == SI_BUS) {
 | |
| 		/* If internal bus, we can always get at everything */
 | |
| 		fast = TRUE;
 | |
| 		/* map if does not exist */
 | |
| 		if (!cores_info->regs[coreidx]) {
 | |
| 			cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx],
 | |
| 			                            SI_CORE_SIZE);
 | |
| 			ASSERT(GOODREGS(cores_info->regs[coreidx]));
 | |
| 		}
 | |
| 		r = (volatile uint32 *)((volatile uchar *)cores_info->regs[coreidx] + regoff);
 | |
| 	} else if (BUSTYPE(sih->bustype) == PCI_BUS) {
 | |
| 		/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
 | |
| 
 | |
| 		if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
 | |
| 			/* Chipc registers are mapped at 12KB */
 | |
| 
 | |
| 			fast = TRUE;
 | |
| 			r = (volatile uint32 *)((volatile char *)sii->curmap +
 | |
| 			               PCI_16KB0_CCREGS_OFFSET + regoff);
 | |
| 		} else if (sii->pub.buscoreidx == coreidx) {
 | |
| 			/* pci registers are at either in the last 2KB of an 8KB window
 | |
| 			 * or, in pcie and pci rev 13 at 8KB
 | |
| 			 */
 | |
| 			fast = TRUE;
 | |
| 			if (SI_FAST(sii))
 | |
| 				r = (volatile uint32 *)((volatile char *)sii->curmap +
 | |
| 				               PCI_16KB0_PCIREGS_OFFSET + regoff);
 | |
| 			else
 | |
| 				r = (volatile uint32 *)((volatile char *)sii->curmap +
 | |
| 				               ((regoff >= SBCONFIGOFF) ?
 | |
| 				                PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
 | |
| 				               regoff);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!fast) {
 | |
| 		ASSERT(sii->curidx == coreidx);
 | |
| 		r = (volatile uint32*) ((volatile uchar*)sii->curmap + regoff);
 | |
| 	}
 | |
| 
 | |
| 	return (r);
 | |
| }
 | |
| 
 | |
| void
 | |
| ai_core_disable(si_t *sih, uint32 bits)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	volatile uint32 dummy;
 | |
| 	uint32 status;
 | |
| 	aidmp_t *ai;
 | |
| 
 | |
| 	ASSERT(GOODREGS(sii->curwrap));
 | |
| 	ai = sii->curwrap;
 | |
| 
 | |
| 	/* if core is already in reset, just return */
 | |
| 	if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* ensure there are no pending backplane operations */
 | |
| 	SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
 | |
| 
 | |
| 	/* if pending backplane ops still, try waiting longer */
 | |
| 	if (status != 0) {
 | |
| 		/* 300usecs was sufficient to allow backplane ops to clear for big hammer */
 | |
| 		/* during driver load we may need more time */
 | |
| 		SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 10000);
 | |
| 		/* if still pending ops, continue on and try disable anyway */
 | |
| 		/* this is in big hammer path, so don't call wl_reinit in this case... */
 | |
| 	}
 | |
| 
 | |
| 	W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
 | |
| 	dummy = R_REG(sii->osh, &ai->resetctrl);
 | |
| 	BCM_REFERENCE(dummy);
 | |
| 	OSL_DELAY(1);
 | |
| 
 | |
| 	W_REG(sii->osh, &ai->ioctrl, bits);
 | |
| 	dummy = R_REG(sii->osh, &ai->ioctrl);
 | |
| 	BCM_REFERENCE(dummy);
 | |
| 	OSL_DELAY(10);
 | |
| }
 | |
| 
 | |
| /* reset and re-enable a core
 | |
|  * inputs:
 | |
|  * bits - core specific bits that are set during and after reset sequence
 | |
|  * resetbits - core specific bits that are set only during reset sequence
 | |
|  */
 | |
| static void
 | |
| _ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| #if defined(UCM_CORRUPTION_WAR)
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| #endif // endif
 | |
| 	aidmp_t *ai;
 | |
| 	volatile uint32 dummy;
 | |
| 	uint loop_counter = 10;
 | |
| 
 | |
| 	ASSERT(GOODREGS(sii->curwrap));
 | |
| 	ai = sii->curwrap;
 | |
| 
 | |
| 	/* ensure there are no pending backplane operations */
 | |
| 	SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
 | |
| 
 | |
| 	/* put core into reset state */
 | |
| 	W_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
 | |
| 	OSL_DELAY(10);
 | |
| 
 | |
| 	/* ensure there are no pending backplane operations */
 | |
| 	SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
 | |
| 
 | |
| 	W_REG(sii->osh, &ai->ioctrl, (bits | resetbits | SICF_FGC | SICF_CLOCK_EN));
 | |
| 	dummy = R_REG(sii->osh, &ai->ioctrl);
 | |
| 	BCM_REFERENCE(dummy);
 | |
| #ifdef UCM_CORRUPTION_WAR
 | |
| 	if (cores_info->coreid[sii->curidx] == D11_CORE_ID) {
 | |
| 		/* Reset FGC */
 | |
| 		OSL_DELAY(1);
 | |
| 		W_REG(sii->osh, &ai->ioctrl, (dummy & (~SICF_FGC)));
 | |
| 	}
 | |
| #endif /* UCM_CORRUPTION_WAR */
 | |
| 	/* ensure there are no pending backplane operations */
 | |
| 	SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
 | |
| 
 | |
| 	while (R_REG(sii->osh, &ai->resetctrl) != 0 && --loop_counter != 0) {
 | |
| 		/* ensure there are no pending backplane operations */
 | |
| 		SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300);
