3359 lines
		
	
	
		
			127 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3359 lines
		
	
	
		
			127 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #ifndef _ASM_IA64_SN_SHUBIO_H
 | |
| #define _ASM_IA64_SN_SHUBIO_H
 | |
| 
 | |
| #define HUB_WIDGET_ID_MAX	0xf
 | |
| #define IIO_NUM_ITTES		7
 | |
| #define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)
 | |
| 
 | |
| #define		IIO_WID			0x00400000	/* Crosstalk Widget Identification */
 | |
| 							/* This register is also accessible from
 | |
| 							 * Crosstalk at address 0x0.  */
 | |
| #define		IIO_WSTAT		0x00400008	/* Crosstalk Widget Status */
 | |
| #define		IIO_WCR			0x00400020	/* Crosstalk Widget Control Register */
 | |
| #define		IIO_ILAPR		0x00400100	/* IO Local Access Protection Register */
 | |
| #define		IIO_ILAPO		0x00400108	/* IO Local Access Protection Override */
 | |
| #define		IIO_IOWA		0x00400110	/* IO Outbound Widget Access */
 | |
| #define		IIO_IIWA		0x00400118	/* IO Inbound Widget Access */
 | |
| #define		IIO_IIDEM		0x00400120	/* IO Inbound Device Error Mask */
 | |
| #define		IIO_ILCSR		0x00400128	/* IO LLP Control and Status Register */
 | |
| #define		IIO_ILLR		0x00400130	/* IO LLP Log Register    */
 | |
| #define		IIO_IIDSR		0x00400138	/* IO Interrupt Destination */
 | |
| 
 | |
| #define		IIO_IGFX0		0x00400140	/* IO Graphics Node-Widget Map 0 */
 | |
| #define		IIO_IGFX1		0x00400148	/* IO Graphics Node-Widget Map 1 */
 | |
| 
 | |
| #define		IIO_ISCR0		0x00400150	/* IO Scratch Register 0 */
 | |
| #define		IIO_ISCR1		0x00400158	/* IO Scratch Register 1 */
 | |
| 
 | |
| #define		IIO_ITTE1		0x00400160	/* IO Translation Table Entry 1 */
 | |
| #define		IIO_ITTE2		0x00400168	/* IO Translation Table Entry 2 */
 | |
| #define		IIO_ITTE3		0x00400170	/* IO Translation Table Entry 3 */
 | |
| #define		IIO_ITTE4		0x00400178	/* IO Translation Table Entry 4 */
 | |
| #define		IIO_ITTE5		0x00400180	/* IO Translation Table Entry 5 */
 | |
| #define		IIO_ITTE6		0x00400188	/* IO Translation Table Entry 6 */
 | |
| #define		IIO_ITTE7		0x00400190	/* IO Translation Table Entry 7 */
 | |
| 
 | |
| #define		IIO_IPRB0		0x00400198	/* IO PRB Entry 0   */
 | |
| #define		IIO_IPRB8		0x004001A0	/* IO PRB Entry 8   */
 | |
| #define		IIO_IPRB9		0x004001A8	/* IO PRB Entry 9   */
 | |
| #define		IIO_IPRBA		0x004001B0	/* IO PRB Entry A   */
 | |
| #define		IIO_IPRBB		0x004001B8	/* IO PRB Entry B   */
 | |
| #define		IIO_IPRBC		0x004001C0	/* IO PRB Entry C   */
 | |
| #define		IIO_IPRBD		0x004001C8	/* IO PRB Entry D   */
 | |
| #define		IIO_IPRBE		0x004001D0	/* IO PRB Entry E   */
 | |
| #define		IIO_IPRBF		0x004001D8	/* IO PRB Entry F   */
 | |
| 
 | |
| #define		IIO_IXCC		0x004001E0	/* IO Crosstalk Credit Count Timeout */
 | |
| #define		IIO_IMEM		0x004001E8	/* IO Miscellaneous Error Mask */
 | |
| #define		IIO_IXTT		0x004001F0	/* IO Crosstalk Timeout Threshold */
 | |
| #define		IIO_IECLR		0x004001F8	/* IO Error Clear Register */
 | |
| #define		IIO_IBCR		0x00400200	/* IO BTE Control Register */
 | |
| 
 | |
| #define		IIO_IXSM		0x00400208	/* IO Crosstalk Spurious Message */
 | |
| #define		IIO_IXSS		0x00400210	/* IO Crosstalk Spurious Sideband */
 | |
| 
 | |
| #define		IIO_ILCT		0x00400218	/* IO LLP Channel Test    */
 | |
| 
 | |
| #define		IIO_IIEPH1 		0x00400220	/* IO Incoming Error Packet Header, Part 1 */
 | |
| #define		IIO_IIEPH2 		0x00400228	/* IO Incoming Error Packet Header, Part 2 */
 | |
| 
 | |
| #define		IIO_ISLAPR 		0x00400230	/* IO SXB Local Access Protection Regster */
 | |
| #define		IIO_ISLAPO 		0x00400238	/* IO SXB Local Access Protection Override */
 | |
| 
 | |
| #define		IIO_IWI			0x00400240	/* IO Wrapper Interrupt Register */
 | |
| #define		IIO_IWEL		0x00400248	/* IO Wrapper Error Log Register */
 | |
| #define		IIO_IWC			0x00400250	/* IO Wrapper Control Register */
 | |
| #define		IIO_IWS			0x00400258	/* IO Wrapper Status Register */
 | |
| #define		IIO_IWEIM		0x00400260	/* IO Wrapper Error Interrupt Masking Register */
 | |
| 
 | |
| #define		IIO_IPCA		0x00400300	/* IO PRB Counter Adjust */
 | |
| 
 | |
| #define		IIO_IPRTE0_A		0x00400308	/* IO PIO Read Address Table Entry 0, Part A */
 | |
| #define		IIO_IPRTE1_A		0x00400310	/* IO PIO Read Address Table Entry 1, Part A */
 | |
| #define		IIO_IPRTE2_A		0x00400318	/* IO PIO Read Address Table Entry 2, Part A */
 | |
| #define		IIO_IPRTE3_A		0x00400320	/* IO PIO Read Address Table Entry 3, Part A */
 | |
| #define		IIO_IPRTE4_A		0x00400328	/* IO PIO Read Address Table Entry 4, Part A */
 | |
| #define		IIO_IPRTE5_A		0x00400330	/* IO PIO Read Address Table Entry 5, Part A */
 | |
| #define		IIO_IPRTE6_A		0x00400338	/* IO PIO Read Address Table Entry 6, Part A */
 | |
| #define		IIO_IPRTE7_A		0x00400340	/* IO PIO Read Address Table Entry 7, Part A */
 | |
| 
 | |
| #define		IIO_IPRTE0_B		0x00400348	/* IO PIO Read Address Table Entry 0, Part B */
 | |
| #define		IIO_IPRTE1_B		0x00400350	/* IO PIO Read Address Table Entry 1, Part B */
 | |
| #define		IIO_IPRTE2_B		0x00400358	/* IO PIO Read Address Table Entry 2, Part B */
 | |
| #define		IIO_IPRTE3_B		0x00400360	/* IO PIO Read Address Table Entry 3, Part B */
 | |
| #define		IIO_IPRTE4_B		0x00400368	/* IO PIO Read Address Table Entry 4, Part B */
 | |
| #define		IIO_IPRTE5_B		0x00400370	/* IO PIO Read Address Table Entry 5, Part B */
 | |
| #define		IIO_IPRTE6_B		0x00400378	/* IO PIO Read Address Table Entry 6, Part B */
 | |
| #define		IIO_IPRTE7_B		0x00400380	/* IO PIO Read Address Table Entry 7, Part B */
 | |
| 
 | |
| #define		IIO_IPDR		0x00400388	/* IO PIO Deallocation Register */
 | |
| #define		IIO_ICDR		0x00400390	/* IO CRB Entry Deallocation Register */
 | |
| #define		IIO_IFDR		0x00400398	/* IO IOQ FIFO Depth Register */
 | |
| #define		IIO_IIAP		0x004003A0	/* IO IIQ Arbitration Parameters */
 | |
| #define		IIO_ICMR		0x004003A8	/* IO CRB Management Register */
 | |
| #define		IIO_ICCR		0x004003B0	/* IO CRB Control Register */
 | |
| #define		IIO_ICTO		0x004003B8	/* IO CRB Timeout   */
 | |
| #define		IIO_ICTP		0x004003C0	/* IO CRB Timeout Prescalar */
 | |
| 
 | |
| #define		IIO_ICRB0_A		0x00400400	/* IO CRB Entry 0_A */
 | |
| #define		IIO_ICRB0_B		0x00400408	/* IO CRB Entry 0_B */
 | |
| #define		IIO_ICRB0_C		0x00400410	/* IO CRB Entry 0_C */
 | |
| #define		IIO_ICRB0_D		0x00400418	/* IO CRB Entry 0_D */
 | |
| #define		IIO_ICRB0_E		0x00400420	/* IO CRB Entry 0_E */
 | |
| 
 | |
| #define		IIO_ICRB1_A		0x00400430	/* IO CRB Entry 1_A */
 | |
| #define		IIO_ICRB1_B		0x00400438	/* IO CRB Entry 1_B */
 | |
| #define		IIO_ICRB1_C		0x00400440	/* IO CRB Entry 1_C */
 | |
| #define		IIO_ICRB1_D		0x00400448	/* IO CRB Entry 1_D */
 | |
| #define		IIO_ICRB1_E		0x00400450	/* IO CRB Entry 1_E */
 | |
| 
 | |
| #define		IIO_ICRB2_A		0x00400460	/* IO CRB Entry 2_A */
 | |
| #define		IIO_ICRB2_B		0x00400468	/* IO CRB Entry 2_B */
 | |
| #define		IIO_ICRB2_C		0x00400470	/* IO CRB Entry 2_C */
 | |
| #define		IIO_ICRB2_D		0x00400478	/* IO CRB Entry 2_D */
 | |
| #define		IIO_ICRB2_E		0x00400480	/* IO CRB Entry 2_E */
 | |
| 
 | |
| #define		IIO_ICRB3_A		0x00400490	/* IO CRB Entry 3_A */
 | |
| #define		IIO_ICRB3_B		0x00400498	/* IO CRB Entry 3_B */
 | |
| #define		IIO_ICRB3_C		0x004004a0	/* IO CRB Entry 3_C */
 | |
| #define		IIO_ICRB3_D		0x004004a8	/* IO CRB Entry 3_D */
 | |
| #define		IIO_ICRB3_E		0x004004b0	/* IO CRB Entry 3_E */
 | |
| 
 | |
| #define		IIO_ICRB4_A		0x004004c0	/* IO CRB Entry 4_A */
 | |
| #define		IIO_ICRB4_B		0x004004c8	/* IO CRB Entry 4_B */
 | |
| #define		IIO_ICRB4_C		0x004004d0	/* IO CRB Entry 4_C */
 | |
| #define		IIO_ICRB4_D		0x004004d8	/* IO CRB Entry 4_D */
 | |
| #define		IIO_ICRB4_E		0x004004e0	/* IO CRB Entry 4_E */
 | |
| 
 | |
| #define		IIO_ICRB5_A		0x004004f0	/* IO CRB Entry 5_A */
 | |
| #define		IIO_ICRB5_B		0x004004f8	/* IO CRB Entry 5_B */
 | |
| #define		IIO_ICRB5_C		0x00400500	/* IO CRB Entry 5_C */
 | |
| #define		IIO_ICRB5_D		0x00400508	/* IO CRB Entry 5_D */
 | |
| #define		IIO_ICRB5_E		0x00400510	/* IO CRB Entry 5_E */
 | |
| 
 | |
| #define		IIO_ICRB6_A		0x00400520	/* IO CRB Entry 6_A */
 | |
| #define		IIO_ICRB6_B		0x00400528	/* IO CRB Entry 6_B */
 | |
| #define		IIO_ICRB6_C		0x00400530	/* IO CRB Entry 6_C */
 | |
| #define		IIO_ICRB6_D		0x00400538	/* IO CRB Entry 6_D */
 | |
| #define		IIO_ICRB6_E		0x00400540	/* IO CRB Entry 6_E */
 | |
| 
 | |
| #define		IIO_ICRB7_A		0x00400550	/* IO CRB Entry 7_A */
 | |
| #define		IIO_ICRB7_B		0x00400558	/* IO CRB Entry 7_B */
 | |
| #define		IIO_ICRB7_C		0x00400560	/* IO CRB Entry 7_C */
 | |
| #define		IIO_ICRB7_D		0x00400568	/* IO CRB Entry 7_D */
 | |
| #define		IIO_ICRB7_E		0x00400570	/* IO CRB Entry 7_E */
 | |
| 
 | |
| #define		IIO_ICRB8_A		0x00400580	/* IO CRB Entry 8_A */
 | |
| #define		IIO_ICRB8_B		0x00400588	/* IO CRB Entry 8_B */
 | |
| #define		IIO_ICRB8_C		0x00400590	/* IO CRB Entry 8_C */
 | |
| #define		IIO_ICRB8_D		0x00400598	/* IO CRB Entry 8_D */
 | |
| #define		IIO_ICRB8_E		0x004005a0	/* IO CRB Entry 8_E */
 | |
| 
 | |
| #define		IIO_ICRB9_A		0x004005b0	/* IO CRB Entry 9_A */
 | |
| #define		IIO_ICRB9_B		0x004005b8	/* IO CRB Entry 9_B */
 | |
| #define		IIO_ICRB9_C		0x004005c0	/* IO CRB Entry 9_C */
 | |
| #define		IIO_ICRB9_D		0x004005c8	/* IO CRB Entry 9_D */
 | |
| #define		IIO_ICRB9_E		0x004005d0	/* IO CRB Entry 9_E */
 | |
| 
 | |
| #define		IIO_ICRBA_A		0x004005e0	/* IO CRB Entry A_A */
 | |
| #define		IIO_ICRBA_B		0x004005e8	/* IO CRB Entry A_B */
 | |
| #define		IIO_ICRBA_C		0x004005f0	/* IO CRB Entry A_C */
 | |
| #define		IIO_ICRBA_D		0x004005f8	/* IO CRB Entry A_D */
 | |
| #define		IIO_ICRBA_E		0x00400600	/* IO CRB Entry A_E */
 | |
| 
 | |
| #define		IIO_ICRBB_A		0x00400610	/* IO CRB Entry B_A */
 | |
| #define		IIO_ICRBB_B		0x00400618	/* IO CRB Entry B_B */
 | |
| #define		IIO_ICRBB_C		0x00400620	/* IO CRB Entry B_C */
 | |
| #define		IIO_ICRBB_D		0x00400628	/* IO CRB Entry B_D */
 | |
| #define		IIO_ICRBB_E		0x00400630	/* IO CRB Entry B_E */
 | |
| 
 | |
| #define		IIO_ICRBC_A		0x00400640	/* IO CRB Entry C_A */
 | |
| #define		IIO_ICRBC_B		0x00400648	/* IO CRB Entry C_B */
 | |
| #define		IIO_ICRBC_C		0x00400650	/* IO CRB Entry C_C */
 | |
| #define		IIO_ICRBC_D		0x00400658	/* IO CRB Entry C_D */
 | |
| #define		IIO_ICRBC_E		0x00400660	/* IO CRB Entry C_E */
 | |
| 
 | |
| #define		IIO_ICRBD_A		0x00400670	/* IO CRB Entry D_A */
 | |
| #define		IIO_ICRBD_B		0x00400678	/* IO CRB Entry D_B */
 | |
| #define		IIO_ICRBD_C		0x00400680	/* IO CRB Entry D_C */
 | |
| #define		IIO_ICRBD_D		0x00400688	/* IO CRB Entry D_D */
 | |
| #define		IIO_ICRBD_E		0x00400690	/* IO CRB Entry D_E */
 | |
| 
 | |
| #define		IIO_ICRBE_A		0x004006a0	/* IO CRB Entry E_A */
 | |
| #define		IIO_ICRBE_B		0x004006a8	/* IO CRB Entry E_B */
 | |
| #define		IIO_ICRBE_C		0x004006b0	/* IO CRB Entry E_C */
 | |
| #define		IIO_ICRBE_D		0x004006b8	/* IO CRB Entry E_D */
 | |
| #define		IIO_ICRBE_E		0x004006c0	/* IO CRB Entry E_E */
 | |
| 
 | |
| #define		IIO_ICSML		0x00400700	/* IO CRB Spurious Message Low */
 | |
| #define		IIO_ICSMM		0x00400708	/* IO CRB Spurious Message Middle */
 | |
| #define		IIO_ICSMH		0x00400710	/* IO CRB Spurious Message High */
 | |
| 
 | |
| #define		IIO_IDBSS		0x00400718	/* IO Debug Submenu Select */
 | |
| 
 | |
| #define		IIO_IBLS0		0x00410000	/* IO BTE Length Status 0 */
 | |
| #define		IIO_IBSA0		0x00410008	/* IO BTE Source Address 0 */
 | |
| #define		IIO_IBDA0		0x00410010	/* IO BTE Destination Address 0 */
 | |
| #define		IIO_IBCT0		0x00410018	/* IO BTE Control Terminate 0 */
 | |
| #define		IIO_IBNA0		0x00410020	/* IO BTE Notification Address 0 */
 | |
| #define		IIO_IBIA0		0x00410028	/* IO BTE Interrupt Address 0 */
 | |
| #define		IIO_IBLS1		0x00420000	/* IO BTE Length Status 1 */
 | |
| #define		IIO_IBSA1		0x00420008	/* IO BTE Source Address 1 */
 | |
| #define		IIO_IBDA1		0x00420010	/* IO BTE Destination Address 1 */
 | |
| #define		IIO_IBCT1		0x00420018	/* IO BTE Control Terminate 1 */
 | |
| #define		IIO_IBNA1		0x00420020	/* IO BTE Notification Address 1 */
 | |
| #define		IIO_IBIA1		0x00420028	/* IO BTE Interrupt Address 1 */
 | |
| 
 | |
| #define		IIO_IPCR		0x00430000	/* IO Performance Control */
 | |
| #define		IIO_IPPR		0x00430008	/* IO Performance Profiling */
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  This register echoes some information from the         *
 | |
|  * LB_REV_ID register. It is available through Crosstalk as described   *
 | |
|  * above. The REV_NUM and MFG_NUM fields receive their values from      *
 | |
|  * the REVISION and MANUFACTURER fields in the LB_REV_ID register.      *
 | |
|  * The PART_NUM field's value is the Crosstalk device ID number that    *
 | |
|  * Steve Miller assigned to the SHub chip.                              *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_wid_u {
 | |
| 	u64 ii_wid_regval;
 | |
| 	struct {
 | |
| 		u64 w_rsvd_1:1;
 | |
| 		u64 w_mfg_num:11;
 | |
| 		u64 w_part_num:16;
 | |
| 		u64 w_rev_num:4;
 | |
| 		u64 w_rsvd:32;
 | |
| 	} ii_wid_fld_s;
 | |
| } ii_wid_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  The fields in this register are set upon detection of an error      *
 | |
|  * and cleared by various mechanisms, as explained in the               *
 | |
|  * description.                                                         *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_wstat_u {
 | |
| 	u64 ii_wstat_regval;
 | |
| 	struct {
 | |
| 		u64 w_pending:4;
 | |
| 		u64 w_xt_crd_to:1;
 | |
| 		u64 w_xt_tail_to:1;
 | |
| 		u64 w_rsvd_3:3;
 | |
| 		u64 w_tx_mx_rty:1;
 | |
| 		u64 w_rsvd_2:6;
 | |
| 		u64 w_llp_tx_cnt:8;
 | |
| 		u64 w_rsvd_1:8;
 | |
| 		u64 w_crazy:1;
 | |
| 		u64 w_rsvd:31;
 | |
| 	} ii_wstat_fld_s;
 | |
| } ii_wstat_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  This is a read-write enabled register. It controls     *
 | |
|  * various aspects of the Crosstalk flow control.                       *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_wcr_u {
 | |
| 	u64 ii_wcr_regval;
 | |
| 	struct {
 | |
| 		u64 w_wid:4;
 | |
| 		u64 w_tag:1;
 | |
| 		u64 w_rsvd_1:8;
 | |
| 		u64 w_dst_crd:3;
 | |
| 		u64 w_f_bad_pkt:1;
 | |
| 		u64 w_dir_con:1;
 | |
| 		u64 w_e_thresh:5;
 | |
| 		u64 w_rsvd:41;
 | |
| 	} ii_wcr_fld_s;
 | |
| } ii_wcr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  This register's value is a bit vector that guards      *
 | |
|  * access to local registers within the II as well as to external       *
 | |
|  * Crosstalk widgets. Each bit in the register corresponds to a         *
 | |
|  * particular region in the system; a region consists of one, two or    *
 | |
|  * four nodes (depending on the value of the REGION_SIZE field in the   *
 | |
|  * LB_REV_ID register, which is documented in Section 8.3.1.1). The     *
 | |
|  * protection provided by this register applies to PIO read             *
 | |
|  * operations as well as PIO write operations. The II will perform a    *
 | |
|  * PIO read or write request only if the bit for the requestor's        *
 | |
|  * region is set; otherwise, the II will not perform the requested      *
 | |
|  * operation and will return an error response. When a PIO read or      *
 | |
|  * write request targets an external Crosstalk widget, then not only    *
 | |
|  * must the bit for the requestor's region be set in the ILAPR, but     *
 | |
|  * also the target widget's bit in the IOWA register must be set in     *
 | |
|  * order for the II to perform the requested operation; otherwise,      *
 | |
|  * the II will return an error response. Hence, the protection          *
 | |
|  * provided by the IOWA register supplements the protection provided    *
 | |
|  * by the ILAPR for requests that target external Crosstalk widgets.    *
 | |
|  * This register itself can be accessed only by the nodes whose         *
 | |
|  * region ID bits are enabled in this same register. It can also be     *
 | |
|  * accessed through the IAlias space by the local processors.           *
 | |
|  * The reset value of this register allows access by all nodes.         *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ilapr_u {
 | |
| 	u64 ii_ilapr_regval;
 | |
| 	struct {
 | |
| 		u64 i_region:64;
 | |
| 	} ii_ilapr_fld_s;
 | |
| } ii_ilapr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  A write to this register of the 64-bit value           *
 | |
|  * "SGIrules" in ASCII, will cause the bit in the ILAPR register        *
 | |
|  * corresponding to the region of the requestor to be set (allow        *
 | |
|  * access). A write of any other value will be ignored. Access          *
 | |
|  * protection for this register is "SGIrules".                          *
 | |
|  * This register can also be accessed through the IAlias space.         *
 | |
|  * However, this access will not change the access permissions in the   *
 | |
|  * ILAPR.                                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ilapo_u {
 | |
| 	u64 ii_ilapo_regval;
 | |
| 	struct {
 | |
| 		u64 i_io_ovrride:64;
 | |
| 	} ii_ilapo_fld_s;
 | |
| } ii_ilapo_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register qualifies all the PIO and Graphics writes launched    *
 | |
|  * from the SHUB towards a widget.                                      *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iowa_u {
 | |
| 	u64 ii_iowa_regval;
 | |
| 	struct {
 | |
| 		u64 i_w0_oac:1;
 | |
| 		u64 i_rsvd_1:7;
 | |
| 		u64 i_wx_oac:8;
 | |
| 		u64 i_rsvd:48;
 | |
| 	} ii_iowa_fld_s;
 | |
| } ii_iowa_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  This register qualifies all the requests launched      *
 | |
|  * from a widget towards the Shub. This register is intended to be      *
 | |
|  * used by software in case of misbehaving widgets.                     *
