282 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			282 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Handle caching attributes in page tables (PAT)
 | |
|  *
 | |
|  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 | |
|  *          Suresh B Siddha <suresh.b.siddha@intel.com>
 | |
|  *
 | |
|  * Interval tree (augmented rbtree) used to store the PAT memory type
 | |
|  * reservations.
 | |
|  */
 | |
| 
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/rbtree_augmented.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/gfp.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pat.h>
 | |
| 
 | |
| #include "pat_internal.h"
 | |
| 
 | |
| /*
 | |
|  * The memtype tree keeps track of memory type for specific
 | |
|  * physical memory areas. Without proper tracking, conflicting memory
 | |
|  * types in different mappings can cause CPU cache corruption.
 | |
|  *
 | |
|  * The tree is an interval tree (augmented rbtree) with tree ordered
 | |
|  * on starting address. Tree can contain multiple entries for
 | |
|  * different regions which overlap. All the aliases have the same
 | |
|  * cache attributes of course.
 | |
|  *
 | |
|  * memtype_lock protects the rbtree.
 | |
|  */
 | |
| 
 | |
| static struct rb_root memtype_rbroot = RB_ROOT;
 | |
| 
 | |
| static int is_node_overlap(struct memtype *node, u64 start, u64 end)
 | |
| {
 | |
| 	if (node->start >= end || node->end <= start)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static u64 get_subtree_max_end(struct rb_node *node)
 | |
| {
 | |
| 	u64 ret = 0;
 | |
| 	if (node) {
 | |
| 		struct memtype *data = rb_entry(node, struct memtype, rb);
 | |
| 		ret = data->subtree_max_end;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 compute_subtree_max_end(struct memtype *data)
 | |
| {
 | |
| 	u64 max_end = data->end, child_max_end;
 | |
| 
 | |
| 	child_max_end = get_subtree_max_end(data->rb.rb_right);
 | |
| 	if (child_max_end > max_end)
 | |
| 		max_end = child_max_end;
 | |
| 
 | |
| 	child_max_end = get_subtree_max_end(data->rb.rb_left);
 | |
| 	if (child_max_end > max_end)
 | |
| 		max_end = child_max_end;
 | |
| 
 | |
| 	return max_end;
 | |
| }
 | |
| 
 | |
| RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb,
 | |
| 		     u64, subtree_max_end, compute_subtree_max_end)
 | |
| 
 | |
| /* Find the first (lowest start addr) overlapping range from rb tree */
 | |
| static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
 | |
| 				u64 start, u64 end)
 | |
| {
 | |
| 	struct rb_node *node = root->rb_node;
 | |
| 	struct memtype *last_lower = NULL;
 | |
| 
 | |
| 	while (node) {
 | |
| 		struct memtype *data = rb_entry(node, struct memtype, rb);
 | |
| 
 | |
| 		if (get_subtree_max_end(node->rb_left) > start) {
 | |
| 			/* Lowest overlap if any must be on left side */
 | |
| 			node = node->rb_left;
 | |
| 		} else if (is_node_overlap(data, start, end)) {
 | |
| 			last_lower = data;
 | |
| 			break;
 | |
| 		} else if (start >= data->start) {
 | |
| 			/* Lowest overlap if any must be on right side */
 | |
| 			node = node->rb_right;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return last_lower; /* Returns NULL if there is no overlap */
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	MEMTYPE_EXACT_MATCH	= 0,
 | |
| 	MEMTYPE_END_MATCH	= 1
 | |
| };
 | |
| 
 | |
| static struct memtype *memtype_rb_match(struct rb_root *root,
 | |
| 				u64 start, u64 end, int match_type)
 | |
| {
 | |
| 	struct memtype *match;
 | |
| 
 | |
| 	match = memtype_rb_lowest_match(root, start, end);
 | |
| 	while (match != NULL && match->start < end) {
 | |
| 		struct rb_node *node;
 | |
| 
 | |
| 		if ((match_type == MEMTYPE_EXACT_MATCH) &&
 | |
| 		    (match->start == start) && (match->end == end))
 | |
| 			return match;
 | |
| 
 | |
| 		if ((match_type == MEMTYPE_END_MATCH) &&
 | |
| 		    (match->start < start) && (match->end == end))
 | |
| 			return match;
 | |
| 
 | |
| 		node = rb_next(&match->rb);
 | |
| 		if (node)
 | |
| 			match = rb_entry(node, struct memtype, rb);
 | |
| 		else
 | |
| 			match = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return NULL; /* Returns NULL if there is no match */
 | |
| }
 | |
| 
 | |
| static int memtype_rb_check_conflict(struct rb_root *root,
 | |
| 				u64 start, u64 end,