 | |
| 
 | |
| 		/* take core out of reset */
 | |
| 		W_REG(sii->osh, &ai->resetctrl, 0);
 | |
| 
 | |
| 		/* ensure there are no pending backplane operations */
 | |
| 		SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
 | |
| 	}
 | |
| 
 | |
| #ifdef UCM_CORRUPTION_WAR
 | |
| 	/* Pulse FGC after lifting Reset */
 | |
| 	W_REG(sii->osh, &ai->ioctrl, (bits | SICF_FGC | SICF_CLOCK_EN));
 | |
| #else
 | |
| 	W_REG(sii->osh, &ai->ioctrl, (bits | SICF_CLOCK_EN));
 | |
| #endif /* UCM_CORRUPTION_WAR */
 | |
| 	dummy = R_REG(sii->osh, &ai->ioctrl);
 | |
| 	BCM_REFERENCE(dummy);
 | |
| #ifdef UCM_CORRUPTION_WAR
 | |
| 	if (cores_info->coreid[sii->curidx] == D11_CORE_ID) {
 | |
| 		/* Reset FGC */
 | |
| 		OSL_DELAY(1);
 | |
| 		W_REG(sii->osh, &ai->ioctrl, (dummy & (~SICF_FGC)));
 | |
| 	}
 | |
| #endif /* UCM_CORRUPTION_WAR */
 | |
| 	OSL_DELAY(1);
 | |
| }
 | |
| 
 | |
| void
 | |
| ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 	uint idx = sii->curidx;
 | |
| 
 | |
| 	if (cores_info->wrapba3[idx] != 0) {
 | |
| 		ai_setcoreidx_3rdwrap(sih, idx);
 | |
| 		_ai_core_reset(sih, bits, resetbits);
 | |
| 		ai_setcoreidx(sih, idx);
 | |
| 	}
 | |
| 
 | |
| 	if (cores_info->wrapba2[idx] != 0) {
 | |
| 		ai_setcoreidx_2ndwrap(sih, idx);
 | |
| 		_ai_core_reset(sih, bits, resetbits);
 | |
| 		ai_setcoreidx(sih, idx);
 | |
| 	}
 | |
| 
 | |
| 	_ai_core_reset(sih, bits, resetbits);
 | |
| }
 | |
| 
 | |
| void
 | |
| ai_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	aidmp_t *ai;
 | |
| 	uint32 w;
 | |
| 
 | |
| 	if (BCM4707_DMP()) {
 | |
| 		SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n",
 | |
| 			__FUNCTION__));
 | |
| 		return;
 | |
| 	}
 | |
| 	if (PMU_DMP()) {
 | |
| 		SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n",
 | |
| 			__FUNCTION__));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(GOODREGS(sii->curwrap));
 | |
| 	ai = sii->curwrap;
 | |
| 
 | |
| 	ASSERT((val & ~mask) == 0);
 | |
| 
 | |
| 	if (mask || val) {
 | |
| 		w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
 | |
| 		W_REG(sii->osh, &ai->ioctrl, w);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| uint32
 | |
| ai_core_cflags(si_t *sih, uint32 mask, uint32 val)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	aidmp_t *ai;
 | |
| 	uint32 w;
 | |
| 
 | |
| 	if (BCM4707_DMP()) {
 | |
| 		SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n",
 | |
| 			__FUNCTION__));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (PMU_DMP()) {
 | |
| 		SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n",
 | |
| 			__FUNCTION__));
 | |
| 		return 0;
 | |
| 	}
 | |
| 	ASSERT(GOODREGS(sii->curwrap));
 | |
| 	ai = sii->curwrap;
 | |
| 
 | |
| 	ASSERT((val & ~mask) == 0);
 | |
| 
 | |
| 	if (mask || val) {
 | |
| 		w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val);
 | |
| 		W_REG(sii->osh, &ai->ioctrl, w);
 | |
| 	}
 | |
| 
 | |
| 	return R_REG(sii->osh, &ai->ioctrl);
 | |
| }
 | |
| 
 | |
| uint32
 | |
| ai_core_sflags(si_t *sih, uint32 mask, uint32 val)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	aidmp_t *ai;
 | |
| 	uint32 w;
 | |
| 
 | |
| 	if (BCM4707_DMP()) {
 | |
| 		SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n",
 | |
| 			__FUNCTION__));
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (PMU_DMP()) {
 | |
| 		SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n",
 | |
| 			__FUNCTION__));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(GOODREGS(sii->curwrap));
 | |
| 	ai = sii->curwrap;
 | |
| 
 | |
| 	ASSERT((val & ~mask) == 0);
 | |
| 	ASSERT((mask & ~SISF_CORE_BITS) == 0);
 | |
| 
 | |
| 	if (mask || val) {
 | |
| 		w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val);
 | |
| 		W_REG(sii->osh, &ai->iostatus, w);
 | |
| 	}
 | |
| 
 | |
| 	return R_REG(sii->osh, &ai->iostatus);
 | |
| }
 | |
| 
 | |
| #if defined(BCMDBG_PHYDUMP)
 | |
| /* print interesting aidmp registers */
 | |
| void
 | |
| ai_dumpregs(si_t *sih, struct bcmstrbuf *b)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	osl_t *osh;
 | |
| 	aidmp_t *ai;
 | |
| 	uint i;
 | |
| 	uint32 prev_value = 0;
 | |
| 	axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
 | |
| 	uint32 cfg_reg = 0;
 | |
| 	uint bar0_win_offset = 0;
 | |
| 
 | |
| 	osh = sii->osh;
 | |
| 
 | |
| 	/* Save and restore wrapper access window */
 | |
| 	if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
 | |
| 		if (PCIE_GEN2(sii)) {
 | |
| 			cfg_reg = PCIE2_BAR0_CORE2_WIN2;
 | |
| 			bar0_win_offset = PCIE2_BAR0_CORE2_WIN2_OFFSET;
 | |
| 		} else {
 | |
| 			cfg_reg = PCI_BAR0_WIN2;
 | |
| 			bar0_win_offset = PCI_BAR0_WIN2_OFFSET;
 | |
| 		}
 | |
| 
 | |
| 		prev_value = OSL_PCI_READ_CONFIG(osh, cfg_reg, 4);
 | |
| 
 | |