 | |
|  *									*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iiwa_u {
 | |
| 	u64 ii_iiwa_regval;
 | |
| 	struct {
 | |
| 		u64 i_w0_iac:1;
 | |
| 		u64 i_rsvd_1:7;
 | |
| 		u64 i_wx_iac:8;
 | |
| 		u64 i_rsvd:48;
 | |
| 	} ii_iiwa_fld_s;
 | |
| } ii_iiwa_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  This register qualifies all the operations launched    *
 | |
|  * from a widget towards the SHub. It allows individual access          *
 | |
|  * control for up to 8 devices per widget. A device refers to           *
 | |
|  * individual DMA master hosted by a widget.                            *
 | |
|  * The bits in each field of this register are cleared by the Shub      *
 | |
|  * upon detection of an error which requires the device to be           *
 | |
|  * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric    *
 | |
|  * Crosstalk). Whether or not a device has access rights to this        *
 | |
|  * Shub is determined by an AND of the device enable bit in the         *
 | |
|  * appropriate field of this register and the corresponding bit in      *
 | |
|  * the Wx_IAC field (for the widget which this device belongs to).      *
 | |
|  * The bits in this field are set by writing a 1 to them. Incoming      *
 | |
|  * replies from Crosstalk are not subject to this access control        *
 | |
|  * mechanism.                                                           *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iidem_u {
 | |
| 	u64 ii_iidem_regval;
 | |
| 	struct {
 | |
| 		u64 i_w8_dxs:8;
 | |
| 		u64 i_w9_dxs:8;
 | |
| 		u64 i_wa_dxs:8;
 | |
| 		u64 i_wb_dxs:8;
 | |
| 		u64 i_wc_dxs:8;
 | |
| 		u64 i_wd_dxs:8;
 | |
| 		u64 i_we_dxs:8;
 | |
| 		u64 i_wf_dxs:8;
 | |
| 	} ii_iidem_fld_s;
 | |
| } ii_iidem_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the various programmable fields necessary    *
 | |
|  * for controlling and observing the LLP signals.                       *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ilcsr_u {
 | |
| 	u64 ii_ilcsr_regval;
 | |
| 	struct {
 | |
| 		u64 i_nullto:6;
 | |
| 		u64 i_rsvd_4:2;
 | |
| 		u64 i_wrmrst:1;
 | |
| 		u64 i_rsvd_3:1;
 | |
| 		u64 i_llp_en:1;
 | |
| 		u64 i_bm8:1;
 | |
| 		u64 i_llp_stat:2;
 | |
| 		u64 i_remote_power:1;
 | |
| 		u64 i_rsvd_2:1;
 | |
| 		u64 i_maxrtry:10;
 | |
| 		u64 i_d_avail_sel:2;
 | |
| 		u64 i_rsvd_1:4;
 | |
| 		u64 i_maxbrst:10;
 | |
| 		u64 i_rsvd:22;
 | |
| 
 | |
| 	} ii_ilcsr_fld_s;
 | |
| } ii_ilcsr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This is simply a status registers that monitors the LLP error       *
 | |
|  * rate.								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_illr_u {
 | |
| 	u64 ii_illr_regval;
 | |
| 	struct {
 | |
| 		u64 i_sn_cnt:16;
 | |
| 		u64 i_cb_cnt:16;
 | |
| 		u64 i_rsvd:32;
 | |
| 	} ii_illr_fld_s;
 | |
| } ii_illr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  All II-detected non-BTE error interrupts are           *
 | |
|  * specified via this register.                                         *
 | |
|  * NOTE: The PI interrupt register address is hardcoded in the II. If   *
 | |
|  * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI      *
 | |
|  * packet) to address offset 0x0180_0090 within the local register      *
 | |
|  * address space of PI0 on the node specified by the NODE field. If     *
 | |
|  * PI_ID==1, then the II sends the interrupt request to address         *
 | |
|  * offset 0x01A0_0090 within the local register address space of PI1    *
 | |
|  * on the node specified by the NODE field.                             *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iidsr_u {
 | |
| 	u64 ii_iidsr_regval;
 | |
| 	struct {
 | |
| 		u64 i_level:8;
 | |
| 		u64 i_pi_id:1;
 | |
| 		u64 i_node:11;
 | |
| 		u64 i_rsvd_3:4;
 | |
| 		u64 i_enable:1;
 | |
| 		u64 i_rsvd_2:3;
 | |
| 		u64 i_int_sent:2;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_pi0_forward_int:1;
 | |
| 		u64 i_pi1_forward_int:1;
 | |
| 		u64 i_rsvd:30;
 | |
| 	} ii_iidsr_fld_s;
 | |
| } ii_iidsr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are two instances of this register. This register is used     *
 | |
|  * for matching up the incoming responses from the graphics widget to   *
 | |
|  * the processor that initiated the graphics operation. The             *
 | |
|  * write-responses are converted to graphics credits and returned to    *
 | |
|  * the processor so that the processor interface can manage the flow    *
 | |
|  * control.                                                             *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_igfx0_u {
 | |
| 	u64 ii_igfx0_regval;
 | |
| 	struct {
 | |
| 		u64 i_w_num:4;
 | |
| 		u64 i_pi_id:1;
 | |
| 		u64 i_n_num:12;
 | |
| 		u64 i_p_num:1;
 | |
| 		u64 i_rsvd:46;
 | |
| 	} ii_igfx0_fld_s;
 | |
| } ii_igfx0_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are two instances of this register. This register is used     *
 | |
|  * for matching up the incoming responses from the graphics widget to   *
 | |
|  * the processor that initiated the graphics operation. The             *
 | |
|  * write-responses are converted to graphics credits and returned to    *
 | |
|  * the processor so that the processor interface can manage the flow    *
 | |
|  * control.                                                             *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_igfx1_u {
 | |
| 	u64 ii_igfx1_regval;
 | |
| 	struct {
 | |
| 		u64 i_w_num:4;
 | |
| 		u64 i_pi_id:1;
 | |
| 		u64 i_n_num:12;
 | |
| 		u64 i_p_num:1;
 | |
| 		u64 i_rsvd:46;
 | |
| 	} ii_igfx1_fld_s;
 | |
| } ii_igfx1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are two instances of this registers. These registers are      *
 | |
|  * used as scratch registers for software use.                          *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iscr0_u {
 | |
| 	u64 ii_iscr0_regval;
 | |
| 	struct {
 | |
| 		u64 i_scratch:64;
 | |
| 	} ii_iscr0_fld_s;
 | |
| } ii_iscr0_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are two instances of this registers. These registers are      *
 | |
|  * used as scratch registers for software use.                          *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iscr1_u {
 | |
| 	u64 ii_iscr1_regval;
 | |
| 	struct {
 | |
| 		u64 i_scratch:64;
 | |
| 	} ii_iscr1_fld_s;
 | |
| } ii_iscr1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are seven instances of translation table entry   *
 | |
|  * registers. Each register maps a Shub Big Window to a 48-bit          *
 | |
|  * address on Crosstalk.                                                *
 | |
|  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 | |
|  * number) are used to select one of these 7 registers. The Widget      *
 | |
|  * number field is then derived from the W_NUM field for synthesizing   *
 | |
|  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 | |
|  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 | |
|  * are padded with zeros. Although the maximum Crosstalk space          *
 | |
|  * addressable by the SHub is thus the lower 16 GBytes per widget       * 
 | |
|  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 | |
|  * space can be accessed.                                               *
 | |
|  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 | |
|  * Window number) are used to select one of these 7 registers. The      *
 | |
|  * Widget number field is then derived from the W_NUM field for         *
 | |
|  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 | |
|  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 | |
|  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 | |
|  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 | |
|  * Crosstalk space addressable by the Shub is thus the lower            *
 | |
|  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 | |
|  * of this space can be accessed.                                       *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_itte1_u {
 | |
| 	u64 ii_itte1_regval;
 | |
| 	struct {
 | |
| 		u64 i_offset:5;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_w_num:4;
 | |
| 		u64 i_iosp:1;
 | |
| 		u64 i_rsvd:51;
 | |
| 	} ii_itte1_fld_s;
 | |
| } ii_itte1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are seven instances of translation table entry   *
 | |
|  * registers. Each register maps a Shub Big Window to a 48-bit          *
 | |
|  * address on Crosstalk.                                                *
 | |
|  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 | |
|  * number) are used to select one of these 7 registers. The Widget      *
 | |
|  * number field is then derived from the W_NUM field for synthesizing   *
 | |
|  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 | |
|  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 | |
|  * are padded with zeros. Although the maximum Crosstalk space          *
 | |
|  * addressable by the Shub is thus the lower 16 GBytes per widget       *
 | |
|  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 | |
|  * space can be accessed.                                               *
 | |
|  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 | |
|  * Window number) are used to select one of these 7 registers. The      *
 | |
|  * Widget number field is then derived from the W_NUM field for         *
 | |
|  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 | |
|  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 | |
|  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 | |
|  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 | |
|  * Crosstalk space addressable by the Shub is thus the lower            *
 | |
|  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 | |
|  * of this space can be accessed.                                       *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_itte2_u {
 | |
| 	u64 ii_itte2_regval;
 | |
| 	struct {
 | |
| 		u64 i_offset:5;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_w_num:4;
 | |
| 		u64 i_iosp:1;
 | |
| 		u64 i_rsvd:51;
 | |
| 	} ii_itte2_fld_s;
 | |
| } ii_itte2_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are seven instances of translation table entry   *
 | |
|  * registers. Each register maps a Shub Big Window to a 48-bit          *
 | |
|  * address on Crosstalk.                                                *
 | |
|  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 | |
|  * number) are used to select one of these 7 registers. The Widget      *
 | |
|  * number field is then derived from the W_NUM field for synthesizing   *
 | |
|  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 | |
|  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 | |
|  * are padded with zeros. Although the maximum Crosstalk space          *
 | |
|  * addressable by the Shub is thus the lower 16 GBytes per widget       *
 | |
|  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 | |
|  * space can be accessed.                                               *
 | |
|  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 | |
|  * Window number) are used to select one of these 7 registers. The      *
 | |
|  * Widget number field is then derived from the W_NUM field for         *
 | |
|  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 | |
|  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 | |
|  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 | |
|  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 | |
|  * Crosstalk space addressable by the SHub is thus the lower            *
 | |
|  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 | |
|  * of this space can be accessed.                                       *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_itte3_u {
 | |
| 	u64 ii_itte3_regval;
 | |
| 	struct {
 | |
| 		u64 i_offset:5;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_w_num:4;
 | |
| 		u64 i_iosp:1;
 | |
| 		u64 i_rsvd:51;
 | |
| 	} ii_itte3_fld_s;
 | |
| } ii_itte3_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are seven instances of translation table entry   *
 | |
|  * registers. Each register maps a SHub Big Window to a 48-bit          *
 | |
|  * address on Crosstalk.                                                *
 | |
|  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 | |
|  * number) are used to select one of these 7 registers. The Widget      *
 | |
|  * number field is then derived from the W_NUM field for synthesizing   *
 | |
|  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 | |
|  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 | |
|  * are padded with zeros. Although the maximum Crosstalk space          *
 | |
|  * addressable by the SHub is thus the lower 16 GBytes per widget       *
 | |
|  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 | |
|  * space can be accessed.                                               *
 | |
|  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 | |
|  * Window number) are used to select one of these 7 registers. The      *
 | |
|  * Widget number field is then derived from the W_NUM field for         *
 | |
|  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 | |
|  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 | |
|  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 | |
|  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 | |
|  * Crosstalk space addressable by the SHub is thus the lower            *
 | |
|  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 | |
|  * of this space can be accessed.                                       *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_itte4_u {
 | |
| 	u64 ii_itte4_regval;
 | |
| 	struct {
 | |
| 		u64 i_offset:5;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_w_num:4;
 | |
| 		u64 i_iosp:1;
 | |
| 		u64 i_rsvd:51;
 | |
| 	} ii_itte4_fld_s;
 | |
| } ii_itte4_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are seven instances of translation table entry   *
 | |
|  * registers. Each register maps a SHub Big Window to a 48-bit          *
 | |
|  * address on Crosstalk.                                                *
 | |
|  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 | |
|  * number) are used to select one of these 7 registers. The Widget      *
 | |
|  * number field is then derived from the W_NUM field for synthesizing   *
 | |
|  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 | |
|  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 | |
|  * are padded with zeros. Although the maximum Crosstalk space          *
 | |
|  * addressable by the Shub is thus the lower 16 GBytes per widget       *
 | |
|  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 | |
|  * space can be accessed.                                               *
 | |
|  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 | |
|  * Window number) are used to select one of these 7 registers. The      *
 | |
|  * Widget number field is then derived from the W_NUM field for         *
 | |
|  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 | |
|  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 | |
|  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 | |
|  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 | |
|  * Crosstalk space addressable by the Shub is thus the lower            *
 | |
|  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 | |
|  * of this space can be accessed.                                       *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_itte5_u {
 | |
| 	u64 ii_itte5_regval;
 | |
| 	struct {
 | |
| 		u64 i_offset:5;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_w_num:4;
 | |
| 		u64 i_iosp:1;
 | |
| 		u64 i_rsvd:51;
 | |
| 	} ii_itte5_fld_s;
 | |
| } ii_itte5_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are seven instances of translation table entry   *
 | |
|  * registers. Each register maps a Shub Big Window to a 48-bit          *
 | |
|  * address on Crosstalk.                                                *
 | |
|  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 | |
|  * number) are used to select one of these 7 registers. The Widget      *
 | |
|  * number field is then derived from the W_NUM field for synthesizing   *
 | |
|  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 | |
|  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 | |
|  * are padded with zeros. Although the maximum Crosstalk space          *
 | |
|  * addressable by the Shub is thus the lower 16 GBytes per widget       *
 | |
|  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 | |
|  * space can be accessed.                                               *
 | |
|  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 | |
|  * Window number) are used to select one of these 7 registers. The      *
 | |
|  * Widget number field is then derived from the W_NUM field for         *
 | |
|  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 | |
|  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 | |
|  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 | |
|  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 | |
|  * Crosstalk space addressable by the Shub is thus the lower            *
 | |
|  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 | |
|  * of this space can be accessed.                                       *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_itte6_u {
 | |
| 	u64 ii_itte6_regval;
 | |
| 	struct {
 | |
| 		u64 i_offset:5;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_w_num:4;
 | |
| 		u64 i_iosp:1;
 | |
| 		u64 i_rsvd:51;
 | |
| 	} ii_itte6_fld_s;
 | |