 | |
| 				enum page_cache_mode reqtype,
 | |
| 				enum page_cache_mode *newtype)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	struct memtype *match;
 | |
| 	enum page_cache_mode found_type = reqtype;
 | |
| 
 | |
| 	match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
 | |
| 	if (match == NULL)
 | |
| 		goto success;
 | |
| 
 | |
| 	if (match->type != found_type && newtype == NULL)
 | |
| 		goto failure;
 | |
| 
 | |
| 	dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
 | |
| 	found_type = match->type;
 | |
| 
 | |
| 	node = rb_next(&match->rb);
 | |
| 	while (node) {
 | |
| 		match = rb_entry(node, struct memtype, rb);
 | |
| 
 | |
| 		if (match->start >= end) /* Checked all possible matches */
 | |
| 			goto success;
 | |
| 
 | |
| 		if (is_node_overlap(match, start, end) &&
 | |
| 		    match->type != found_type) {
 | |
| 			goto failure;
 | |
| 		}
 | |
| 
 | |
| 		node = rb_next(&match->rb);
 | |
| 	}
 | |
| success:
 | |
| 	if (newtype)
 | |
| 		*newtype = found_type;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| failure:
 | |
| 	pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
 | |
| 		current->comm, current->pid, start, end,
 | |
| 		cattr_name(found_type), cattr_name(match->type));
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
 | |
| {
 | |
| 	struct rb_node **node = &(root->rb_node);
 | |
| 	struct rb_node *parent = NULL;
 | |
| 
 | |
| 	while (*node) {
 | |
| 		struct memtype *data = rb_entry(*node, struct memtype, rb);
 | |
| 
 | |
| 		parent = *node;
 | |
| 		if (data->subtree_max_end < newdata->end)
 | |
| 			data->subtree_max_end = newdata->end;
 | |
| 		if (newdata->start <= data->start)
 | |
| 			node = &((*node)->rb_left);
 | |
| 		else if (newdata->start > data->start)
 | |
| 			node = &((*node)->rb_right);
 | |
| 	}
 | |
| 
 | |
| 	newdata->subtree_max_end = newdata->end;
 | |
| 	rb_link_node(&newdata->rb, parent, node);
 | |
| 	rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb);
 | |
| }
 | |
| 
 | |
| int rbt_memtype_check_insert(struct memtype *new,
 | |
| 			     enum page_cache_mode *ret_type)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
 | |
| 						new->type, ret_type);
 | |
| 
 | |
| 	if (!err) {
 | |
| 		if (ret_type)
 | |
| 			new->type = *ret_type;
 | |
| 
 | |
| 		new->subtree_max_end = new->end;
 | |
| 		memtype_rb_insert(&memtype_rbroot, new);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| struct memtype *rbt_memtype_erase(u64 start, u64 end)
 | |
| {
 | |
| 	struct memtype *data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the memtype_rbroot tree allows overlapping ranges,
 | |
| 	 * rbt_memtype_erase() checks with EXACT_MATCH first, i.e. free
 | |
| 	 * a whole node for the munmap case.  If no such entry is found,
 | |
| 	 * it then checks with END_MATCH, i.e. shrink the size of a node
 | |
| 	 * from the end for the mremap case.
 | |
| 	 */
 | |
| 	data = memtype_rb_match(&memtype_rbroot, start, end,
 | |
| 				MEMTYPE_EXACT_MATCH);
 | |
| 	if (!data) {
 | |
| 		data = memtype_rb_match(&memtype_rbroot, start, end,
 | |
| 					MEMTYPE_END_MATCH);
 | |
| 		if (!data)
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if (data->start == start) {
 | |
| 		/* munmap: erase this node */
 | |
| 		rb_erase_augmented(&data->rb, &memtype_rbroot,
 | |
| 					&memtype_rb_augment_cb);
 | |
| 	} else {
 | |
| 		/* mremap: update the end value of this node */
 | |
| 		rb_erase_augmented(&data->rb, &memtype_rbroot,
 | |
| 					&memtype_rb_augment_cb);
 | |
| 		data->end = start;
 | |
| 		data->subtree_max_end = data->end;
 | |
| 		memtype_rb_insert(&memtype_rbroot, data);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| struct memtype *rbt_memtype_lookup(u64 addr)
 | |
| {
 | |
| 	return memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_FS)
 | |
| int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 	int i = 1;
 | |
| 
 | |
| 	node = rb_first(&memtype_rbroot);
 | |
| 	while (node && pos != i) {
 | |
| 		node = rb_next(node);
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (node) { /* pos == i */
 | |
| 		struct memtype *this = rb_entry(node, struct memtype, rb);
 | |
| 		*out = *this;
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		return 1;
 | |
| 	}
 | |
| }
 | |
| #endif
 | 