| 		if (prev_value == ID32_INVALID) {
 | |
| 			SI_PRINT(("%s, PCI_BAR0_WIN2 - %x\n", __FUNCTION__, prev_value));
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bcm_bprintf(b, "ChipNum:%x, ChipRev;%x, BusType:%x, BoardType:%x, BoardVendor:%x\n\n",
 | |
| 		sih->chip, sih->chiprev, sih->bustype, sih->boardtype, sih->boardvendor);
 | |
| 
 | |
| 	for (i = 0; i < sii->axi_num_wrappers; i++) {
 | |
| 
 | |
| 		if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
 | |
| 			/* Set BAR0 window to bridge wapper base address */
 | |
| 			OSL_PCI_WRITE_CONFIG(osh,
 | |
| 				cfg_reg, 4, axi_wrapper[i].wrapper_addr);
 | |
| 
 | |
| 			ai = (aidmp_t *) ((volatile uint8*)sii->curmap + bar0_win_offset);
 | |
| 		} else {
 | |
| 			ai = (aidmp_t *)(uintptr) axi_wrapper[i].wrapper_addr;
 | |
| 		}
 | |
| 
 | |
| 		bcm_bprintf(b, "core 0x%x: core_rev:%d, %s_WR ADDR:%x \n", axi_wrapper[i].cid,
 | |
| 			axi_wrapper[i].rev,
 | |
| 			axi_wrapper[i].wrapper_type == AI_SLAVE_WRAPPER ? "SLAVE" : "MASTER",
 | |
| 			axi_wrapper[i].wrapper_addr);
 | |
| 
 | |
| 		/* BCM4707_DMP() */
 | |
| 		if (BCM4707_CHIP(CHIPID(sih->chip)) &&
 | |
| 			(axi_wrapper[i].cid == NS_CCB_CORE_ID)) {
 | |
| 			bcm_bprintf(b, "Skipping chipcommonb in 4707\n");
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		bcm_bprintf(b, "ioctrlset 0x%x ioctrlclear 0x%x ioctrl 0x%x iostatus 0x%x "
 | |
| 			    "ioctrlwidth 0x%x iostatuswidth 0x%x\n"
 | |
| 			    "resetctrl 0x%x resetstatus 0x%x resetreadid 0x%x resetwriteid 0x%x\n"
 | |
| 			    "errlogctrl 0x%x errlogdone 0x%x errlogstatus 0x%x "
 | |
| 			    "errlogaddrlo 0x%x errlogaddrhi 0x%x\n"
 | |
| 			    "errlogid 0x%x errloguser 0x%x errlogflags 0x%x\n"
 | |
| 			    "intstatus 0x%x config 0x%x itcr 0x%x\n\n",
 | |
| 			    R_REG(osh, &ai->ioctrlset),
 | |
| 			    R_REG(osh, &ai->ioctrlclear),
 | |
| 			    R_REG(osh, &ai->ioctrl),
 | |
| 			    R_REG(osh, &ai->iostatus),
 | |
| 			    R_REG(osh, &ai->ioctrlwidth),
 | |
| 			    R_REG(osh, &ai->iostatuswidth),
 | |
| 			    R_REG(osh, &ai->resetctrl),
 | |
| 			    R_REG(osh, &ai->resetstatus),
 | |
| 			    R_REG(osh, &ai->resetreadid),
 | |
| 			    R_REG(osh, &ai->resetwriteid),
 | |
| 			    R_REG(osh, &ai->errlogctrl),
 | |
| 			    R_REG(osh, &ai->errlogdone),
 | |
| 			    R_REG(osh, &ai->errlogstatus),
 | |
| 			    R_REG(osh, &ai->errlogaddrlo),
 | |
| 			    R_REG(osh, &ai->errlogaddrhi),
 | |
| 			    R_REG(osh, &ai->errlogid),
 | |
| 			    R_REG(osh, &ai->errloguser),
 | |
| 			    R_REG(osh, &ai->errlogflags),
 | |
| 			    R_REG(osh, &ai->intstatus),
 | |
| 			    R_REG(osh, &ai->config),
 | |
| 			    R_REG(osh, &ai->itcr));
 | |
| 	}
 | |
| 
 | |
| 	/* Restore the initial wrapper space */
 | |
| 	if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
 | |
| 		if (prev_value && cfg_reg) {
 | |
| 			OSL_PCI_WRITE_CONFIG(osh, cfg_reg, 4, prev_value);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif // endif
 | |
| 
 | |
| void
 | |
| ai_update_backplane_timeouts(si_t *sih, bool enable, uint32 timeout_exp, uint32 cid)
 | |
| {
 | |
| #if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	aidmp_t *ai;
 | |
| 	uint32 i;
 | |
| 	axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
 | |
| 	uint32 errlogctrl = (enable << AIELC_TO_ENAB_SHIFT) |
 | |
| 		((timeout_exp << AIELC_TO_EXP_SHIFT) & AIELC_TO_EXP_MASK);
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 	uint32 prev_value = 0;
 | |
| 	osl_t *osh = sii->osh;
 | |
| 	uint32 cfg_reg = 0;
 | |
| 	uint32 offset = 0;
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| 	if ((sii->axi_num_wrappers == 0) ||
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 		(!PCIE(sii)) ||
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 		FALSE) {
 | |
| 		SI_VMSG((" %s, axi_num_wrappers:%d, Is_PCIE:%d, BUS_TYPE:%d, ID:%x\n",
 | |
| 			__FUNCTION__, sii->axi_num_wrappers, PCIE(sii),
 | |
| 			BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 	/* Save and restore the wrapper access window */
 | |
| 	if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
 | |
| 		if (PCIE_GEN1(sii)) {
 | |
| 			cfg_reg = PCI_BAR0_WIN2;
 | |
| 			offset = PCI_BAR0_WIN2_OFFSET;
 | |
| 		} else if (PCIE_GEN2(sii)) {
 | |
| 			cfg_reg = PCIE2_BAR0_CORE2_WIN2;
 | |
| 			offset = PCIE2_BAR0_CORE2_WIN2_OFFSET;
 | |
| 		}
 | |
| 		else {
 | |
| 			ASSERT(!"!PCIE_GEN1 && !PCIE_GEN2");
 | |
| 		}
 | |
| 
 | |
| 		prev_value = OSL_PCI_READ_CONFIG(osh, cfg_reg, 4);
 | |
| 		if (prev_value == ID32_INVALID) {
 | |
| 			SI_PRINT(("%s, PCI_BAR0_WIN2 - %x\n", __FUNCTION__, prev_value));
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| 	for (i = 0; i < sii->axi_num_wrappers; ++i) {
 | |
| 
 | |
| 		if (axi_wrapper[i].wrapper_type != AI_SLAVE_WRAPPER) {
 | |