| } ii_itte6_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are seven instances of translation table entry   *
 | |
|  * registers. Each register maps a Shub Big Window to a 48-bit          *
 | |
|  * address on Crosstalk.                                                *
 | |
|  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 | |
|  * number) are used to select one of these 7 registers. The Widget      *
 | |
|  * number field is then derived from the W_NUM field for synthesizing   *
 | |
|  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 | |
|  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 | |
|  * are padded with zeros. Although the maximum Crosstalk space          *
 | |
|  * addressable by the Shub is thus the lower 16 GBytes per widget       *
 | |
|  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 | |
|  * space can be accessed.                                               *
 | |
|  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 | |
|  * Window number) are used to select one of these 7 registers. The      *
 | |
|  * Widget number field is then derived from the W_NUM field for         *
 | |
|  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 | |
|  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 | |
|  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 | |
|  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 | |
|  * Crosstalk space addressable by the SHub is thus the lower            *
 | |
|  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 | |
|  * of this space can be accessed.                                       *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_itte7_u {
 | |
| 	u64 ii_itte7_regval;
 | |
| 	struct {
 | |
| 		u64 i_offset:5;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_w_num:4;
 | |
| 		u64 i_iosp:1;
 | |
| 		u64 i_rsvd:51;
 | |
| 	} ii_itte7_fld_s;
 | |
| } ii_itte7_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 9 instances of this register, one per        *
 | |
|  * actual widget in this implementation of SHub and Crossbow.           *
 | |
|  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 | |
|  * refers to Crossbow's internal space.                                 *
 | |
|  * This register contains the state elements per widget that are        *
 | |
|  * necessary to manage the PIO flow control on Crosstalk and on the     *
 | |
|  * Router Network. See the PIO Flow Control chapter for a complete      *
 | |
|  * description of this register                                         *
 | |
|  * The SPUR_WR bit requires some explanation. When this register is     *
 | |
|  * written, the new value of the C field is captured in an internal     *
 | |
|  * register so the hardware can remember what the programmer wrote      *
 | |
|  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 | |
|  * increments above this stored value, which indicates that there       *
 | |
|  * have been more responses received than requests sent. The SPUR_WR    *
 | |
|  * bit cannot be cleared until a value is written to the IPRBx          *
 | |
|  * register; the write will correct the C field and capture its new     *
 | |
|  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 | |
|  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 | |
|  * .    								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprb0_u {
 | |
| 	u64 ii_iprb0_regval;
 | |
| 	struct {
 | |
| 		u64 i_c:8;
 | |
| 		u64 i_na:14;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_nb:14;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_m:2;
 | |
| 		u64 i_f:1;
 | |
| 		u64 i_of_cnt:5;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rd_to:1;
 | |
| 		u64 i_spur_wr:1;
 | |
| 		u64 i_spur_rd:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 		u64 i_mult_err:1;
 | |
| 	} ii_iprb0_fld_s;
 | |
| } ii_iprb0_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 9 instances of this register, one per        *
 | |
|  * actual widget in this implementation of SHub and Crossbow.           *
 | |
|  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 | |
|  * refers to Crossbow's internal space.                                 *
 | |
|  * This register contains the state elements per widget that are        *
 | |
|  * necessary to manage the PIO flow control on Crosstalk and on the     *
 | |
|  * Router Network. See the PIO Flow Control chapter for a complete      *
 | |
|  * description of this register                                         *
 | |
|  * The SPUR_WR bit requires some explanation. When this register is     *
 | |
|  * written, the new value of the C field is captured in an internal     *
 | |
|  * register so the hardware can remember what the programmer wrote      *
 | |
|  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 | |
|  * increments above this stored value, which indicates that there       *
 | |
|  * have been more responses received than requests sent. The SPUR_WR    *
 | |
|  * bit cannot be cleared until a value is written to the IPRBx          *
 | |
|  * register; the write will correct the C field and capture its new     *
 | |
|  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 | |
|  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 | |
|  * .    								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprb8_u {
 | |
| 	u64 ii_iprb8_regval;
 | |
| 	struct {
 | |
| 		u64 i_c:8;
 | |
| 		u64 i_na:14;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_nb:14;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_m:2;
 | |
| 		u64 i_f:1;
 | |
| 		u64 i_of_cnt:5;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rd_to:1;
 | |
| 		u64 i_spur_wr:1;
 | |
| 		u64 i_spur_rd:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 		u64 i_mult_err:1;
 | |
| 	} ii_iprb8_fld_s;
 | |
| } ii_iprb8_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 9 instances of this register, one per        *
 | |
|  * actual widget in this implementation of SHub and Crossbow.           *
 | |
|  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 | |
|  * refers to Crossbow's internal space.                                 *
 | |
|  * This register contains the state elements per widget that are        *
 | |
|  * necessary to manage the PIO flow control on Crosstalk and on the     *
 | |
|  * Router Network. See the PIO Flow Control chapter for a complete      *
 | |
|  * description of this register                                         *
 | |
|  * The SPUR_WR bit requires some explanation. When this register is     *
 | |
|  * written, the new value of the C field is captured in an internal     *
 | |
|  * register so the hardware can remember what the programmer wrote      *
 | |
|  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 | |
|  * increments above this stored value, which indicates that there       *
 | |
|  * have been more responses received than requests sent. The SPUR_WR    *
 | |
|  * bit cannot be cleared until a value is written to the IPRBx          *
 | |
|  * register; the write will correct the C field and capture its new     *
 | |
|  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 | |
|  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 | |
|  * .    								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprb9_u {
 | |
| 	u64 ii_iprb9_regval;
 | |
| 	struct {
 | |
| 		u64 i_c:8;
 | |
| 		u64 i_na:14;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_nb:14;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_m:2;
 | |
| 		u64 i_f:1;
 | |
| 		u64 i_of_cnt:5;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rd_to:1;
 | |
| 		u64 i_spur_wr:1;
 | |
| 		u64 i_spur_rd:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 		u64 i_mult_err:1;
 | |
| 	} ii_iprb9_fld_s;
 | |
| } ii_iprb9_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 9 instances of this register, one per        *
 | |
|  * actual widget in this implementation of SHub and Crossbow.        *
 | |
|  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 | |
|  * refers to Crossbow's internal space.                                 *
 | |
|  * This register contains the state elements per widget that are        *
 | |
|  * necessary to manage the PIO flow control on Crosstalk and on the     *
 | |
|  * Router Network. See the PIO Flow Control chapter for a complete      *
 | |
|  * description of this register                                         *
 | |
|  * The SPUR_WR bit requires some explanation. When this register is     *
 | |
|  * written, the new value of the C field is captured in an internal     *
 | |
|  * register so the hardware can remember what the programmer wrote      *
 | |
|  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 | |
|  * increments above this stored value, which indicates that there       *
 | |
|  * have been more responses received than requests sent. The SPUR_WR    *
 | |
|  * bit cannot be cleared until a value is written to the IPRBx          *
 | |
|  * register; the write will correct the C field and capture its new     *
 | |
|  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 | |
|  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 | |
|  *									*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprba_u {
 | |
| 	u64 ii_iprba_regval;
 | |
| 	struct {
 | |
| 		u64 i_c:8;
 | |
| 		u64 i_na:14;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_nb:14;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_m:2;
 | |
| 		u64 i_f:1;
 | |
| 		u64 i_of_cnt:5;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rd_to:1;
 | |
| 		u64 i_spur_wr:1;
 | |
| 		u64 i_spur_rd:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 		u64 i_mult_err:1;
 | |
| 	} ii_iprba_fld_s;
 | |
| } ii_iprba_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 9 instances of this register, one per        *
 | |
|  * actual widget in this implementation of SHub and Crossbow.           *
 | |
|  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 | |
|  * refers to Crossbow's internal space.                                 *
 | |
|  * This register contains the state elements per widget that are        *
 | |
|  * necessary to manage the PIO flow control on Crosstalk and on the     *
 | |
|  * Router Network. See the PIO Flow Control chapter for a complete      *
 | |
|  * description of this register                                         *
 | |
|  * The SPUR_WR bit requires some explanation. When this register is     *
 | |
|  * written, the new value of the C field is captured in an internal     *
 | |
|  * register so the hardware can remember what the programmer wrote      *
 | |
|  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 | |
|  * increments above this stored value, which indicates that there       *
 | |
|  * have been more responses received than requests sent. The SPUR_WR    *
 | |
|  * bit cannot be cleared until a value is written to the IPRBx          *
 | |
|  * register; the write will correct the C field and capture its new     *
 | |
|  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 | |
|  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 | |
|  * .    								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprbb_u {
 | |
| 	u64 ii_iprbb_regval;
 | |
| 	struct {
 | |
| 		u64 i_c:8;
 | |
| 		u64 i_na:14;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_nb:14;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_m:2;
 | |
| 		u64 i_f:1;
 | |
| 		u64 i_of_cnt:5;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rd_to:1;
 | |
| 		u64 i_spur_wr:1;
 | |
| 		u64 i_spur_rd:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 		u64 i_mult_err:1;
 | |
| 	} ii_iprbb_fld_s;
 | |
| } ii_iprbb_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 9 instances of this register, one per        *
 | |
|  * actual widget in this implementation of SHub and Crossbow.           *
 | |
|  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 | |
|  * refers to Crossbow's internal space.                                 *
 | |
|  * This register contains the state elements per widget that are        *
 | |
|  * necessary to manage the PIO flow control on Crosstalk and on the     *
 | |
|  * Router Network. See the PIO Flow Control chapter for a complete      *
 | |
|  * description of this register                                         *
 | |
|  * The SPUR_WR bit requires some explanation. When this register is     *
 | |
|  * written, the new value of the C field is captured in an internal     *
 | |
|  * register so the hardware can remember what the programmer wrote      *
 | |
|  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 | |
|  * increments above this stored value, which indicates that there       *
 | |
|  * have been more responses received than requests sent. The SPUR_WR    *
 | |
|  * bit cannot be cleared until a value is written to the IPRBx          *
 | |
|  * register; the write will correct the C field and capture its new     *
 | |
|  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 | |
|  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 | |
|  * .    								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprbc_u {
 | |
| 	u64 ii_iprbc_regval;
 | |
| 	struct {
 | |
| 		u64 i_c:8;
 | |
| 		u64 i_na:14;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_nb:14;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_m:2;
 | |
| 		u64 i_f:1;
 | |
| 		u64 i_of_cnt:5;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rd_to:1;
 | |
| 		u64 i_spur_wr:1;
 | |
| 		u64 i_spur_rd:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 		u64 i_mult_err:1;
 | |
| 	} ii_iprbc_fld_s;
 | |
| } ii_iprbc_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 9 instances of this register, one per        *
 | |
|  * actual widget in this implementation of SHub and Crossbow.           *
 | |
|  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 | |
|  * refers to Crossbow's internal space.                                 *
 | |
|  * This register contains the state elements per widget that are        *
 | |
|  * necessary to manage the PIO flow control on Crosstalk and on the     *
 | |
|  * Router Network. See the PIO Flow Control chapter for a complete      *
 | |
|  * description of this register                                         *
 | |
|  * The SPUR_WR bit requires some explanation. When this register is     *
 | |
|  * written, the new value of the C field is captured in an internal     *
 | |
|  * register so the hardware can remember what the programmer wrote      *
 | |
|  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 | |
|  * increments above this stored value, which indicates that there       *
 | |
|  * have been more responses received than requests sent. The SPUR_WR    *
 | |
|  * bit cannot be cleared until a value is written to the IPRBx          *
 | |
|  * register; the write will correct the C field and capture its new     *
 | |
|  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 | |
|  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 | |
|  * .    								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprbd_u {
 | |
| 	u64 ii_iprbd_regval;
 | |
| 	struct {
 | |
| 		u64 i_c:8;
 | |
| 		u64 i_na:14;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_nb:14;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_m:2;
 | |
| 		u64 i_f:1;
 | |
| 		u64 i_of_cnt:5;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rd_to:1;
 | |
| 		u64 i_spur_wr:1;
 | |
| 		u64 i_spur_rd:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 		u64 i_mult_err:1;
 | |
| 	} ii_iprbd_fld_s;
 | |
| } ii_iprbd_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 9 instances of this register, one per        *
 | |
|  * actual widget in this implementation of SHub and Crossbow.           *
 | |
|  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 | |
|  * refers to Crossbow's internal space.                                 *
 | |
|  * This register contains the state elements per widget that are        *
 | |
|  * necessary to manage the PIO flow control on Crosstalk and on the     *
 | |
|  * Router Network. See the PIO Flow Control chapter for a complete      *
 | |
|  * description of this register                                         *
 | |
|  * The SPUR_WR bit requires some explanation. When this register is     *
 | |
|  * written, the new value of the C field is captured in an internal     *
 | |
|  * register so the hardware can remember what the programmer wrote      *
 | |
|  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 | |
|  * increments above this stored value, which indicates that there       *
 | |
|  * have been more responses received than requests sent. The SPUR_WR    *
 | |
|  * bit cannot be cleared until a value is written to the IPRBx          *
 | |
|  * register; the write will correct the C field and capture its new     *
 | |
|  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 | |
|  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 | |
|  * .    								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprbe_u {
 | |
| 	u64 ii_iprbe_regval;
 | |
| 	struct {
 | |
| 		u64 i_c:8;
 | |
| 		u64 i_na:14;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_nb:14;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_m:2;
 | |
| 		u64 i_f:1;
 | |
| 		u64 i_of_cnt:5;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rd_to:1;
 | |
| 		u64 i_spur_wr:1;
 | |
| 		u64 i_spur_rd:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 		u64 i_mult_err:1;
 | |
| 	} ii_iprbe_fld_s;
 | |
| } ii_iprbe_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 9 instances of this register, one per        *
 | |
|  * actual widget in this implementation of Shub and Crossbow.           *
 | |
|  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 | |
|  * refers to Crossbow's internal space.                                 *
 | |
|  * This register contains the state elements per widget that are        *
 | |
|  * necessary to manage the PIO flow control on Crosstalk and on the     *
 | |
|  * Router Network. See the PIO Flow Control chapter for a complete      *
 | |
|  * description of this register                                         *
 | |
|  * The SPUR_WR bit requires some explanation. When this register is     *
 | |
|  * written, the new value of the C field is captured in an internal     *
 | |
|  * register so the hardware can remember what the programmer wrote      *
 | |
|  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 | |
|  * increments above this stored value, which indicates that there       *
 | |
|  * have been more responses received than requests sent. The SPUR_WR    *
 | |
|  * bit cannot be cleared until a value is written to the IPRBx          *
 | |
|  * register; the write will correct the C field and capture its new     *
 | |
|  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 | |
|  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 | |
|  * .    								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprbf_u {
 | |
| 	u64 ii_iprbf_regval;
 | |
| 	struct {
 | |
| 		u64 i_c:8;
 | |
| 		u64 i_na:14;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_nb:14;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_m:2;
 | |
| 		u64 i_f:1;
 | |
| 		u64 i_of_cnt:5;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rd_to:1;
 | |
| 		u64 i_spur_wr:1;
 | |
| 		u64 i_spur_rd:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 		u64 i_mult_err:1;
 | |
| 	} ii_iprbe_fld_s;
 | |
| } ii_iprbf_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register specifies the timeout value to use for monitoring     *
 | |
|  * Crosstalk credits which are used outbound to Crosstalk. An           *
 | |
|  * internal counter called the Crosstalk Credit Timeout Counter         *
 | |
|  * increments every 128 II clocks. The counter starts counting          *
 | |
|  * anytime the credit count drops below a threshold, and resets to      *
 | |
|  * zero (stops counting) anytime the credit count is at or above the    *
 | |
|  * threshold. The threshold is 1 credit in direct connect mode and 2    *
 | |
|  * in Crossbow connect mode. When the internal Crosstalk Credit         *
 | |
|  * Timeout Counter reaches the value programmed in this register, a     *
 | |
|  * Crosstalk Credit Timeout has occurred. The internal counter is not   *
 | |
|  * readable from software, and stops counting at its maximum value,     *
 | |
|  * so it cannot cause more than one interrupt.                          *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ixcc_u {
 | |
| 	u64 ii_ixcc_regval;
 | |
| 	struct {
 | |
| 		u64 i_time_out:26;
 | |
| 		u64 i_rsvd:38;
 | |
| 	} ii_ixcc_fld_s;
 | |
| } ii_ixcc_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  This register qualifies all the PIO and DMA            *
 | |
|  * operations launched from widget 0 towards the SHub. In               *
 | |
|  * addition, it also qualifies accesses by the BTE streams.             *
 | |
|  * The bits in each field of this register are cleared by the SHub      *
 | |
|  * upon detection of an error which requires widget 0 or the BTE        *
 | |
|  * streams to be terminated. Whether or not widget x has access         *
 | |
|  * rights to this SHub is determined by an AND of the device            *
 | |
|  * enable bit in the appropriate field of this register and bit 0 in    *
 | |
|  * the Wx_IAC field. The bits in this field are set by writing a 1 to   *
 | |
|  * them. Incoming replies from Crosstalk are not subject to this        *
 | |
|  * access control mechanism.                                            *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_imem_u {
 | |
| 	u64 ii_imem_regval;
 | |
| 	struct {
 | |
| 		u64 i_w0_esd:1;
 | |
| 		u64 i_rsvd_3:3;
 | |
| 		u64 i_b0_esd:1;
 | |
| 		u64 i_rsvd_2:3;
 | |
| 		u64 i_b1_esd:1;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_clr_precise:1;
 | |
| 		u64 i_rsvd:51;
 | |
| 	} ii_imem_fld_s;
 | |
| } ii_imem_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  This register specifies the timeout value to use for   *
 | |
|  * monitoring Crosstalk tail flits coming into the Shub in the          *
 | |
|  * TAIL_TO field. An internal counter associated with this register     *
 | |
|  * is incremented every 128 II internal clocks (7 bits). The counter    *
 | |
|  * starts counting anytime a header micropacket is received and stops   *
 | |
|  * counting (and resets to zero) any time a micropacket with a Tail     *
 | |
|  * bit is received. Once the counter reaches the threshold value        *
 | |
|  * programmed in this register, it generates an interrupt to the        *
 | |
|  * processor that is programmed into the IIDSR. The counter saturates   *
 | |
|  * (does not roll over) at its maximum value, so it cannot cause        *
 | |
|  * another interrupt until after it is cleared.                         *
 | |
|  * The register also contains the Read Response Timeout values. The     *
 | |
|  * Prescalar is 23 bits, and counts II clocks. An internal counter      *
 | |
|  * increments on every II clock and when it reaches the value in the    *
 | |
|  * Prescalar field, all IPRTE registers with their valid bits set       *
 | |
|  * have their Read Response timers bumped. Whenever any of them match   *
 | |
|  * the value in the RRSP_TO field, a Read Response Timeout has          *
 | |
|  * occurred, and error handling occurs as described in the Error        *
 | |
|  * Handling section of this document.                                   *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ixtt_u {
 | |
| 	u64 ii_ixtt_regval;
 | |
| 	struct {
 | |
| 		u64 i_tail_to:26;
 | |
| 		u64 i_rsvd_1:6;
 | |
| 		u64 i_rrsp_ps:23;
 | |
| 		u64 i_rrsp_to:5;
 | |
| 		u64 i_rsvd:4;
 | |
| 	} ii_ixtt_fld_s;
 | |
| } ii_ixtt_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  Writing a 1 to the fields of this register clears the appropriate   *
 | |
|  * error bits in other areas of SHub. Note that when the                *
 | |
|  * E_PRB_x bits are used to clear error bits in PRB registers,          *
 | |
|  * SPUR_RD and SPUR_WR may persist, because they require additional     *
 | |
|  * action to clear them. See the IPRBx and IXSS Register                *
 | |
|  * specifications.                                                      *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ieclr_u {
 | |
| 	u64 ii_ieclr_regval;
 | |
| 	struct {
 | |
| 		u64 i_e_prb_0:1;
 | |
| 		u64 i_rsvd:7;
 | |
| 		u64 i_e_prb_8:1;
 | |
| 		u64 i_e_prb_9:1;
 | |
| 		u64 i_e_prb_a:1;
 | |
| 		u64 i_e_prb_b:1;
 | |
| 		u64 i_e_prb_c:1;
 | |
| 		u64 i_e_prb_d:1;
 | |
| 		u64 i_e_prb_e:1;
 | |
| 		u64 i_e_prb_f:1;
 | |
| 		u64 i_e_crazy:1;
 | |
| 		u64 i_e_bte_0:1;
 | |
| 		u64 i_e_bte_1:1;
 | |
| 		u64 i_reserved_1:10;
 | |
| 		u64 i_spur_rd_hdr:1;
 | |
| 		u64 i_cam_intr_to:1;
 | |
| 		u64 i_cam_overflow:1;
 | |
| 		u64 i_cam_read_miss:1;
 | |
| 		u64 i_ioq_rep_underflow:1;
 | |
| 		u64 i_ioq_req_underflow:1;
 | |
| 		u64 i_ioq_rep_overflow:1;
 | |
| 		u64 i_ioq_req_overflow:1;
 | |
| 		u64 i_iiq_rep_overflow:1;
 | |
| 		u64 i_iiq_req_overflow:1;
 | |
| 		u64 i_ii_xn_rep_cred_overflow:1;
 | |
| 		u64 i_ii_xn_req_cred_overflow:1;
 | |
| 		u64 i_ii_xn_invalid_cmd:1;
 | |
| 		u64 i_xn_ii_invalid_cmd:1;
 | |
| 		u64 i_reserved_2:21;
 | |
| 	} ii_ieclr_fld_s;
 | |
| } ii_ieclr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register controls both BTEs. SOFT_RESET is intended for        *
 | |
|  * recovery after an error. COUNT controls the total number of CRBs     *
 | |
|  * that both BTEs (combined) can use, which affects total BTE           *
 | |
|  * bandwidth.                                                           *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibcr_u {
 | |
| 	u64 ii_ibcr_regval;
 | |
| 	struct {
 | |
| 		u64 i_count:4;
 | |
| 		u64 i_rsvd_1:4;
 | |
| 		u64 i_soft_reset:1;
 | |
| 		u64 i_rsvd:55;
 | |
| 	} ii_ibcr_fld_s;
 | |
| } ii_ibcr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the header of a spurious read response       *
 | |
|  * received from Crosstalk. A spurious read response is defined as a    *
 | |
|  * read response received by II from a widget for which (1) the SIDN    *
 | |
|  * has a value between 1 and 7, inclusive (II never sends requests to   *
 | |
|  * these widgets (2) there is no valid IPRTE register which             *
 | |
|  * corresponds to the TNUM, or (3) the widget indicated in SIDN is      *
 | |
|  * not the same as the widget recorded in the IPRTE register            *
 | |
|  * referenced by the TNUM. If this condition is true, and if the        *
 | |
|  * IXSS[VALID] bit is clear, then the header of the spurious read       *
 | |
|  * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The    *
 | |
|  * errant header is thereby captured, and no further spurious read      *
 | |
|  * respones are captured until IXSS[VALID] is cleared by setting the    *
 | |
|  * appropriate bit in IECLR. Every time a spurious read response is     *
 | |
|  * detected, the SPUR_RD bit of the PRB corresponding to the incoming   *
 | |
|  * message's SIDN field is set. This always happens, regardless of       *
 | |
|  * whether a header is captured. The programmer should check            *
 | |
|  * IXSM[SIDN] to determine which widget sent the spurious response,     *
 | |
|  * because there may be more than one SPUR_RD bit set in the PRB        *
 | |
|  * registers. The widget indicated by IXSM[SIDN] was the first          *
 | |
|  * spurious read response to be received since the last time            *
 | |
|  * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB      *
 | |
|  * will be set. Any SPUR_RD bits in any other PRB registers indicate    *
 | |
|  * spurious messages from other widets which were detected after the    *
 | |
|  * header was captured..                                                *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ixsm_u {
 | |
| 	u64 ii_ixsm_regval;
 | |
| 	struct {
 | |
| 		u64 i_byte_en:32;
 | |
| 		u64 i_reserved:1;
 | |
| 		u64 i_tag:3;
 | |
| 		u64 i_alt_pactyp:4;
 | |
| 		u64 i_bo:1;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_vbpm:1;
 | |
| 		u64 i_gbr:1;
 | |
| 		u64 i_ds:2;
 | |
| 		u64 i_ct:1;
 | |
| 		u64 i_tnum:5;
 | |
| 		u64 i_pactyp:4;
 | |
| 		u64 i_sidn:4;
 | |
| 		u64 i_didn:4;
 | |
| 	} ii_ixsm_fld_s;
 | |
| } ii_ixsm_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the sideband bits of a spurious read         *
 | |
|  * response received from Crosstalk.                                    *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ixss_u {
 | |
| 	u64 ii_ixss_regval;
 | |
| 	struct {
 | |
| 		u64 i_sideband:8;
 | |
| 		u64 i_rsvd:55;
 | |
| 		u64 i_valid:1;
 | |
| 	} ii_ixss_fld_s;
 | |
| } ii_ixss_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register enables software to access the II LLP's test port.    *
 | |
|  * Refer to the LLP 2.5 documentation for an explanation of the test    *
 | |
|  * port. Software can write to this register to program the values      *
 | |
|  * for the control fields (TestErrCapture, TestClear, TestFlit,         *
 | |
|  * TestMask and TestSeed). Similarly, software can read from this       *
 | |
|  * register to obtain the values of the test port's status outputs      *
 | |
|  * (TestCBerr, TestValid and TestData).                                 *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ilct_u {
 | |
| 	u64 ii_ilct_regval;
 | |
| 	struct {
 | |
| 		u64 i_test_seed:20;
 | |
| 		u64 i_test_mask:8;
 | |
| 		u64 i_test_data:20;
 | |
| 		u64 i_test_valid:1;
 | |
| 		u64 i_test_cberr:1;
 | |
| 		u64 i_test_flit:3;
 | |
| 		u64 i_test_clear:1;
 | |
| 		u64 i_test_err_capture:1;
 | |
| 		u64 i_rsvd:9;
 | |
| 	} ii_ilct_fld_s;
 | |
| } ii_ilct_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  If the II detects an illegal incoming Duplonet packet (request or   *
 | |
|  * reply) when VALID==0 in the IIEPH1 register, then it saves the       *
 | |
|  * contents of the packet's header flit in the IIEPH1 and IIEPH2        *
 | |
|  * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit,     *
 | |
|  * and assigns a value to the ERR_TYPE field which indicates the        *
 | |
|  * specific nature of the error. The II recognizes four different       *
 | |
|  * types of errors: short request packets (ERR_TYPE==2), short reply    *
 | |
|  * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long   *
 | |
|  * reply packets (ERR_TYPE==5). The encodings for these types of        *
 | |
|  * errors were chosen to be consistent with the same types of errors    *
 | |
|  * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in    *
 | |
|  * the LB unit). If the II detects an illegal incoming Duplonet         *
 | |
|  * packet when VALID==1 in the IIEPH1 register, then it merely sets     *
 | |
|  * the OVERRUN bit to indicate that a subsequent error has happened,    *
 | |
|  * and does nothing further.                                            *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iieph1_u {
 | |
| 	u64 ii_iieph1_regval;
 | |
| 	struct {
 | |
| 		u64 i_command:7;
 | |
| 		u64 i_rsvd_5:1;
 | |
| 		u64 i_suppl:14;
 | |
| 		u64 i_rsvd_4:1;
 | |
| 		u64 i_source:14;
 | |
| 		u64 i_rsvd_3:1;
 | |
| 		u64 i_err_type:4;
 | |
| 		u64 i_rsvd_2:4;
 | |
| 		u64 i_overrun:1;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_valid:1;
 | |
| 		u64 i_rsvd:13;
 | |
| 	} ii_iieph1_fld_s;
 | |
| } ii_iieph1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register holds the Address field from the header flit of an    *
 | |
|  * incoming erroneous Duplonet packet, along with the tail bit which    *
 | |
|  * accompanied this header flit. This register is essentially an        *
 | |
|  * extension of IIEPH1. Two registers were necessary because the 64     *
 | |
|  * bits available in only a single register were insufficient to        *
 | |
|  * capture the entire header flit of an erroneous packet.               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iieph2_u {
 | |
| 	u64 ii_iieph2_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_0:3;
 | |
| 		u64 i_address:47;
 | |
| 		u64 i_rsvd_1:10;
 | |
| 		u64 i_tail:1;
 | |
| 		u64 i_rsvd:3;
 | |
| 	} ii_iieph2_fld_s;
 | |
| } ii_iieph2_u_t;
 | |
| 
 | |
| /******************************/
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register's value is a bit vector that guards access from SXBs  *
 | |
|  * to local registers within the II as well as to external Crosstalk    *
 | |
|  * widgets								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_islapr_u {
 | |
| 	u64 ii_islapr_regval;
 | |
| 	struct {
 | |
| 		u64 i_region:64;
 | |
| 	} ii_islapr_fld_s;
 | |
| } ii_islapr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  A write to this register of the 56-bit value "Pup+Bun" will cause	*
 | |
|  * the bit in the ISLAPR register corresponding to the region of the	*
 | |
|  * requestor to be set (access allowed).				(
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_islapo_u {
 | |
| 	u64 ii_islapo_regval;
 | |
| 	struct {
 | |
| 		u64 i_io_sbx_ovrride:56;
 | |
| 		u64 i_rsvd:8;
 | |
| 	} ii_islapo_fld_s;
 | |
| } ii_islapo_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  Determines how long the wrapper will wait aftr an interrupt is	*
 | |
|  * initially issued from the II before it times out the outstanding	*
 | |
|  * interrupt and drops it from the interrupt queue.			* 
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iwi_u {
 | |
| 	u64 ii_iwi_regval;
 | |
| 	struct {
 | |
| 		u64 i_prescale:24;
 | |
| 		u64 i_rsvd:8;
 | |
| 		u64 i_timeout:8;
 | |
| 		u64 i_rsvd1:8;
 | |
| 		u64 i_intrpt_retry_period:8;
 | |
| 		u64 i_rsvd2:8;
 | |
| 	} ii_iwi_fld_s;
 | |
| } ii_iwi_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  Log errors which have occurred in the II wrapper. The errors are	*
 | |
|  * cleared by writing to the IECLR register.				* 
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iwel_u {
 | |
| 	u64 ii_iwel_regval;
 | |
| 	struct {
 | |
| 		u64 i_intr_timed_out:1;
 | |
| 		u64 i_rsvd:7;
 | |
| 		u64 i_cam_overflow:1;
 | |
| 		u64 i_cam_read_miss:1;
 | |
| 		u64 i_rsvd1:2;
 | |
| 		u64 i_ioq_rep_underflow:1;
 | |
| 		u64 i_ioq_req_underflow:1;
 | |
| 		u64 i_ioq_rep_overflow:1;
 | |
| 		u64 i_ioq_req_overflow:1;
 | |
| 		u64 i_iiq_rep_overflow:1;
 | |
| 		u64 i_iiq_req_overflow:1;
 | |
| 		u64 i_rsvd2:6;
 | |
| 		u64 i_ii_xn_rep_cred_over_under:1;
 | |
| 		u64 i_ii_xn_req_cred_over_under:1;
 | |
| 		u64 i_rsvd3:6;
 | |
| 		u64 i_ii_xn_invalid_cmd:1;
 | |
| 		u64 i_xn_ii_invalid_cmd:1;
 | |
| 		u64 i_rsvd4:30;
 | |
| 	} ii_iwel_fld_s;
 | |
| } ii_iwel_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  Controls the II wrapper.						* 
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iwc_u {
 | |
| 	u64 ii_iwc_regval;
 | |
| 	struct {
 | |
| 		u64 i_dma_byte_swap:1;
 | |
| 		u64 i_rsvd:3;
 | |
| 		u64 i_cam_read_lines_reset:1;
 | |
| 		u64 i_rsvd1:3;
 | |
| 		u64 i_ii_xn_cred_over_under_log:1;
 | |
| 		u64 i_rsvd2:19;
 | |
| 		u64 i_xn_rep_iq_depth:5;
 | |
| 		u64 i_rsvd3:3;
 | |
| 		u64 i_xn_req_iq_depth:5;
 | |
| 		u64 i_rsvd4:3;
 | |
| 		u64 i_iiq_depth:6;
 | |
| 		u64 i_rsvd5:12;
 | |
| 		u64 i_force_rep_cred:1;
 | |
| 		u64 i_force_req_cred:1;
 | |
| 	} ii_iwc_fld_s;
 | |