| 			SI_VMSG(("SKIP ENABLE BPT: MFG:%x, CID:%x, ADDR:%x\n",
 | |
| 				axi_wrapper[i].mfg,
 | |
| 				axi_wrapper[i].cid,
 | |
| 				axi_wrapper[i].wrapper_addr));
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Update only given core if requested */
 | |
| 		if ((cid != 0) && (axi_wrapper[i].cid != cid)) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 		if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
 | |
| 			/* Set BAR0_CORE2_WIN2 to bridge wapper base address */
 | |
| 			OSL_PCI_WRITE_CONFIG(osh,
 | |
| 				cfg_reg, 4, axi_wrapper[i].wrapper_addr);
 | |
| 
 | |
| 			/* set AI to BAR0 + Offset corresponding to Gen1 or gen2 */
 | |
| 			ai = (aidmp_t *) (DISCARD_QUAL(sii->curmap, uint8) + offset);
 | |
| 		}
 | |
| 		else
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 		{
 | |
| 			ai = (aidmp_t *)(uintptr) axi_wrapper[i].wrapper_addr;
 | |
| 		}
 | |
| 
 | |
| 		W_REG(sii->osh, &ai->errlogctrl, errlogctrl);
 | |
| 
 | |
| 		SI_VMSG(("ENABLED BPT: MFG:%x, CID:%x, ADDR:%x, ERR_CTRL:%x\n",
 | |
| 			axi_wrapper[i].mfg,
 | |
| 			axi_wrapper[i].cid,
 | |
| 			axi_wrapper[i].wrapper_addr,
 | |
| 			R_REG(sii->osh, &ai->errlogctrl)));
 | |
| 	}
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 	/* Restore the initial wrapper space */
 | |
| 	if (prev_value) {
 | |
| 		OSL_PCI_WRITE_CONFIG(osh, cfg_reg, 4, prev_value);
 | |
| 	}
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| #endif /* AXI_TIMEOUTS || BCM_BACKPLANE_TIMEOUT */
 | |
| }
 | |
| 
 | |
| #if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
 | |
| 
 | |
| /* slave error is ignored, so account for those cases */
 | |
| static uint32 si_ignore_errlog_cnt = 0;
 | |
| 
 | |
| static bool
 | |
| ai_ignore_errlog(si_info_t *sii, aidmp_t *ai,
 | |
| 	uint32 lo_addr, uint32 hi_addr, uint32 err_axi_id, uint32 errsts)
 | |
| {
 | |
| 	uint32 axi_id;
 | |
| #ifdef BCMPCIE_BTLOG
 | |
| 	uint32 axi_id2 = BCM4347_UNUSED_AXI_ID;
 | |
| #endif	/* BCMPCIE_BTLOG */
 | |
| 	uint32 ignore_errsts = AIELS_SLAVE_ERR;
 | |
| 	uint32 ignore_hi = BT_CC_SPROM_BADREG_HI;
 | |
| 	uint32 ignore_lo = BT_CC_SPROM_BADREG_LO;
 | |
| 	uint32 ignore_size = BT_CC_SPROM_BADREG_SIZE;
 | |
| 
 | |
| 	/* ignore the BT slave errors if the errlog is to chipcommon addr 0x190 */
 | |
| 	switch (CHIPID(sii->pub.chip)) {
 | |
| 		case BCM4350_CHIP_ID:
 | |
| 			axi_id = BCM4350_BT_AXI_ID;
 | |
| 			break;
 | |
| 		case BCM4345_CHIP_ID:
 | |
| 			axi_id = BCM4345_BT_AXI_ID;
 | |
| 			break;
 | |
| 		case BCM4349_CHIP_GRPID:
 | |
| 			axi_id = BCM4349_BT_AXI_ID;
 | |
| 			break;
 | |
| 		case BCM4364_CHIP_ID:
 | |
| 		case BCM4373_CHIP_ID:
 | |
| 			axi_id = BCM4364_BT_AXI_ID;
 | |
| 			break;
 | |
| #ifdef BCMPCIE_BTLOG
 | |
| 		case BCM4347_CHIP_ID:
 | |
| 		case BCM4357_CHIP_ID:
 | |
| 			axi_id = BCM4347_CC_AXI_ID;
 | |
| 			axi_id2 = BCM4347_PCIE_AXI_ID;
 | |
| 			ignore_errsts = AIELS_TIMEOUT;
 | |
| 			ignore_hi = BCM4347_BT_ADDR_HI;
 | |
| 			ignore_lo = BCM4347_BT_ADDR_LO;
 | |
| 			ignore_size = BCM4347_BT_SIZE;
 | |
| 			break;
 | |
| #endif	/* BCMPCIE_BTLOG */
 | |
| 
 | |
| 		default:
 | |
| 			return FALSE;
 | |
| 	}
 | |
| 
 | |
| 	/* AXI ID check */
 | |
| 	err_axi_id &= AI_ERRLOGID_AXI_ID_MASK;
 | |
| 	if (!(err_axi_id == axi_id ||
 | |
| #ifdef BCMPCIE_BTLOG
 | |
| 	      (axi_id2 != BCM4347_UNUSED_AXI_ID && err_axi_id == axi_id2)))
 | |
| #else
 | |
| 	      FALSE))
 | |
| #endif	/* BCMPCIE_BTLOG */
 | |
| 		return FALSE;
 | |
| 
 | |
| 	/* slave errors */
 | |
| 	if ((errsts & AIELS_TIMEOUT_MASK) != ignore_errsts)
 | |
| 		return FALSE;
 | |
| 
 | |
| 	/* address range check */
 | |
| 	if ((hi_addr != ignore_hi) ||
 | |
| 	    (lo_addr < ignore_lo) || (lo_addr >= (ignore_lo + ignore_size)))
 | |
| 		return FALSE;
 | |
| 
 | |
| #ifdef BCMPCIE_BTLOG
 | |
| 	if (ignore_errsts == AIELS_TIMEOUT) {
 | |
| 		/* reset AXI timeout */
 | |
| 		ai_reset_axi_to(sii, ai);
 | |
| 	}
 | |
| #endif	/* BCMPCIE_BTLOG */
 | |
| 
 | |
| 	return TRUE;
 | |
| }
 | |
| #endif /* defined (AXI_TIMEOUTS) || defined (BCM_BACKPLANE_TIMEOUT) */
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 
 | |
| /* Function to return the APB bridge details corresponding to the core */
 | |
| static bool
 | |
| ai_get_apb_bridge(si_t * sih, uint32 coreidx, uint32 *apb_id, uint32 * apb_coreuinit)
 | |
| {
 | |
| 	uint i;
 | |
| 	uint32 core_base, core_end;
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	static uint32 coreidx_cached = 0, apb_id_cached = 0, apb_coreunit_cached = 0;
 | |
| 	uint32 tmp_coreunit = 0;
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 
 | |
| 	if (coreidx >= MIN(sii->numcores, SI_MAXCORES))
 | |
| 		return FALSE;
 | |
| 
 | |
| 	/* Most of the time apb bridge query will be for d11 core.