| } ii_iwc_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  Status in the II wrapper.						* 
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iws_u {
 | |
| 	u64 ii_iws_regval;
 | |
| 	struct {
 | |
| 		u64 i_xn_rep_iq_credits:5;
 | |
| 		u64 i_rsvd:3;
 | |
| 		u64 i_xn_req_iq_credits:5;
 | |
| 		u64 i_rsvd1:51;
 | |
| 	} ii_iws_fld_s;
 | |
| } ii_iws_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  Masks errors in the IWEL register.					*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iweim_u {
 | |
| 	u64 ii_iweim_regval;
 | |
| 	struct {
 | |
| 		u64 i_intr_timed_out:1;
 | |
| 		u64 i_rsvd:7;
 | |
| 		u64 i_cam_overflow:1;
 | |
| 		u64 i_cam_read_miss:1;
 | |
| 		u64 i_rsvd1:2;
 | |
| 		u64 i_ioq_rep_underflow:1;
 | |
| 		u64 i_ioq_req_underflow:1;
 | |
| 		u64 i_ioq_rep_overflow:1;
 | |
| 		u64 i_ioq_req_overflow:1;
 | |
| 		u64 i_iiq_rep_overflow:1;
 | |
| 		u64 i_iiq_req_overflow:1;
 | |
| 		u64 i_rsvd2:6;
 | |
| 		u64 i_ii_xn_rep_cred_overflow:1;
 | |
| 		u64 i_ii_xn_req_cred_overflow:1;
 | |
| 		u64 i_rsvd3:6;
 | |
| 		u64 i_ii_xn_invalid_cmd:1;
 | |
| 		u64 i_xn_ii_invalid_cmd:1;
 | |
| 		u64 i_rsvd4:30;
 | |
| 	} ii_iweim_fld_s;
 | |
| } ii_iweim_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  A write to this register causes a particular field in the           *
 | |
|  * corresponding widget's PRB entry to be adjusted up or down by 1.     *
 | |
|  * This counter should be used when recovering from error and reset     *
 | |
|  * conditions. Note that software would be capable of causing           *
 | |
|  * inadvertent overflow or underflow of these counters.                 *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ipca_u {
 | |
| 	u64 ii_ipca_regval;
 | |
| 	struct {
 | |
| 		u64 i_wid:4;
 | |
| 		u64 i_adjust:1;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_field:2;
 | |
| 		u64 i_rsvd:54;
 | |
| 	} ii_ipca_fld_s;
 | |
| } ii_ipca_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte0a_u {
 | |
| 	u64 ii_iprte0a_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:54;
 | |
| 		u64 i_widget:4;
 | |
| 		u64 i_to_cnt:5;
 | |
| 		u64 i_vld:1;
 | |
| 	} ii_iprte0a_fld_s;
 | |
| } ii_iprte0a_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte1a_u {
 | |
| 	u64 ii_iprte1a_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:54;
 | |
| 		u64 i_widget:4;
 | |
| 		u64 i_to_cnt:5;
 | |
| 		u64 i_vld:1;
 | |
| 	} ii_iprte1a_fld_s;
 | |
| } ii_iprte1a_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte2a_u {
 | |
| 	u64 ii_iprte2a_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:54;
 | |
| 		u64 i_widget:4;
 | |
| 		u64 i_to_cnt:5;
 | |
| 		u64 i_vld:1;
 | |
| 	} ii_iprte2a_fld_s;
 | |
| } ii_iprte2a_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte3a_u {
 | |
| 	u64 ii_iprte3a_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:54;
 | |
| 		u64 i_widget:4;
 | |
| 		u64 i_to_cnt:5;
 | |
| 		u64 i_vld:1;
 | |
| 	} ii_iprte3a_fld_s;
 | |
| } ii_iprte3a_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte4a_u {
 | |
| 	u64 ii_iprte4a_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:54;
 | |
| 		u64 i_widget:4;
 | |
| 		u64 i_to_cnt:5;
 | |
| 		u64 i_vld:1;
 | |
| 	} ii_iprte4a_fld_s;
 | |
| } ii_iprte4a_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte5a_u {
 | |
| 	u64 ii_iprte5a_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:54;
 | |
| 		u64 i_widget:4;
 | |
| 		u64 i_to_cnt:5;
 | |
| 		u64 i_vld:1;
 | |
| 	} ii_iprte5a_fld_s;
 | |
| } ii_iprte5a_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte6a_u {
 | |
| 	u64 ii_iprte6a_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:54;
 | |
| 		u64 i_widget:4;
 | |
| 		u64 i_to_cnt:5;
 | |
| 		u64 i_vld:1;
 | |
| 	} ii_iprte6a_fld_s;
 | |
| } ii_iprte6a_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte7a_u {
 | |
| 	u64 ii_iprte7a_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:54;
 | |
| 		u64 i_widget:4;
 | |
| 		u64 i_to_cnt:5;
 | |
| 		u64 i_vld:1;
 | |
| 	} ii_iprtea7_fld_s;
 | |
| } ii_iprte7a_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte0b_u {
 | |
| 	u64 ii_iprte0b_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_address:47;
 | |
| 		u64 i_init:3;
 | |
| 		u64 i_source:11;
 | |
| 	} ii_iprte0b_fld_s;
 | |
| } ii_iprte0b_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte1b_u {
 | |
| 	u64 ii_iprte1b_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_address:47;
 | |
| 		u64 i_init:3;
 | |
| 		u64 i_source:11;
 | |
| 	} ii_iprte1b_fld_s;
 | |
| } ii_iprte1b_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte2b_u {
 | |
| 	u64 ii_iprte2b_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_address:47;
 | |
| 		u64 i_init:3;
 | |
| 		u64 i_source:11;
 | |
| 	} ii_iprte2b_fld_s;
 | |
| } ii_iprte2b_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte3b_u {
 | |
| 	u64 ii_iprte3b_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_address:47;
 | |
| 		u64 i_init:3;
 | |
| 		u64 i_source:11;
 | |
| 	} ii_iprte3b_fld_s;
 | |
| } ii_iprte3b_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte4b_u {
 | |
| 	u64 ii_iprte4b_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_address:47;
 | |
| 		u64 i_init:3;
 | |
| 		u64 i_source:11;
 | |
| 	} ii_iprte4b_fld_s;
 | |
| } ii_iprte4b_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte5b_u {
 | |
| 	u64 ii_iprte5b_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_address:47;
 | |
| 		u64 i_init:3;
 | |
| 		u64 i_source:11;
 | |
| 	} ii_iprte5b_fld_s;
 | |
| } ii_iprte5b_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte6b_u {
 | |
| 	u64 ii_iprte6b_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_address:47;
 | |
| 		u64 i_init:3;
 | |
| 		u64 i_source:11;
 | |
| 
 | |
| 	} ii_iprte6b_fld_s;
 | |
| } ii_iprte6b_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  There are 8 instances of this register. This register contains      *
 | |
|  * the information that the II has to remember once it has launched a   *
 | |
|  * PIO Read operation. The contents are used to form the correct        *
 | |
|  * Router Network packet and direct the Crosstalk reply to the          *
 | |
|  * appropriate processor.                                               *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iprte7b_u {
 | |
| 	u64 ii_iprte7b_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_address:47;
 | |
| 		u64 i_init:3;
 | |
| 		u64 i_source:11;
 | |
| 	} ii_iprte7b_fld_s;
 | |
| } ii_iprte7b_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  SHub II contains a feature which did not exist in      *
 | |
|  * the Hub which automatically cleans up after a Read Response          *
 | |
|  * timeout, including deallocation of the IPRTE and recovery of IBuf    *
 | |
|  * space. The inclusion of this register in SHub is for backward        *
 | |
|  * compatibility                                                        *
 | |
|  * A write to this register causes an entry from the table of           *
 | |
|  * outstanding PIO Read Requests to be freed and returned to the        *
 | |
|  * stack of free entries. This register is used in handling the         *
 | |
|  * timeout errors that result in a PIO Reply never returning from       *
 | |
|  * Crosstalk.                                                           *
 | |
|  * Note that this register does not affect the contents of the IPRTE    *
 | |
|  * registers. The Valid bits in those registers have to be              *
 | |
|  * specifically turned off by software.                                 *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ipdr_u {
 | |
| 	u64 ii_ipdr_regval;
 | |
| 	struct {
 | |
| 		u64 i_te:3;
 | |
| 		u64 i_rsvd_1:1;
 | |
| 		u64 i_pnd:1;
 | |
| 		u64 i_init_rpcnt:1;
 | |
| 		u64 i_rsvd:58;
 | |
| 	} ii_ipdr_fld_s;
 | |
| } ii_ipdr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  A write to this register causes a CRB entry to be returned to the   *
 | |
|  * queue of free CRBs. The entry should have previously been cleared    *
 | |
|  * (mark bit) via backdoor access to the pertinent CRB entry. This      *
 | |
|  * register is used in the last step of handling the errors that are    *
 | |
|  * captured and marked in CRB entries.  Briefly: 1) first error for     *
 | |
|  * DMA write from a particular device, and first error for a            *
 | |
|  * particular BTE stream, lead to a marked CRB entry, and processor     *
 | |
|  * interrupt, 2) software reads the error information captured in the   *
 | |
|  * CRB entry, and presumably takes some corrective action, 3)           *
 | |
|  * software clears the mark bit, and finally 4) software writes to      *
 | |
|  * the ICDR register to return the CRB entry to the list of free CRB    *
 | |
|  * entries.                                                             *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icdr_u {
 | |
| 	u64 ii_icdr_regval;
 | |
| 	struct {
 | |
| 		u64 i_crb_num:4;
 | |
| 		u64 i_pnd:1;
 | |
| 		u64 i_rsvd:59;
 | |
| 	} ii_icdr_fld_s;
 | |
| } ii_icdr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register provides debug access to two FIFOs inside of II.      *
 | |
|  * Both IOQ_MAX* fields of this register contain the instantaneous      *
 | |
|  * depth (in units of the number of available entries) of the           *
 | |
|  * associated IOQ FIFO.  A read of this register will return the        *
 | |
|  * number of free entries on each FIFO at the time of the read.  So     *
 | |
|  * when a FIFO is idle, the associated field contains the maximum       *
 | |
|  * depth of the FIFO.  This register is writable for debug reasons      *
 | |
|  * and is intended to be written with the maximum desired FIFO depth    *
 | |
|  * while the FIFO is idle. Software must assure that II is idle when    *
 | |
|  * this register is written. If there are any active entries in any     *
 | |
|  * of these FIFOs when this register is written, the results are        *
 | |
|  * undefined.                                                           *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ifdr_u {
 | |
| 	u64 ii_ifdr_regval;
 | |
| 	struct {
 | |
| 		u64 i_ioq_max_rq:7;
 | |
| 		u64 i_set_ioq_rq:1;
 | |
| 		u64 i_ioq_max_rp:7;
 | |
| 		u64 i_set_ioq_rp:1;
 | |
| 		u64 i_rsvd:48;
 | |
| 	} ii_ifdr_fld_s;
 | |
| } ii_ifdr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register allows the II to become sluggish in removing          *
 | |
|  * messages from its inbound queue (IIQ). This will cause messages to   *
 | |
|  * back up in either virtual channel. Disabling the "molasses" mode     *
 | |
|  * subsequently allows the II to be tested under stress. In the         *
 | |
|  * sluggish ("Molasses") mode, the localized effects of congestion      *
 | |
|  * can be observed.                                                     *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iiap_u {
 | |
| 	u64 ii_iiap_regval;
 | |
| 	struct {
 | |
| 		u64 i_rq_mls:6;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_rp_mls:6;
 | |
| 		u64 i_rsvd:50;
 | |
| 	} ii_iiap_fld_s;
 | |
| } ii_iiap_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register allows several parameters of CRB operation to be      *
 | |
|  * set. Note that writing to this register can have catastrophic side   *
 | |
|  * effects, if the CRB is not quiescent, i.e. if the CRB is             *
 | |
|  * processing protocol messages when the write occurs.                  *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icmr_u {
 | |
| 	u64 ii_icmr_regval;
 | |
| 	struct {
 | |
| 		u64 i_sp_msg:1;
 | |
| 		u64 i_rd_hdr:1;
 | |
| 		u64 i_rsvd_4:2;
 | |
| 		u64 i_c_cnt:4;
 | |
| 		u64 i_rsvd_3:4;
 | |
| 		u64 i_clr_rqpd:1;
 | |
| 		u64 i_clr_rppd:1;
 | |
| 		u64 i_rsvd_2:2;
 | |
| 		u64 i_fc_cnt:4;
 | |
| 		u64 i_crb_vld:15;
 | |
| 		u64 i_crb_mark:15;
 | |
| 		u64 i_rsvd_1:2;
 | |
| 		u64 i_precise:1;
 | |
| 		u64 i_rsvd:11;
 | |
| 	} ii_icmr_fld_s;
 | |
| } ii_icmr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register allows control of the table portion of the CRB        *
 | |
|  * logic via software. Control operations from this register have       *
 | |
|  * priority over all incoming Crosstalk or BTE requests.                *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_iccr_u {
 | |
| 	u64 ii_iccr_regval;
 | |
| 	struct {
 | |
| 		u64 i_crb_num:4;
 | |
| 		u64 i_rsvd_1:4;
 | |
| 		u64 i_cmd:8;
 | |
| 		u64 i_pending:1;
 | |
| 		u64 i_rsvd:47;
 | |
| 	} ii_iccr_fld_s;
 | |
| } ii_iccr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register allows the maximum timeout value to be programmed.    *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icto_u {
 | |
| 	u64 ii_icto_regval;
 | |
| 	struct {
 | |
| 		u64 i_timeout:8;
 | |
| 		u64 i_rsvd:56;
 | |
| 	} ii_icto_fld_s;
 | |
| } ii_icto_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register allows the timeout prescalar to be programmed. An     *
 | |
|  * internal counter is associated with this register. When the          *
 | |
|  * internal counter reaches the value of the PRESCALE field, the        *
 | |
|  * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT]   *
 | |
|  * field). The internal counter resets to zero, and then continues      *
 | |
|  * counting.                                                            *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ictp_u {
 | |
| 	u64 ii_ictp_regval;
 | |
| 	struct {
 | |
| 		u64 i_prescale:24;
 | |
| 		u64 i_rsvd:40;
 | |
| 	} ii_ictp_fld_s;
 | |
| } ii_ictp_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 | |
|  * used for Crosstalk operations (both cacheline and partial            *
 | |
|  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 | |
|  * registers (_A to _E) are required to read and write each entry.      *
 | |
|  * The CRB Entry registers can be conceptualized as rows and columns    *
 | |
|  * (illustrated in the table above). Each row contains the 4            *
 | |
|  * registers required for a single CRB Entry. The first doubleword      *
 | |
|  * (column) for each entry is labeled A, and the second doubleword      *
 | |
|  * (higher address) is labeled B, the third doubleword is labeled C,    *
 | |
|  * the fourth doubleword is labeled D and the fifth doubleword is       *
 | |
|  * labeled E. All CRB entries have their addresses on a quarter         *
 | |
|  * cacheline aligned boundary.                   *
 | |
|  * Upon reset, only the following fields are initialized: valid         *
 | |
|  * (VLD), priority count, timeout, timeout valid, and context valid.    *
 | |
|  * All other bits should be cleared by software before use (after       *
 | |
|  * recovering any potential error state from before the reset).         *
 | |
|  * The following four tables summarize the format for the four          *
 | |
|  * registers that are used for each ICRB# Entry.                        *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icrb0_a_u {
 | |
| 	u64 ii_icrb0_a_regval;
 | |
| 	struct {
 | |
| 		u64 ia_iow:1;
 | |
| 		u64 ia_vld:1;
 | |
| 		u64 ia_addr:47;
 | |
| 		u64 ia_tnum:5;
 | |
| 		u64 ia_sidn:4;
 | |
| 		u64 ia_rsvd:6;
 | |
| 	} ii_icrb0_a_fld_s;
 | |
| } ii_icrb0_a_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 | |
|  * used for Crosstalk operations (both cacheline and partial            *
 | |
|  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 | |
|  * registers (_A to _E) are required to read and write each entry.      *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icrb0_b_u {
 | |
| 	u64 ii_icrb0_b_regval;
 | |
| 	struct {
 | |
| 		u64 ib_xt_err:1;
 | |
| 		u64 ib_mark:1;
 | |
| 		u64 ib_ln_uce:1;
 | |
| 		u64 ib_errcode:3;
 | |
| 		u64 ib_error:1;
 | |
| 		u64 ib_stall__bte_1:1;
 | |
| 		u64 ib_stall__bte_0:1;
 | |
| 		u64 ib_stall__intr:1;
 | |
| 		u64 ib_stall_ib:1;
 | |
| 		u64 ib_intvn:1;
 | |
| 		u64 ib_wb:1;
 | |
| 		u64 ib_hold:1;
 | |
| 		u64 ib_ack:1;
 | |
| 		u64 ib_resp:1;
 | |
| 		u64 ib_ack_cnt:11;
 | |
| 		u64 ib_rsvd:7;
 | |
| 		u64 ib_exc:5;
 | |
| 		u64 ib_init:3;
 | |
| 		u64 ib_imsg:8;
 | |
| 		u64 ib_imsgtype:2;
 | |
| 		u64 ib_use_old:1;
 | |
| 		u64 ib_rsvd_1:11;
 | |
| 	} ii_icrb0_b_fld_s;
 | |
| } ii_icrb0_b_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 | |
|  * used for Crosstalk operations (both cacheline and partial            *
 | |
|  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 | |
|  * registers (_A to _E) are required to read and write each entry.      *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icrb0_c_u {
 | |
| 	u64 ii_icrb0_c_regval;
 | |
| 	struct {
 | |
| 		u64 ic_source:15;
 | |
| 		u64 ic_size:2;
 | |
| 		u64 ic_ct:1;
 | |
| 		u64 ic_bte_num:1;
 | |
| 		u64 ic_gbr:1;
 | |
| 		u64 ic_resprqd:1;
 | |
| 		u64 ic_bo:1;
 | |
| 		u64 ic_suppl:15;
 | |
| 		u64 ic_rsvd:27;
 | |
| 	} ii_icrb0_c_fld_s;
 | |
| } ii_icrb0_c_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 | |
|  * used for Crosstalk operations (both cacheline and partial            *
 | |
|  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 | |
|  * registers (_A to _E) are required to read and write each entry.      *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icrb0_d_u {
 | |
| 	u64 ii_icrb0_d_regval;
 | |
| 	struct {
 | |
| 		u64 id_pa_be:43;
 | |
| 		u64 id_bte_op:1;
 | |
| 		u64 id_pr_psc:4;
 | |
| 		u64 id_pr_cnt:4;
 | |
| 		u64 id_sleep:1;
 | |
| 		u64 id_rsvd:11;
 | |
| 	} ii_icrb0_d_fld_s;
 | |
| } ii_icrb0_d_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 | |
|  * used for Crosstalk operations (both cacheline and partial            *
 | |
|  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 | |
|  * registers (_A to _E) are required to read and write each entry.      *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icrb0_e_u {
 | |
| 	u64 ii_icrb0_e_regval;
 | |
| 	struct {
 | |
| 		u64 ie_timeout:8;
 | |
| 		u64 ie_context:15;
 | |
| 		u64 ie_rsvd:1;
 | |
| 		u64 ie_tvld:1;
 | |
| 		u64 ie_cvld:1;
 | |
| 		u64 ie_rsvd_0:38;
 | |
| 	} ii_icrb0_e_fld_s;
 | |
| } ii_icrb0_e_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the lower 64 bits of the header of the       *
 | |
|  * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
 | |
|  * register is set.                                                     *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icsml_u {
 | |
| 	u64 ii_icsml_regval;
 | |
| 	struct {
 | |
| 		u64 i_tt_addr:47;
 | |
| 		u64 i_newsuppl_ex:14;
 | |
| 		u64 i_reserved:2;
 | |
| 		u64 i_overflow:1;
 | |
| 	} ii_icsml_fld_s;
 | |
| } ii_icsml_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the middle 64 bits of the header of the      *
 | |
|  * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
 | |
|  * register is set.                                                     *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icsmm_u {
 | |
| 	u64 ii_icsmm_regval;
 | |
| 	struct {
 | |
| 		u64 i_tt_ack_cnt:11;
 | |
| 		u64 i_reserved:53;
 | |
| 	} ii_icsmm_fld_s;
 | |
| } ii_icsmm_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the microscopic state, all the inputs to     *
 | |
|  * the protocol table, captured with the spurious message. Valid when   *
 | |
|  * the SP_MSG bit in the ICMR register is set.                          *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_icsmh_u {
 | |
| 	u64 ii_icsmh_regval;
 | |
| 	struct {
 | |
| 		u64 i_tt_vld:1;
 | |
| 		u64 i_xerr:1;
 | |
| 		u64 i_ft_cwact_o:1;
 | |
| 		u64 i_ft_wact_o:1;
 | |
| 		u64 i_ft_active_o:1;
 | |
| 		u64 i_sync:1;
 | |
| 		u64 i_mnusg:1;
 | |
| 		u64 i_mnusz:1;
 | |
| 		u64 i_plusz:1;
 | |
| 		u64 i_plusg:1;
 | |
| 		u64 i_tt_exc:5;
 | |
| 		u64 i_tt_wb:1;
 | |
| 		u64 i_tt_hold:1;
 | |
| 		u64 i_tt_ack:1;
 | |
| 		u64 i_tt_resp:1;
 | |
| 		u64 i_tt_intvn:1;
 | |
| 		u64 i_g_stall_bte1:1;
 | |
| 		u64 i_g_stall_bte0:1;
 | |
| 		u64 i_g_stall_il:1;
 | |
| 		u64 i_g_stall_ib:1;
 | |
| 		u64 i_tt_imsg:8;
 | |
| 		u64 i_tt_imsgtype:2;
 | |
| 		u64 i_tt_use_old:1;
 | |
| 		u64 i_tt_respreqd:1;
 | |
| 		u64 i_tt_bte_num:1;
 | |
| 		u64 i_cbn:1;
 | |
| 		u64 i_match:1;
 | |
| 		u64 i_rpcnt_lt_34:1;
 | |
| 		u64 i_rpcnt_ge_34:1;
 | |
| 		u64 i_rpcnt_lt_18:1;
 | |
| 		u64 i_rpcnt_ge_18:1;
 | |
| 		u64 i_rpcnt_lt_2:1;
 | |
| 		u64 i_rpcnt_ge_2:1;
 | |
| 		u64 i_rqcnt_lt_18:1;
 | |
| 		u64 i_rqcnt_ge_18:1;
 | |
| 		u64 i_rqcnt_lt_2:1;
 | |
| 		u64 i_rqcnt_ge_2:1;
 | |
| 		u64 i_tt_device:7;
 | |
| 		u64 i_tt_init:3;
 | |
| 		u64 i_reserved:5;
 | |
| 	} ii_icsmh_fld_s;
 | |
| } ii_icsmh_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  The Shub DEBUG unit provides a 3-bit selection signal to the        *
 | |
|  * II core and a 3-bit selection signal to the fsbclk domain in the II  *
 | |
|  * wrapper.                                                             *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_idbss_u {
 | |
| 	u64 ii_idbss_regval;
 | |
| 	struct {
 | |
| 		u64 i_iioclk_core_submenu:3;
 | |
| 		u64 i_rsvd:5;
 | |
| 		u64 i_fsbclk_wrapper_submenu:3;
 | |
| 		u64 i_rsvd_1:5;
 | |
| 		u64 i_iioclk_menu:5;
 | |
| 		u64 i_rsvd_2:43;
 | |
| 	} ii_idbss_fld_s;
 | |
| } ii_idbss_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  This register is used to set up the length for a       *
 | |
|  * transfer and then to monitor the progress of that transfer. This     *
 | |
|  * register needs to be initialized before a transfer is started. A     *
 | |
|  * legitimate write to this register will set the Busy bit, clear the   *
 | |
|  * Error bit, and initialize the length to the value desired.           *
 | |
|  * While the transfer is in progress, hardware will decrement the       *
 | |
|  * length field with each successful block that is copied. Once the     *
 | |
|  * transfer completes, hardware will clear the Busy bit. The length     *
 | |
|  * field will also contain the number of cache lines left to be         *
 | |
|  * transferred.                                                         *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibls0_u {
 | |
| 	u64 ii_ibls0_regval;
 | |
| 	struct {
 | |
| 		u64 i_length:16;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_busy:1;
 | |
| 		u64 i_rsvd:43;
 | |
| 	} ii_ibls0_fld_s;
 | |
| } ii_ibls0_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register should be loaded before a transfer is started. The    *
 | |
|  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 | |
|  * address as described in Section 1.3, Figure2 and Figure3. Since      *
 | |
|  * the bottom 7 bits of the address are always taken to be zero, BTE    *
 | |
|  * transfers are always cacheline-aligned.                              *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibsa0_u {
 | |
| 	u64 ii_ibsa0_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:7;
 | |
| 		u64 i_addr:42;
 | |
| 		u64 i_rsvd:15;
 | |
| 	} ii_ibsa0_fld_s;
 | |
| } ii_ibsa0_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register should be loaded before a transfer is started. The    *
 | |
|  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 | |
|  * address as described in Section 1.3, Figure2 and Figure3. Since      *
 | |
|  * the bottom 7 bits of the address are always taken to be zero, BTE    *
 | |
|  * transfers are always cacheline-aligned.                              *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibda0_u {
 | |
| 	u64 ii_ibda0_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:7;
 | |
| 		u64 i_addr:42;
 | |
| 		u64 i_rsvd:15;
 | |
| 	} ii_ibda0_fld_s;
 | |
| } ii_ibda0_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  Writing to this register sets up the attributes of the transfer     *
 | |
|  * and initiates the transfer operation. Reading this register has      *
 | |
|  * the side effect of terminating any transfer in progress. Note:       *
 | |
|  * stopping a transfer midstream could have an adverse impact on the    *
 | |
|  * other BTE. If a BTE stream has to be stopped (due to error           *
 | |
|  * handling for example), both BTE streams should be stopped and        *
 | |
|  * their transfers discarded.                                           *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibct0_u {
 | |
| 	u64 ii_ibct0_regval;
 | |
| 	struct {
 | |
| 		u64 i_zerofill:1;
 | |
| 		u64 i_rsvd_2:3;
 | |
| 		u64 i_notify:1;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_poison:1;
 | |
| 		u64 i_rsvd:55;
 | |
| 	} ii_ibct0_fld_s;
 | |
| } ii_ibct0_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the address to which the WINV is sent.       *
 | |
|  * This address has to be cache line aligned.                           *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibna0_u {
 | |
| 	u64 ii_ibna0_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:7;
 | |
| 		u64 i_addr:42;
 | |
| 		u64 i_rsvd:15;
 | |
| 	} ii_ibna0_fld_s;
 | |
| } ii_ibna0_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the programmable level as well as the node   *
 | |
|  * ID and PI unit of the processor to which the interrupt will be       *
 | |
|  * sent.								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibia0_u {
 | |
| 	u64 ii_ibia0_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_2:1;
 | |
| 		u64 i_node_id:11;
 | |
| 		u64 i_rsvd_1:4;
 | |
| 		u64 i_level:7;
 | |
| 		u64 i_rsvd:41;
 | |
| 	} ii_ibia0_fld_s;
 | |
| } ii_ibia0_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * Description:  This register is used to set up the length for a       *
 | |
|  * transfer and then to monitor the progress of that transfer. This     *
 | |
|  * register needs to be initialized before a transfer is started. A     *
 | |
|  * legitimate write to this register will set the Busy bit, clear the   *
 | |
|  * Error bit, and initialize the length to the value desired.           *
 | |
|  * While the transfer is in progress, hardware will decrement the       *
 | |
|  * length field with each successful block that is copied. Once the     *
 | |
|  * transfer completes, hardware will clear the Busy bit. The length     *
 | |
|  * field will also contain the number of cache lines left to be         *
 | |
|  * transferred.                                                         *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibls1_u {
 | |
| 	u64 ii_ibls1_regval;
 | |
| 	struct {
 | |
| 		u64 i_length:16;
 | |
| 		u64 i_error:1;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_busy:1;
 | |
| 		u64 i_rsvd:43;
 | |
| 	} ii_ibls1_fld_s;
 | |
| } ii_ibls1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register should be loaded before a transfer is started. The    *
 | |
|  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 | |
|  * address as described in Section 1.3, Figure2 and Figure3. Since      *
 | |
|  * the bottom 7 bits of the address are always taken to be zero, BTE    *
 | |
|  * transfers are always cacheline-aligned.                              *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibsa1_u {
 | |
| 	u64 ii_ibsa1_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:7;
 | |
| 		u64 i_addr:33;
 | |
| 		u64 i_rsvd:24;
 | |
| 	} ii_ibsa1_fld_s;
 | |
| } ii_ibsa1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register should be loaded before a transfer is started. The    *
 | |
|  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 | |
|  * address as described in Section 1.3, Figure2 and Figure3. Since      *
 | |
|  * the bottom 7 bits of the address are always taken to be zero, BTE    *
 | |
|  * transfers are always cacheline-aligned.                              *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibda1_u {
 | |
| 	u64 ii_ibda1_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:7;
 | |
| 		u64 i_addr:33;
 | |
| 		u64 i_rsvd:24;
 | |
| 	} ii_ibda1_fld_s;
 | |
| } ii_ibda1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  Writing to this register sets up the attributes of the transfer     *
 | |
|  * and initiates the transfer operation. Reading this register has      *
 | |
|  * the side effect of terminating any transfer in progress. Note:       *
 | |
|  * stopping a transfer midstream could have an adverse impact on the    *
 | |
|  * other BTE. If a BTE stream has to be stopped (due to error           *
 | |
|  * handling for example), both BTE streams should be stopped and        *
 | |
|  * their transfers discarded.                                           *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibct1_u {
 | |
| 	u64 ii_ibct1_regval;
 | |
| 	struct {
 | |
| 		u64 i_zerofill:1;
 | |
| 		u64 i_rsvd_2:3;
 | |
| 		u64 i_notify:1;
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_poison:1;
 | |
| 		u64 i_rsvd:55;
 | |
| 	} ii_ibct1_fld_s;
 | |
| } ii_ibct1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the address to which the WINV is sent.       *
 | |
|  * This address has to be cache line aligned.                           *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibna1_u {
 | |
| 	u64 ii_ibna1_regval;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:7;
 | |
| 		u64 i_addr:33;
 | |
| 		u64 i_rsvd:24;
 | |
| 	} ii_ibna1_fld_s;
 | |
| } ii_ibna1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register contains the programmable level as well as the node   *
 | |
|  * ID and PI unit of the processor to which the interrupt will be       *
 | |
|  * sent.								*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ibia1_u {
 | |
| 	u64 ii_ibia1_regval;
 | |
| 	struct {
 | |
| 		u64 i_pi_id:1;
 | |
| 		u64 i_node_id:8;
 | |
| 		u64 i_rsvd_1:7;
 | |
| 		u64 i_level:7;
 | |
| 		u64 i_rsvd:41;
 | |
| 	} ii_ibia1_fld_s;
 | |
| } ii_ibia1_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *  This register defines the resources that feed information into      *
 | |
|  * the two performance counters located in the IO Performance           *
 | |
|  * Profiling Register. There are 17 different quantities that can be    *
 | |
|  * measured. Given these 17 different options, the two performance      *
 | |
|  * counters have 15 of them in common; menu selections 0 through 0xE    *
 | |
|  * are identical for each performance counter. As for the other two     *
 | |
|  * options, one is available from one performance counter and the       *
 | |
|  * other is available from the other performance counter. Hence, the    *
 | |
|  * II supports all 17*16=272 possible combinations of quantities to     *
 | |
|  * measure.                                                             *
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ipcr_u {
 | |
| 	u64 ii_ipcr_regval;
 | |
| 	struct {
 | |
| 		u64 i_ippr0_c:4;
 | |
| 		u64 i_ippr1_c:4;
 | |
| 		u64 i_icct:8;
 | |
| 		u64 i_rsvd:48;
 | |
| 	} ii_ipcr_fld_s;
 | |
| } ii_ipcr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  *									*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| typedef union ii_ippr_u {
 | |
| 	u64 ii_ippr_regval;
 | |
| 	struct {
 | |
| 		u64 i_ippr0:32;
 | |
| 		u64 i_ippr1:32;
 | |
| 	} ii_ippr_fld_s;
 | |
| } ii_ippr_u_t;
 | |
| 
 | |
| /************************************************************************
 | |
|  *									*
 | |
|  * The following defines which were not formed into structures are	*
 | |
|  * probably identical to another register, and the name of the		*
 | |
|  * register is provided against each of these registers. This		*
 | |
|  * information needs to be checked carefully				*
 | |
|  *									*
 | |
|  *		IIO_ICRB1_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRB1_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRB1_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRB1_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRB1_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRB2_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRB2_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRB2_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRB2_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRB2_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRB3_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRB3_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRB3_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRB3_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRB3_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRB4_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRB4_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRB4_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRB4_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRB4_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRB5_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRB5_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRB5_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRB5_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRB5_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRB6_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRB6_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRB6_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRB6_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRB6_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRB7_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRB7_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRB7_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRB7_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRB7_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRB8_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRB8_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRB8_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRB8_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRB8_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRB9_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRB9_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRB9_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRB9_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRB9_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRBA_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRBA_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRBA_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRBA_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRBA_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRBB_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRBB_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRBB_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRBB_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRBB_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRBC_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRBC_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRBC_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRBC_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRBC_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRBD_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRBD_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRBD_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRBD_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRBD_E		IIO_ICRB0_E			*
 | |
|  *		IIO_ICRBE_A		IIO_ICRB0_A			*
 | |
|  *		IIO_ICRBE_B		IIO_ICRB0_B			*
 | |
|  *		IIO_ICRBE_C		IIO_ICRB0_C			*
 | |
|  *		IIO_ICRBE_D		IIO_ICRB0_D			*
 | |
|  *		IIO_ICRBE_E		IIO_ICRB0_E			*
 | |
|  *									*
 | |
|  ************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Slightly friendlier names for some common registers.