 | |
| 	 * Maintain the last cache and return if found rather than iterating the table
 | |
| 	 */
 | |
| 	if (coreidx_cached == coreidx) {
 | |
| 		*apb_id = apb_id_cached;
 | |
| 		*apb_coreuinit = apb_coreunit_cached;
 | |
| 		return TRUE;
 | |
| 	}
 | |
| 
 | |
| 	core_base = cores_info->coresba[coreidx];
 | |
| 	core_end = core_base + cores_info->coresba_size[coreidx];
 | |
| 
 | |
| 	for (i = 0; i < sii->numcores; i++) {
 | |
| 		if (cores_info->coreid[i] == APB_BRIDGE_ID) {
 | |
| 			uint32 apb_base;
 | |
| 			uint32 apb_end;
 | |
| 
 | |
| 			apb_base = cores_info->coresba[i];
 | |
| 			apb_end = apb_base + cores_info->coresba_size[i];
 | |
| 
 | |
| 			if ((core_base >= apb_base) &&
 | |
| 				(core_end <= apb_end)) {
 | |
| 				/* Current core is attached to this APB bridge */
 | |
| 				*apb_id = apb_id_cached = APB_BRIDGE_ID;
 | |
| 				*apb_coreuinit = apb_coreunit_cached = tmp_coreunit;
 | |
| 				coreidx_cached = coreidx;
 | |
| 				return TRUE;
 | |
| 			}
 | |
| 			/* Increment the coreunit */
 | |
| 			tmp_coreunit++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return FALSE;
 | |
| }
 | |
| 
 | |
| uint32
 | |
| ai_clear_backplane_to_fast(si_t *sih, void *addr)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	volatile void *curmap = sii->curmap;
 | |
| 	bool core_reg = FALSE;
 | |
| 
 | |
| 	/* Use fast path only for core register access */
 | |
| 	if (((uintptr)addr >= (uintptr)curmap) &&
 | |
| 		((uintptr)addr < ((uintptr)curmap + SI_CORE_SIZE))) {
 | |
| 		/* address being accessed is within current core reg map */
 | |
| 		core_reg = TRUE;
 | |
| 	}
 | |
| 
 | |
| 	if (core_reg) {
 | |
| 		uint32 apb_id, apb_coreuinit;
 | |
| 
 | |
| 		if (ai_get_apb_bridge(sih, si_coreidx(&sii->pub),
 | |
| 			&apb_id, &apb_coreuinit) == TRUE) {
 | |
| 			/* Found the APB bridge corresponding to current core,
 | |
| 			 * Check for bus errors in APB wrapper
 | |
| 			 */
 | |
| 			return ai_clear_backplane_to_per_core(sih,
 | |
| 				apb_id, apb_coreuinit, NULL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Default is to poll for errors on all slave wrappers */
 | |
| 	return si_clear_backplane_to(sih);
 | |
| }
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| #if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
 | |
| static bool g_disable_backplane_logs = FALSE;
 | |
| 
 | |
| #if defined(ETD)
 | |
| static uint32 last_axi_error = AXI_WRAP_STS_NONE;
 | |
| static uint32 last_axi_error_core = 0;
 | |
| static uint32 last_axi_error_wrap = 0;
 | |
| #endif /* ETD */
 | |
| 
 | |
| /*
 | |
|  * API to clear the back plane timeout per core.
 | |
|  * Caller may passs optional wrapper address. If present this will be used as
 | |
|  * the wrapper base address. If wrapper base address is provided then caller
 | |
|  * must provide the coreid also.
 | |
|  * If both coreid and wrapper is zero, then err status of current bridge
 | |
|  * will be verified.
 | |
|  */
 | |
| uint32
 | |
| ai_clear_backplane_to_per_core(si_t *sih, uint coreid, uint coreunit, void *wrap)
 | |
| {
 | |
| 	int ret = AXI_WRAP_STS_NONE;
 | |
| 	aidmp_t *ai = NULL;
 | |
| 	uint32 errlog_status = 0;
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	uint32 errlog_lo = 0, errlog_hi = 0, errlog_id = 0, errlog_flags = 0;
 | |
| 	uint32 current_coreidx = si_coreidx(sih);
 | |
| 	uint32 target_coreidx = si_findcoreidx(sih, coreid, coreunit);
 | |
| 
 | |
| #if defined(BCM_BACKPLANE_TIMEOUT)
 | |
| 	si_axi_error_t * axi_error = sih->err_info ?