 | |
|  */
 | |
| #define IIO_WIDGET              IIO_WID		/* Widget identification */
 | |
| #define IIO_WIDGET_STAT         IIO_WSTAT	/* Widget status register */
 | |
| #define IIO_WIDGET_CTRL         IIO_WCR		/* Widget control register */
 | |
| #define IIO_PROTECT             IIO_ILAPR	/* IO interface protection */
 | |
| #define IIO_PROTECT_OVRRD       IIO_ILAPO	/* IO protect override */
 | |
| #define IIO_OUTWIDGET_ACCESS    IIO_IOWA	/* Outbound widget access */
 | |
| #define IIO_INWIDGET_ACCESS     IIO_IIWA	/* Inbound widget access */
 | |
| #define IIO_INDEV_ERR_MASK      IIO_IIDEM	/* Inbound device error mask */
 | |
| #define IIO_LLP_CSR             IIO_ILCSR	/* LLP control and status */
 | |
| #define IIO_LLP_LOG             IIO_ILLR	/* LLP log */
 | |
| #define IIO_XTALKCC_TOUT        IIO_IXCC	/* Xtalk credit count timeout */
 | |
| #define IIO_XTALKTT_TOUT        IIO_IXTT	/* Xtalk tail timeout */
 | |
| #define IIO_IO_ERR_CLR          IIO_IECLR	/* IO error clear */
 | |
| #define IIO_IGFX_0 		IIO_IGFX0
 | |
| #define IIO_IGFX_1 		IIO_IGFX1
 | |
| #define IIO_IBCT_0		IIO_IBCT0
 | |
| #define IIO_IBCT_1		IIO_IBCT1
 | |
| #define IIO_IBLS_0		IIO_IBLS0
 | |
| #define IIO_IBLS_1		IIO_IBLS1
 | |
| #define IIO_IBSA_0		IIO_IBSA0
 | |
| #define IIO_IBSA_1		IIO_IBSA1
 | |
| #define IIO_IBDA_0		IIO_IBDA0
 | |
| #define IIO_IBDA_1		IIO_IBDA1
 | |
| #define IIO_IBNA_0		IIO_IBNA0
 | |
| #define IIO_IBNA_1		IIO_IBNA1
 | |
| #define IIO_IBIA_0		IIO_IBIA0
 | |
| #define IIO_IBIA_1		IIO_IBIA1
 | |
| #define IIO_IOPRB_0		IIO_IPRB0
 | |
| 
 | |
| #define IIO_PRTE_A(_x)		(IIO_IPRTE0_A + (8 * (_x)))
 | |
| #define IIO_PRTE_B(_x)		(IIO_IPRTE0_B + (8 * (_x)))
 | |
| #define IIO_NUM_PRTES		8	/* Total number of PRB table entries */
 | |
| #define IIO_WIDPRTE_A(x)	IIO_PRTE_A(((x) - 8))	/* widget ID to its PRTE num */
 | |
| #define IIO_WIDPRTE_B(x)	IIO_PRTE_B(((x) - 8))	/* widget ID to its PRTE num */
 | |
| 
 | |
| #define IIO_NUM_IPRBS 		9
 | |
| 
 | |
| #define IIO_LLP_CSR_IS_UP		0x00002000
 | |
| #define IIO_LLP_CSR_LLP_STAT_MASK       0x00003000
 | |
| #define IIO_LLP_CSR_LLP_STAT_SHFT       12
 | |
| 
 | |
| #define IIO_LLP_CB_MAX  0xffff	/* in ILLR CB_CNT, Max Check Bit errors */
 | |
| #define IIO_LLP_SN_MAX  0xffff	/* in ILLR SN_CNT, Max Sequence Number errors */
 | |
| 
 | |
| /* key to IIO_PROTECT_OVRRD */
 | |
| #define IIO_PROTECT_OVRRD_KEY   0x53474972756c6573ull	/* "SGIrules" */
 | |
| 
 | |
| /* BTE register names */
 | |
| #define IIO_BTE_STAT_0          IIO_IBLS_0	/* Also BTE length/status 0 */
 | |
| #define IIO_BTE_SRC_0           IIO_IBSA_0	/* Also BTE source address  0 */
 | |
| #define IIO_BTE_DEST_0          IIO_IBDA_0	/* Also BTE dest. address 0 */
 | |
| #define IIO_BTE_CTRL_0          IIO_IBCT_0	/* Also BTE control/terminate 0 */
 | |
| #define IIO_BTE_NOTIFY_0        IIO_IBNA_0	/* Also BTE notification 0 */
 | |
| #define IIO_BTE_INT_0           IIO_IBIA_0	/* Also BTE interrupt 0 */
 | |
| #define IIO_BTE_OFF_0           0	/* Base offset from BTE 0 regs. */
 | |
| #define IIO_BTE_OFF_1   	(IIO_IBLS_1 - IIO_IBLS_0)	/* Offset from base to BTE 1 */
 | |
| 
 | |
| /* BTE register offsets from base */
 | |
| #define BTEOFF_STAT             0
 | |
| #define BTEOFF_SRC      	(IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
 | |
| #define BTEOFF_DEST     	(IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
 | |
| #define BTEOFF_CTRL     	(IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
 | |
| #define BTEOFF_NOTIFY   	(IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
 | |
| #define BTEOFF_INT      	(IIO_BTE_INT_0 - IIO_BTE_STAT_0)
 | |
| 
 | |
| /* names used in shub diags */
 | |
| #define IIO_BASE_BTE0   IIO_IBLS_0
 | |
| #define IIO_BASE_BTE1   IIO_IBLS_1
 | |
| 
 | |
| /*
 | |
|  * Macro which takes the widget number, and returns the
 | |
|  * IO PRB address of that widget.
 | |
|  * value _x is expected to be a widget number in the range
 | |
|  * 0, 8 - 0xF
 | |
|  */
 | |
| #define IIO_IOPRB(_x)	(IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
 | |
|                 	(_x) : \
 | |
|                 	(_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
 | |
| 
 | |
| /* GFX Flow Control Node/Widget Register */
 | |
| #define IIO_IGFX_W_NUM_BITS	4	/* size of widget num field */
 | |
| #define IIO_IGFX_W_NUM_MASK	((1<<IIO_IGFX_W_NUM_BITS)-1)
 | |
| #define IIO_IGFX_W_NUM_SHIFT	0
 | |
| #define IIO_IGFX_PI_NUM_BITS	1	/* size of PI num field */
 | |
| #define IIO_IGFX_PI_NUM_MASK	((1<<IIO_IGFX_PI_NUM_BITS)-1)
 | |
| #define IIO_IGFX_PI_NUM_SHIFT	4
 | |
| #define IIO_IGFX_N_NUM_BITS	8	/* size of node num field */
 | |
| #define IIO_IGFX_N_NUM_MASK	((1<<IIO_IGFX_N_NUM_BITS)-1)
 | |
| #define IIO_IGFX_N_NUM_SHIFT	5
 | |
| #define IIO_IGFX_P_NUM_BITS	1	/* size of processor num field */
 | |
| #define IIO_IGFX_P_NUM_MASK	((1<<IIO_IGFX_P_NUM_BITS)-1)
 | |
| #define IIO_IGFX_P_NUM_SHIFT	16
 | |
| #define IIO_IGFX_INIT(widget, pi, node, cpu)				(\
 | |
| 	(((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) |	 \
 | |
| 	(((pi)     & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)|	 \
 | |
| 	(((node)   & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) |	 \
 | |
| 	(((cpu)    & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
 | |
| 
 | |
| /* Scratch registers (all bits available) */
 | |
| #define IIO_SCRATCH_REG0        IIO_ISCR0
 | |
| #define IIO_SCRATCH_REG1        IIO_ISCR1
 | |
| #define IIO_SCRATCH_MASK        0xffffffffffffffffUL
 | |
| 
 | |
| #define IIO_SCRATCH_BIT0_0      0x0000000000000001UL
 | |
| #define IIO_SCRATCH_BIT0_1      0x0000000000000002UL
 | |
| #define IIO_SCRATCH_BIT0_2      0x0000000000000004UL
 | |
| #define IIO_SCRATCH_BIT0_3      0x0000000000000008UL
 | |
| #define IIO_SCRATCH_BIT0_4      0x0000000000000010UL
 | |
| #define IIO_SCRATCH_BIT0_5      0x0000000000000020UL
 | |
| #define IIO_SCRATCH_BIT0_6      0x0000000000000040UL
 | |
| #define IIO_SCRATCH_BIT0_7      0x0000000000000080UL
 | |
| #define IIO_SCRATCH_BIT0_8      0x0000000000000100UL
 | |
| #define IIO_SCRATCH_BIT0_9      0x0000000000000200UL
 | |
| #define IIO_SCRATCH_BIT0_A      0x0000000000000400UL
 | |
| 
 | |
| #define IIO_SCRATCH_BIT1_0      0x0000000000000001UL
 | |
| #define IIO_SCRATCH_BIT1_1      0x0000000000000002UL
 | |
| /* IO Translation Table Entries */
 | |
| #define IIO_NUM_ITTES   7	/* ITTEs numbered 0..6 */
 | |
| 					/* Hw manuals number them 1..7! */
 | |
| /*
 | |
|  * IIO_IMEM Register fields.
 | |
|  */
 | |
| #define IIO_IMEM_W0ESD  0x1UL	/* Widget 0 shut down due to error */
 | |
| #define IIO_IMEM_B0ESD	(1UL << 4)	/* BTE 0 shut down due to error */
 | |
| #define IIO_IMEM_B1ESD	(1UL << 8)	/* BTE 1 Shut down due to error */
 | |
| 
 | |
| /*
 | |
|  * As a permanent workaround for a bug in the PI side of the shub, we've
 | |
|  * redefined big window 7 as small window 0.
 | |
|  XXX does this still apply for SN1??
 | |
|  */
 | |
| #define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)
 | |
| 
 | |
| /*
 | |
|  * Use the top big window as a surrogate for the first small window
 | |
|  */
 | |
| #define SWIN0_BIGWIN            HUB_NUM_BIG_WINDOW
 | |
| 
 | |
| #define ILCSR_WARM_RESET        0x100
 | |
| 
 | |
| /*
 | |
|  * CRB manipulation macros
 | |
|  *	The CRB macros are slightly complicated, since there are up to
 | |
|  *	four registers associated with each CRB entry.
 | |
|  */
 | |
| #define IIO_NUM_CRBS            15	/* Number of CRBs */
 | |
| #define IIO_NUM_PC_CRBS         4	/* Number of partial cache CRBs */
 | |
| #define IIO_ICRB_OFFSET         8
 | |
| #define IIO_ICRB_0              IIO_ICRB0_A
 | |
| #define IIO_ICRB_ADDR_SHFT	2	/* Shift to get proper address */
 | |
| /* XXX - This is now tuneable:
 | |
|         #define IIO_FIRST_PC_ENTRY 12
 | |
|  */
 | |
| 
 | |
| #define IIO_ICRB_A(_x)	((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
 | |
| #define IIO_ICRB_B(_x)	((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
 | |
| #define IIO_ICRB_C(_x)	((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
 | |
| #define IIO_ICRB_D(_x)	((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
 | |
| #define IIO_ICRB_E(_x)	((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
 | |
| 
 | |
| #define TNUM_TO_WIDGET_DEV(_tnum)	(_tnum & 0x7)
 | |
| 
 | |
| /*
 | |
|  * values for "ecode" field
 | |
|  */
 | |
| #define IIO_ICRB_ECODE_DERR     0	/* Directory error due to IIO access */
 | |
| #define IIO_ICRB_ECODE_PERR     1	/* Poison error on IO access */
 | |
| #define IIO_ICRB_ECODE_WERR     2	/* Write error by IIO access
 | |
| 					 * e.g. WINV to a Read only line. */
 | |
| #define IIO_ICRB_ECODE_AERR     3	/* Access error caused by IIO access */
 | |
| #define IIO_ICRB_ECODE_PWERR    4	/* Error on partial write */
 | |
| #define IIO_ICRB_ECODE_PRERR    5	/* Error on partial read  */
 | |
| #define IIO_ICRB_ECODE_TOUT     6	/* CRB timeout before deallocating */
 | |
| #define IIO_ICRB_ECODE_XTERR    7	/* Incoming xtalk pkt had error bit */
 | |
| 
 | |
| /*
 | |
|  * Values for field imsgtype
 | |
|  */
 | |
| #define IIO_ICRB_IMSGT_XTALK    0	/* Incoming message from Xtalk */
 | |
| #define IIO_ICRB_IMSGT_BTE      1	/* Incoming message from BTE    */
 | |
| #define IIO_ICRB_IMSGT_SN1NET   2	/* Incoming message from SN1 net */
 | |
| #define IIO_ICRB_IMSGT_CRB      3	/* Incoming message from CRB ???  */
 | |
| 
 | |
| /*
 | |
|  * values for field initiator.
 | |
|  */
 | |
| #define IIO_ICRB_INIT_XTALK     0	/* Message originated in xtalk  */
 | |
| #define IIO_ICRB_INIT_BTE0      0x1	/* Message originated in BTE 0  */
 | |
| #define IIO_ICRB_INIT_SN1NET    0x2	/* Message originated in SN1net */
 | |
| #define IIO_ICRB_INIT_CRB       0x3	/* Message originated in CRB ?  */
 | |
| #define IIO_ICRB_INIT_BTE1      0x5	/* MEssage originated in BTE 1  */
 | |
| 
 | |
| /*
 | |
|  * Number of credits Hub widget has while sending req/response to
 | |
|  * xbow.
 | |
|  * Value of 3 is required by Xbow 1.1
 | |
|  * We may be able to increase this to 4 with Xbow 1.2.
 | |
|  */
 | |
| #define		   HUBII_XBOW_CREDIT       3
 | |
| #define		   HUBII_XBOW_REV2_CREDIT  4
 | |
| 
 | |
| /*
 | |
|  * Number of credits that xtalk devices should use when communicating
 | |
|  * with a SHub (depth of SHub's queue).
 | |
|  */
 | |
| #define HUB_CREDIT 4
 | |
| 
 | |
| /*
 | |
|  * Some IIO_PRB fields
 | |
|  */
 | |
| #define IIO_PRB_MULTI_ERR	(1LL << 63)
 | |
| #define IIO_PRB_SPUR_RD		(1LL << 51)
 | |
| #define IIO_PRB_SPUR_WR		(1LL << 50)
 | |
| #define IIO_PRB_RD_TO		(1LL << 49)
 | |
| #define IIO_PRB_ERROR		(1LL << 48)
 | |
| 
 | |
| /*************************************************************************
 | |
| 
 | |
|  Some of the IIO field masks and shifts are defined here.
 | |
|  This is in order to maintain compatibility in SN0 and SN1 code
 | |
|  
 | |
| **************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * ICMR register fields
 | |
|  * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
 | |
|  * present in SHub)
 | |
|  */
 | |
| 
 | |
| #define IIO_ICMR_CRB_VLD_SHFT   20
 | |
| #define IIO_ICMR_CRB_VLD_MASK	(0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
 | |
| 
 | |
| #define IIO_ICMR_FC_CNT_SHFT    16
 | |
| #define IIO_ICMR_FC_CNT_MASK	(0xf << IIO_ICMR_FC_CNT_SHFT)
 | |
| 
 | |
| #define IIO_ICMR_C_CNT_SHFT     4
 | |
| #define IIO_ICMR_C_CNT_MASK	(0xf << IIO_ICMR_C_CNT_SHFT)
 | |
| 
 | |
| #define IIO_ICMR_PRECISE	(1UL << 52)
 | |
| #define IIO_ICMR_CLR_RPPD	(1UL << 13)
 | |
| #define IIO_ICMR_CLR_RQPD	(1UL << 12)
 | |
| 
 | |
| /*
 | |
|  * IIO PIO Deallocation register field masks : (IIO_IPDR)
 | |
|  XXX present but not needed in bedrock?  See the manual.