 | |
| 		&sih->err_info->axi_error[sih->err_info->count] : NULL;
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 	bool restore_core = FALSE;
 | |
| 
 | |
| 	if ((sii->axi_num_wrappers == 0) ||
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 		(!PCIE(sii)) ||
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 		FALSE) {
 | |
| 		SI_VMSG((" %s, axi_num_wrappers:%d, Is_PCIE:%d, BUS_TYPE:%d, ID:%x\n",
 | |
| 			__FUNCTION__, sii->axi_num_wrappers, PCIE(sii),
 | |
| 			BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
 | |
| 		return AXI_WRAP_STS_NONE;
 | |
| 	}
 | |
| 
 | |
| 	if (wrap != NULL) {
 | |
| 		ai = (aidmp_t *)wrap;
 | |
| 	} else if (coreid && (target_coreidx != current_coreidx)) {
 | |
| 
 | |
| 		if (ai_setcoreidx(sih, target_coreidx) == NULL) {
 | |
| 			/* Unable to set the core */
 | |
| 			SI_PRINT(("Set Code Failed: coreid:%x, unit:%d, target_coreidx:%d\n",
 | |
| 				coreid, coreunit, target_coreidx));
 | |
| 			errlog_lo = target_coreidx;
 | |
| 			ret = AXI_WRAP_STS_SET_CORE_FAIL;
 | |
| 			goto end;
 | |
| 		}
 | |
| 
 | |
| 		restore_core = TRUE;
 | |
| 		ai = (aidmp_t *)si_wrapperregs(sih);
 | |
| 	} else {
 | |
| 		/* Read error status of current wrapper */
 | |
| 		ai = (aidmp_t *)si_wrapperregs(sih);
 | |
| 
 | |
| 		/* Update CoreID to current Code ID */
 | |
| 		coreid = si_coreid(sih);
 | |
| 	}
 | |
| 
 | |
| 	/* read error log status */
 | |
| 	errlog_status = R_REG(sii->osh, &ai->errlogstatus);
 | |
| 
 | |
| 	if (errlog_status == ID32_INVALID) {
 | |
| 		/* Do not try to peek further */
 | |
| 		SI_PRINT(("%s, errlogstatus:%x - Slave Wrapper:%x\n",
 | |
| 			__FUNCTION__, errlog_status, coreid));
 | |
| 		ret = AXI_WRAP_STS_WRAP_RD_ERR;
 | |
| 		errlog_lo = (uint32)(uintptr)&ai->errlogstatus;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if ((errlog_status & AIELS_TIMEOUT_MASK) != 0) {
 | |
| 		uint32 tmp;
 | |
| 		uint32 count = 0;
 | |
| 		/* set ErrDone to clear the condition */
 | |
| 		W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK);
 | |
| 
 | |
| 		/* SPINWAIT on errlogstatus timeout status bits */
 | |
| 		while ((tmp = R_REG(sii->osh, &ai->errlogstatus)) & AIELS_TIMEOUT_MASK) {
 | |
| 
 | |
| 			if (tmp == ID32_INVALID) {
 | |
| 				SI_PRINT(("%s: prev errlogstatus:%x, errlogstatus:%x\n",
 | |
| 					__FUNCTION__, errlog_status, tmp));
 | |
| 				ret = AXI_WRAP_STS_WRAP_RD_ERR;
 | |
| 				errlog_lo = (uint32)(uintptr)&ai->errlogstatus;
 | |
| 				goto end;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Clear again, to avoid getting stuck in the loop, if a new error
 | |
| 			 * is logged after we cleared the first timeout
 | |
| 			 */
 | |
| 			W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK);
 | |
| 
 | |
| 			count++;
 | |
| 			OSL_DELAY(10);
 | |
| 			if ((10 * count) > AI_REG_READ_TIMEOUT) {
 | |
| 				errlog_status = tmp;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		errlog_lo = R_REG(sii->osh, &ai->errlogaddrlo);
 | |
| 		errlog_hi = R_REG(sii->osh, &ai->errlogaddrhi);
 | |
| 		errlog_id = R_REG(sii->osh, &ai->errlogid);
 | |
| 		errlog_flags = R_REG(sii->osh, &ai->errlogflags);
 | |
| 
 | |
| 		/* we are already in the error path, so OK to check for the  slave error */
 | |
| 		if (ai_ignore_errlog(sii, ai, errlog_lo, errlog_hi, errlog_id,
 | |
| 			errlog_status)) {
 | |
| 			si_ignore_errlog_cnt++;
 | |
| 			goto end;
 | |
| 		}
 | |
| 
 | |
| 		/* only reset APB Bridge on timeout (not slave error, or dec error) */
 | |
| 		switch (errlog_status & AIELS_TIMEOUT_MASK) {
 | |
| 			case AIELS_SLAVE_ERR:
 | |
| 				SI_PRINT(("AXI slave error\n"));
 | |
| 				ret = AXI_WRAP_STS_SLAVE_ERR;
 | |
| 				break;
 | |
| 
 | |
| 			case AIELS_TIMEOUT:
 | |
| 				ai_reset_axi_to(sii, ai);
 | |
| 				ret = AXI_WRAP_STS_TIMEOUT;
 | |
| 				break;
 | |
| 
 | |
| 			case AIELS_DECODE:
 | |
| 				SI_PRINT(("AXI decode error\n"));
 | |
| 				ret = AXI_WRAP_STS_DECODE_ERR;
 | |
| 				break;
 | |
| 			default:
 | |
| 				ASSERT(0);	/* should be impossible */
 | |
| 		}
 | |
| 
 | |
| 		SI_PRINT(("\tCoreID: %x\n", coreid));
 | |
| 		SI_PRINT(("\t errlog: lo 0x%08x, hi 0x%08x, id 0x%08x, flags 0x%08x"