 | |
|  */
 | |
| #define IIO_IPDR_PND    	(1 << 4)
 | |
| 
 | |
| /*
 | |
|  * IIO CRB deallocation register field masks: (IIO_ICDR)
 | |
|  */
 | |
| #define IIO_ICDR_PND    	(1 << 4)
 | |
| 
 | |
| /* 
 | |
|  * IO BTE Length/Status (IIO_IBLS) register bit field definitions
 | |
|  */
 | |
| #define IBLS_BUSY		(0x1UL << 20)
 | |
| #define IBLS_ERROR_SHFT		16
 | |
| #define IBLS_ERROR		(0x1UL << IBLS_ERROR_SHFT)
 | |
| #define IBLS_LENGTH_MASK	0xffff
 | |
| 
 | |
| /*
 | |
|  * IO BTE Control/Terminate register (IBCT) register bit field definitions
 | |
|  */
 | |
| #define IBCT_POISON		(0x1UL << 8)
 | |
| #define IBCT_NOTIFY		(0x1UL << 4)
 | |
| #define IBCT_ZFIL_MODE		(0x1UL << 0)
 | |
| 
 | |
| /*
 | |
|  * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
 | |
|  */
 | |
| #define IIEPH1_VALID		(1UL << 44)
 | |
| #define IIEPH1_OVERRUN		(1UL << 40)
 | |
| #define IIEPH1_ERR_TYPE_SHFT	32
 | |
| #define IIEPH1_ERR_TYPE_MASK	0xf
 | |
| #define IIEPH1_SOURCE_SHFT	20
 | |
| #define IIEPH1_SOURCE_MASK	11
 | |
| #define IIEPH1_SUPPL_SHFT	8
 | |
| #define IIEPH1_SUPPL_MASK	11
 | |
| #define IIEPH1_CMD_SHFT		0
 | |
| #define IIEPH1_CMD_MASK		7
 | |
| 
 | |
| #define IIEPH2_TAIL		(1UL << 40)
 | |
| #define IIEPH2_ADDRESS_SHFT	0
 | |
| #define IIEPH2_ADDRESS_MASK	38
 | |
| 
 | |
| #define IIEPH1_ERR_SHORT_REQ	2
 | |
| #define IIEPH1_ERR_SHORT_REPLY	3
 | |
| #define IIEPH1_ERR_LONG_REQ	4
 | |
| #define IIEPH1_ERR_LONG_REPLY	5
 | |
| 
 | |
| /*
 | |
|  * IO Error Clear register bit field definitions
 | |
|  */
 | |
| #define IECLR_PI1_FWD_INT	(1UL << 31)	/* clear PI1_FORWARD_INT in iidsr */
 | |
| #define IECLR_PI0_FWD_INT	(1UL << 30)	/* clear PI0_FORWARD_INT in iidsr */
 | |
| #define IECLR_SPUR_RD_HDR	(1UL << 29)	/* clear valid bit in ixss reg */
 | |
| #define IECLR_BTE1		(1UL << 18)	/* clear bte error 1 */
 | |
| #define IECLR_BTE0		(1UL << 17)	/* clear bte error 0 */
 | |
| #define IECLR_CRAZY		(1UL << 16)	/* clear crazy bit in wstat reg */
 | |
| #define IECLR_PRB_F		(1UL << 15)	/* clear err bit in PRB_F reg */
 | |
| #define IECLR_PRB_E		(1UL << 14)	/* clear err bit in PRB_E reg */
 | |
| #define IECLR_PRB_D		(1UL << 13)	/* clear err bit in PRB_D reg */
 | |
| #define IECLR_PRB_C		(1UL << 12)	/* clear err bit in PRB_C reg */
 | |
| #define IECLR_PRB_B		(1UL << 11)	/* clear err bit in PRB_B reg */
 | |
| #define IECLR_PRB_A		(1UL << 10)	/* clear err bit in PRB_A reg */
 | |
| #define IECLR_PRB_9		(1UL << 9)	/* clear err bit in PRB_9 reg */
 | |
| #define IECLR_PRB_8		(1UL << 8)	/* clear err bit in PRB_8 reg */
 | |
| #define IECLR_PRB_0		(1UL << 0)	/* clear err bit in PRB_0 reg */
 | |
| 
 | |
| /*
 | |
|  * IIO CRB control register Fields: IIO_ICCR 
 | |
|  */
 | |
| #define	IIO_ICCR_PENDING	0x10000
 | |
| #define	IIO_ICCR_CMD_MASK	0xFF
 | |
| #define	IIO_ICCR_CMD_SHFT	7
 | |
| #define	IIO_ICCR_CMD_NOP	0x0	/* No Op */
 | |
| #define	IIO_ICCR_CMD_WAKE	0x100	/* Reactivate CRB entry and process */
 | |
| #define	IIO_ICCR_CMD_TIMEOUT	0x200	/* Make CRB timeout & mark invalid */
 | |
| #define	IIO_ICCR_CMD_EJECT	0x400	/* Contents of entry written to memory
 | |
| 					 * via a WB
 | |
| 					 */
 | |
| #define	IIO_ICCR_CMD_FLUSH	0x800
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * CRB Register description.
 | |
|  *
 | |
|  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 | |
|  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 | |
|  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 | |
|  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 | |
|  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 | |
|  *
 | |
|  * Many of the fields in CRB are status bits used by hardware
 | |
|  * for implementation of the protocol. It's very dangerous to
 | |
|  * mess around with the CRB registers.
 | |
|  *
 | |
|  * It's OK to read the CRB registers and try to make sense out of the
 | |
|  * fields in CRB.
 | |
|  *
 | |
|  * Updating CRB requires all activities in Hub IIO to be quiesced.
 | |
|  * otherwise, a write to CRB could corrupt other CRB entries.
 | |
|  * CRBs are here only as a back door peek to shub IIO's status.
 | |
|  * Quiescing implies  no dmas no PIOs
 | |
|  * either directly from the cpu or from sn0net.
 | |
|  * this is not something that can be done easily. So, AVOID updating
 | |
|  * CRBs.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Easy access macros for CRBs, all 5 registers (A-E)
 | |
|  */
 | |
| typedef ii_icrb0_a_u_t icrba_t;
 | |
| #define a_sidn		ii_icrb0_a_fld_s.ia_sidn
 | |
| #define a_tnum		ii_icrb0_a_fld_s.ia_tnum
 | |
| #define a_addr          ii_icrb0_a_fld_s.ia_addr
 | |
| #define a_valid         ii_icrb0_a_fld_s.ia_vld
 | |
| #define a_iow           ii_icrb0_a_fld_s.ia_iow
 | |
| #define a_regvalue	ii_icrb0_a_regval
 | |
| 
 | |
| typedef ii_icrb0_b_u_t icrbb_t;
 | |
| #define b_use_old       ii_icrb0_b_fld_s.ib_use_old
 | |
| #define b_imsgtype      ii_icrb0_b_fld_s.ib_imsgtype
 | |
| #define b_imsg          ii_icrb0_b_fld_s.ib_imsg
 | |
| #define b_initiator     ii_icrb0_b_fld_s.ib_init
 | |
| #define b_exc           ii_icrb0_b_fld_s.ib_exc
 | |
| #define b_ackcnt        ii_icrb0_b_fld_s.ib_ack_cnt
 | |
| #define b_resp          ii_icrb0_b_fld_s.ib_resp
 | |
| #define b_ack           ii_icrb0_b_fld_s.ib_ack
 | |
| #define b_hold          ii_icrb0_b_fld_s.ib_hold
 | |
| #define b_wb            ii_icrb0_b_fld_s.ib_wb
 | |
| #define b_intvn         ii_icrb0_b_fld_s.ib_intvn
 | |
| #define b_stall_ib      ii_icrb0_b_fld_s.ib_stall_ib
 | |
| #define b_stall_int     ii_icrb0_b_fld_s.ib_stall__intr
 | |
| #define b_stall_bte_0   ii_icrb0_b_fld_s.ib_stall__bte_0
 | |
| #define b_stall_bte_1   ii_icrb0_b_fld_s.ib_stall__bte_1
 | |
| #define b_error         ii_icrb0_b_fld_s.ib_error
 | |
| #define b_ecode         ii_icrb0_b_fld_s.ib_errcode
 | |
| #define b_lnetuce       ii_icrb0_b_fld_s.ib_ln_uce
 | |
| #define b_mark          ii_icrb0_b_fld_s.ib_mark
 | |
| #define b_xerr          ii_icrb0_b_fld_s.ib_xt_err
 | |
| #define b_regvalue	ii_icrb0_b_regval
 | |
| 
 | |
| typedef ii_icrb0_c_u_t icrbc_t;
 | |
| #define c_suppl         ii_icrb0_c_fld_s.ic_suppl
 | |
| #define c_barrop        ii_icrb0_c_fld_s.ic_bo
 | |
| #define c_doresp        ii_icrb0_c_fld_s.ic_resprqd
 | |
| #define c_gbr           ii_icrb0_c_fld_s.ic_gbr
 | |
| #define c_btenum        ii_icrb0_c_fld_s.ic_bte_num
 | |
| #define c_cohtrans      ii_icrb0_c_fld_s.ic_ct
 | |
| #define c_xtsize        ii_icrb0_c_fld_s.ic_size
 | |
| #define c_source        ii_icrb0_c_fld_s.ic_source
 | |
| #define c_regvalue	ii_icrb0_c_regval
 | |
| 
 | |
| typedef ii_icrb0_d_u_t icrbd_t;
 | |
| #define d_sleep         ii_icrb0_d_fld_s.id_sleep
 | |
| #define d_pricnt        ii_icrb0_d_fld_s.id_pr_cnt
 | |
| #define d_pripsc        ii_icrb0_d_fld_s.id_pr_psc
 | |
| #define d_bteop         ii_icrb0_d_fld_s.id_bte_op
 | |
| #define d_bteaddr       ii_icrb0_d_fld_s.id_pa_be	/* ic_pa_be fld has 2 names */
 | |
| #define d_benable       ii_icrb0_d_fld_s.id_pa_be	/* ic_pa_be fld has 2 names */
 | |
| #define d_regvalue	ii_icrb0_d_regval
 | |
| 
 | |
| typedef ii_icrb0_e_u_t icrbe_t;
 | |
| #define icrbe_ctxtvld   ii_icrb0_e_fld_s.ie_cvld
 | |
| #define icrbe_toutvld   ii_icrb0_e_fld_s.ie_tvld
 | |
| #define icrbe_context   ii_icrb0_e_fld_s.ie_context
 | |
| #define icrbe_timeout   ii_icrb0_e_fld_s.ie_timeout
 | |
| #define e_regvalue	ii_icrb0_e_regval
 | |
| 
 | |
| /* Number of widgets supported by shub */
 | |
| #define HUB_NUM_WIDGET          9
 | |
| #define HUB_WIDGET_ID_MIN       0x8
 | |
| #define HUB_WIDGET_ID_MAX       0xf
 | |
| 
 | |
| #define HUB_WIDGET_PART_NUM     0xc120
 | |
| #define MAX_HUBS_PER_XBOW       2
 | |
| 
 | |
| /* A few more #defines for backwards compatibility */
 | |
| #define iprb_t          ii_iprb0_u_t
 | |
| #define iprb_regval     ii_iprb0_regval
 | |
| #define iprb_mult_err	ii_iprb0_fld_s.i_mult_err
 | |
| #define iprb_spur_rd	ii_iprb0_fld_s.i_spur_rd
 | |
| #define iprb_spur_wr	ii_iprb0_fld_s.i_spur_wr
 | |
| #define iprb_rd_to	ii_iprb0_fld_s.i_rd_to
 | |
| #define iprb_ovflow     ii_iprb0_fld_s.i_of_cnt
 | |
| #define iprb_error      ii_iprb0_fld_s.i_error
 | |
| #define iprb_ff         ii_iprb0_fld_s.i_f
 | |
| #define iprb_mode       ii_iprb0_fld_s.i_m
 | |
| #define iprb_bnakctr    ii_iprb0_fld_s.i_nb
 | |
| #define iprb_anakctr    ii_iprb0_fld_s.i_na
 | |
| #define iprb_xtalkctr   ii_iprb0_fld_s.i_c
 | |
| 
 | |
| #define LNK_STAT_WORKING        0x2		/* LLP is working */
 | |
| 
 | |
| #define IIO_WSTAT_ECRAZY	(1ULL << 32)	/* Hub gone crazy */
 | |
| #define IIO_WSTAT_TXRETRY	(1ULL << 9)	/* Hub Tx Retry timeout */
 | |
| #define IIO_WSTAT_TXRETRY_MASK  0x7F		/* should be 0xFF?? */
 | |
| #define IIO_WSTAT_TXRETRY_SHFT  16
 | |
| #define IIO_WSTAT_TXRETRY_CNT(w)	(((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
 | |
|                           		IIO_WSTAT_TXRETRY_MASK)
 | |
| 
 | |
| /* Number of II perf. counters we can multiplex at once */
 | |
| 
 | |
| #define IO_PERF_SETS	32
 | |
| 
 | |
| /* Bit for the widget in inbound access register */
 | |
| #define IIO_IIWA_WIDGET(_w)	((u64)(1ULL << _w))
 | |
| /* Bit for the widget in outbound access register */
 | |
| #define IIO_IOWA_WIDGET(_w)	((u64)(1ULL << _w))
 | |
| 
 | |
| /* NOTE: The following define assumes that we are going to get
 | |
|  * widget numbers from 8 thru F and the device numbers within
 | |
|  * widget from 0 thru 7.
 | |
|  */
 | |
| #define IIO_IIDEM_WIDGETDEV_MASK(w, d)	((u64)(1ULL << (8 * ((w) - 8) + (d))))
 | |
| 
 | |
| /* IO Interrupt Destination Register */
 | |
| #define IIO_IIDSR_SENT_SHIFT    28
 | |
| #define IIO_IIDSR_SENT_MASK     0x30000000
 | |
| #define IIO_IIDSR_ENB_SHIFT     24
 | |
| #define IIO_IIDSR_ENB_MASK      0x01000000
 | |
| #define IIO_IIDSR_NODE_SHIFT    9
 | |
| #define IIO_IIDSR_NODE_MASK     0x000ff700
 | |
| #define IIO_IIDSR_PI_ID_SHIFT   8
 | |
| #define IIO_IIDSR_PI_ID_MASK    0x00000100
 | |
| #define IIO_IIDSR_LVL_SHIFT     0
 | |
| #define IIO_IIDSR_LVL_MASK      0x000000ff
 | |
| 
 | |
| /* Xtalk timeout threshold register (IIO_IXTT) */
 | |
| #define IXTT_RRSP_TO_SHFT	55	/* read response timeout */
 | |
| #define IXTT_RRSP_TO_MASK	(0x1FULL << IXTT_RRSP_TO_SHFT)
 | |
| #define IXTT_RRSP_PS_SHFT	32	/* read responsed TO prescalar */
 | |
| #define IXTT_RRSP_PS_MASK	(0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
 | |
| #define IXTT_TAIL_TO_SHFT	0	/* tail timeout counter threshold */
 | |
| #define IXTT_TAIL_TO_MASK	(0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
 | |
| 
 | |
| /*
 | |
|  * The IO LLP control status register and widget control register
 | |
|  */
 | |
| 
 | |
| typedef union hubii_wcr_u {
 | |
| 	u64 wcr_reg_value;
 | |
| 	struct {
 | |
| 		u64 wcr_widget_id:4,	/* LLP crossbar credit */
 | |
| 		 wcr_tag_mode:1,	/* Tag mode */
 | |
| 		 wcr_rsvd1:8,	/* Reserved */
 | |
| 		 wcr_xbar_crd:3,	/* LLP crossbar credit */
 | |
| 		 wcr_f_bad_pkt:1,	/* Force bad llp pkt enable */
 | |
| 		 wcr_dir_con:1,	/* widget direct connect */
 | |
| 		 wcr_e_thresh:5,	/* elasticity threshold */
 | |
| 		 wcr_rsvd:41;	/* unused */
 | |
| 	} wcr_fields_s;
 | |
| } hubii_wcr_t;
 | |
| 
 | |
| #define iwcr_dir_con    wcr_fields_s.wcr_dir_con
 | |
| 
 | |
| /* The structures below are defined to extract and modify the ii
 | |
| performance registers */
 | |
| 
 | |
| /* io_perf_sel allows the caller to specify what tests will be
 | |
|    performed */
 | |
| 
 | |
| typedef union io_perf_sel {
 | |
| 	u64 perf_sel_reg;
 | |
| 	struct {
 | |
| 		u64 perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
 | |
| 	} perf_sel_bits;
 | |
| } io_perf_sel_t;
 | |
| 
 | |
| /* io_perf_cnt is to extract the count from the shub registers. Due to
 | |
|    hardware problems there is only one counter, not two. */
 | |
| 
 | |
| typedef union io_perf_cnt {
 | |
| 	u64 perf_cnt;
 | |
| 	struct {
 | |
| 		u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
 | |
| 	} perf_cnt_bits;
 | |
| 
 | |
| } io_perf_cnt_t;
 | |
| 
 | |
| typedef union iprte_a {
 | |
| 	u64 entry;
 | |
| 	struct {
 | |
| 		u64 i_rsvd_1:3;
 | |
| 		u64 i_addr:38;
 | |
| 		u64 i_init:3;
 | |
| 		u64 i_source:8;
 | |
| 		u64 i_rsvd:2;
 | |
| 		u64 i_widget:4;
 | |
| 		u64 i_to_cnt:5;
 | |
| 		u64 i_vld:1;
 | |
| 	} iprte_fields;
 | |
| } iprte_a_t;
 | |
| 
 | |
| #endif				/* _ASM_IA64_SN_SHUBIO_H */
 | 