 | |
| 			", status 0x%08x\n",
 | |
| 			errlog_lo, errlog_hi, errlog_id, errlog_flags,
 | |
| 			errlog_status));
 | |
| 	}
 | |
| 
 | |
| end:
 | |
| #if defined(ETD)
 | |
| 	if (ret != AXI_WRAP_STS_NONE) {
 | |
| 		last_axi_error = ret;
 | |
| 		last_axi_error_core = coreid;
 | |
| 		last_axi_error_wrap = (uint32)ai;
 | |
| 	}
 | |
| #endif /* ETD */
 | |
| 
 | |
| #if defined(BCM_BACKPLANE_TIMEOUT)
 | |
| 	if (axi_error && (ret != AXI_WRAP_STS_NONE)) {
 | |
| 		axi_error->error = ret;
 | |
| 		axi_error->coreid = coreid;
 | |
| 		axi_error->errlog_lo = errlog_lo;
 | |
| 		axi_error->errlog_hi = errlog_hi;
 | |
| 		axi_error->errlog_id = errlog_id;
 | |
| 		axi_error->errlog_flags = errlog_flags;
 | |
| 		axi_error->errlog_status = errlog_status;
 | |
| 		sih->err_info->count++;
 | |
| 
 | |
| 		if (sih->err_info->count == SI_MAX_ERRLOG_SIZE) {
 | |
| 			sih->err_info->count = SI_MAX_ERRLOG_SIZE - 1;
 | |
| 			SI_PRINT(("AXI Error log overflow\n"));
 | |
| 		}
 | |
| 	}
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| 	if (restore_core) {
 | |
| 		if (ai_setcoreidx(sih, current_coreidx) == NULL) {
 | |
| 			/* Unable to set the core */
 | |
| 			return ID32_INVALID;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* reset AXI timeout */
 | |
| static void
 | |
| ai_reset_axi_to(si_info_t *sii, aidmp_t *ai)
 | |
| {
 | |
| 	/* reset APB Bridge */
 | |
| 	OR_REG(sii->osh, &ai->resetctrl, AIRC_RESET);
 | |
| 	/* sync write */
 | |
| 	(void)R_REG(sii->osh, &ai->resetctrl);
 | |
| 	/* clear Reset bit */
 | |
| 	AND_REG(sii->osh, &ai->resetctrl, ~(AIRC_RESET));
 | |
| 	/* sync write */
 | |
| 	(void)R_REG(sii->osh, &ai->resetctrl);
 | |
| 	SI_PRINT(("AXI timeout\n"));
 | |
| 	if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) {
 | |
| 		SI_PRINT(("reset failed on wrapper %p\n", ai));
 | |
| 		g_disable_backplane_logs = TRUE;
 | |
| 	}
 | |
| }
 | |
| #endif /* AXI_TIMEOUTS || BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| /*
 | |
|  * This API polls all slave wrappers for errors and returns bit map of
 | |
|  * all reported errors.
 | |
|  * return - bit map of
 | |
|  *	AXI_WRAP_STS_NONE
 | |
|  *	AXI_WRAP_STS_TIMEOUT
 | |
|  *	AXI_WRAP_STS_SLAVE_ERR
 | |
|  *	AXI_WRAP_STS_DECODE_ERR
 | |
|  *	AXI_WRAP_STS_PCI_RD_ERR
 | |
|  *	AXI_WRAP_STS_WRAP_RD_ERR
 | |
|  *	AXI_WRAP_STS_SET_CORE_FAIL
 | |
|  * On timeout detection, correspondign bridge will be reset to
 | |
|  * unblock the bus.
 | |
|  * Error reported in each wrapper can be retrieved using the API
 | |
|  * si_get_axi_errlog_info()
 | |
|  */
 | |
| uint32
 | |
| ai_clear_backplane_to(si_t *sih)
 | |
| {
 | |
| 	uint32 ret = 0;
 | |
| #if defined(AXI_TIMEOUTS) || defined(BCM_BACKPLANE_TIMEOUT)
 | |
| 
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	aidmp_t *ai;
 | |
| 	uint32 i;
 | |
| 	axi_wrapper_t * axi_wrapper = sii->axi_wrapper;
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 	uint32 prev_value = 0;
 | |
| 	osl_t *osh = sii->osh;
 | |
| 	uint32 cfg_reg = 0;
 | |
| 	uint32 offset = 0;
 | |
| 
 | |
| 	if ((sii->axi_num_wrappers == 0) || (!PCIE(sii)))
 | |
| #else
 | |
| 	if (sii->axi_num_wrappers == 0)
 | |
| #endif // endif
 | |
| 	{
 | |
| 		SI_VMSG((" %s, axi_num_wrappers:%d, Is_PCIE:%d, BUS_TYPE:%d, ID:%x\n",
 | |
| 			__FUNCTION__, sii->axi_num_wrappers, PCIE(sii),
 | |
| 			BUSTYPE(sii->pub.bustype), sii->pub.buscoretype));
 | |
| 		return AXI_WRAP_STS_NONE;
 | |
| 	}
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 	/* Save and restore wrapper access window */
 | |
| 	if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
 | |
| 		if (PCIE_GEN1(sii)) {
 | |
| 			cfg_reg = PCI_BAR0_WIN2;
 | |
| 			offset = PCI_BAR0_WIN2_OFFSET;
 | |
| 		} else if (PCIE_GEN2(sii)) {
 | |
| 			cfg_reg = PCIE2_BAR0_CORE2_WIN2;
 | |
| 			offset = PCIE2_BAR0_CORE2_WIN2_OFFSET;
 | |
| 		}
 | |
| 		else {
 | |
| 			ASSERT(!"!PCIE_GEN1 && !PCIE_GEN2");
 | |
| 		}
 | |
| 
 | |
| 		prev_value = OSL_PCI_READ_CONFIG(osh, cfg_reg, 4);
 | |
| 
 | |
| 		if (prev_value == ID32_INVALID) {
 | |
| 			si_axi_error_t * axi_error =
 | |
| 				sih->err_info ?
 | |
| 					&sih->err_info->axi_error[sih->err_info->count] :
 | |
| 					NULL;
 | |
| 
 | |
| 			SI_PRINT(("%s, PCI_BAR0_WIN2 - %x\n", __FUNCTION__, prev_value));
 | |
| 			if (axi_error) {
 | |
| 				axi_error->error = ret = AXI_WRAP_STS_PCI_RD_ERR;
 | |
| 				axi_error->errlog_lo = cfg_reg;
 | |
| 				sih->err_info->count++;
 | |
| 
 | |
| 				if (sih->err_info->count == SI_MAX_ERRLOG_SIZE) {
 | |
| 					sih->err_info->count = SI_MAX_ERRLOG_SIZE - 1;
 | |
| 					SI_PRINT(("AXI Error log overflow\n"));
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| 	for (i = 0; i < sii->axi_num_wrappers; ++i) {
 | |
| 		uint32 tmp;
 | |
| 
 | |
| 		if (axi_wrapper[i].wrapper_type != AI_SLAVE_WRAPPER) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 		if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
 | |
| 			/* Set BAR0_CORE2_WIN2 to bridge wapper base address */
 | |
| 			OSL_PCI_WRITE_CONFIG(osh,
 | |
| 				cfg_reg, 4, axi_wrapper[i].wrapper_addr);
 | |
| 
 | |
| 			/* set AI to BAR0 + Offset corresponding to Gen1 or gen2 */
 | |
| 			ai = (aidmp_t *) (DISCARD_QUAL(sii->curmap, uint8) + offset);
 | |
| 		}
 | |
| 		else
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 		{
 | |
| 			ai = (aidmp_t *)(uintptr) axi_wrapper[i].wrapper_addr;
 | |
| 		}
 | |
| 
 | |
| 		tmp = ai_clear_backplane_to_per_core(sih, axi_wrapper[i].cid, 0,
 | |
| 			DISCARD_QUAL(ai, void));
 | |
| 
 | |
| 		ret |= tmp;
 | |
| 	}
 | |
| 
 | |
| #ifdef BCM_BACKPLANE_TIMEOUT
 | |
| 	/* Restore the initial wrapper space */
 | |
| 	if (prev_value) {
 | |
| 		OSL_PCI_WRITE_CONFIG(osh, cfg_reg, 4, prev_value);
 | |
| 	}
 | |
| #endif /* BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| #endif /* AXI_TIMEOUTS || BCM_BACKPLANE_TIMEOUT */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| uint
 | |
| ai_num_slaveports(si_t *sih, uint coreidx)
 | |
| {
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 	uint32 cib;
 | |
| 
 | |
| 	cib = cores_info->cib[coreidx];
 | |
| 	return ((cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT);
 | |
| }
 | |
| 
 | |
| #ifdef UART_TRAP_DBG
 | |
| void
 | |
| ai_dump_APB_Bridge_registers(si_t *sih)
 | |
| {
 | |
| aidmp_t *ai;
 | |
| si_info_t *sii = SI_INFO(sih);
 | |
| 
 | |
| 	ai = (aidmp_t *) sii->br_wrapba[0];
 | |
| 	printf("APB Bridge 0\n");
 | |
| 	printf("lo 0x%08x, hi 0x%08x, id 0x%08x, flags 0x%08x",
 | |
| 		R_REG(sii->osh, &ai->errlogaddrlo),
 | |
| 		R_REG(sii->osh, &ai->errlogaddrhi),
 | |
| 		R_REG(sii->osh, &ai->errlogid),
 | |
| 		R_REG(sii->osh, &ai->errlogflags));
 | |
| 	printf("\n status 0x%08x\n", R_REG(sii->osh, &ai->errlogstatus));
 | |
| }
 | |
| #endif /* UART_TRAP_DBG */
 | |
| 
 | |
| void
 | |
| ai_force_clocks(si_t *sih, uint clock_state)
 | |
| {
 | |
| 
 | |
| 	si_info_t *sii = SI_INFO(sih);
 | |
| 	aidmp_t *ai, *ai_sec = NULL;
 | |
| 	volatile uint32 dummy;
 | |
| 	uint32 ioctrl;
 | |
| 	si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info;
 | |
| 
 | |
| 	ASSERT(GOODREGS(sii->curwrap));
 | |
| 	ai = sii->curwrap;
 | |
| 	if (cores_info->wrapba2[sii->curidx])
 | |
| 		ai_sec = REG_MAP(cores_info->wrapba2[sii->curidx], SI_CORE_SIZE);
 | |
| 
 | |
| 	/* ensure there are no pending backplane operations */
 | |
| 	SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
 | |
| 
 | |
| 	if (clock_state == FORCE_CLK_ON) {
 | |
| 		ioctrl = R_REG(sii->osh, &ai->ioctrl);
 | |
| 		W_REG(sii->osh, &ai->ioctrl, (ioctrl | SICF_FGC));
 | |
| 		dummy = R_REG(sii->osh, &ai->ioctrl);
 | |
| 		BCM_REFERENCE(dummy);
 | |
| 		if (ai_sec) {
 | |
| 			ioctrl = R_REG(sii->osh, &ai_sec->ioctrl);
 | |
| 			W_REG(sii->osh, &ai_sec->ioctrl, (ioctrl | SICF_FGC));
 | |
| 			dummy = R_REG(sii->osh, &ai_sec->ioctrl);
 | |
| 			BCM_REFERENCE(dummy);
 | |
| 		}
 | |
| 	} else {
 | |
| 		ioctrl = R_REG(sii->osh, &ai->ioctrl);
 | |
| 		W_REG(sii->osh, &ai->ioctrl, (ioctrl & (~SICF_FGC)));
 | |
| 		dummy = R_REG(sii->osh, &ai->ioctrl);
 | |
| 		BCM_REFERENCE(dummy);
 | |
| 		if (ai_sec) {
 | |
| 			ioctrl = R_REG(sii->osh, &ai_sec->ioctrl);
 | |
| 			W_REG(sii->osh, &ai_sec->ioctrl, (ioctrl & (~SICF_FGC)));
 | |
| 			dummy = R_REG(sii->osh, &ai_sec->ioctrl);
 | |
| 			BCM_REFERENCE(dummy);
 | |
| 		}
 | |
| 	}
 | |
| 	/* ensure there are no pending backplane operations */
 | |
| 	SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300);
 | |
| }
 | 
