452 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			452 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * aes-ce-glue.c - wrapper code for ARMv8 AES
 | |
|  *
 | |
|  * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <asm/hwcap.h>
 | |
| #include <asm/neon.h>
 | |
| #include <asm/hwcap.h>
 | |
| #include <crypto/aes.h>
 | |
| #include <crypto/internal/simd.h>
 | |
| #include <crypto/internal/skcipher.h>
 | |
| #include <linux/cpufeature.h>
 | |
| #include <linux/module.h>
 | |
| #include <crypto/xts.h>
 | |
| 
 | |
| MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
 | |
| MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
 | |
| MODULE_LICENSE("GPL v2");
 | |
| 
 | |
| /* defined in aes-ce-core.S */
 | |
| asmlinkage u32 ce_aes_sub(u32 input);
 | |
| asmlinkage void ce_aes_invert(void *dst, void *src);
 | |
| 
 | |
| asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
 | |
| 				   int rounds, int blocks);
 | |
| asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
 | |
| 				   int rounds, int blocks);
 | |
| 
 | |
| asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
 | |
| 				   int rounds, int blocks, u8 iv[]);
 | |
| asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
 | |
| 				   int rounds, int blocks, u8 iv[]);
 | |
| 
 | |
| asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
 | |
| 				   int rounds, int blocks, u8 ctr[]);
 | |
| 
 | |
| asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
 | |
| 				   int rounds, int blocks, u8 iv[],
 | |
| 				   u8 const rk2[], int first);
 | |
| asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
 | |
| 				   int rounds, int blocks, u8 iv[],
 | |
| 				   u8 const rk2[], int first);
 | |
| 
 | |
| struct aes_block {
 | |
| 	u8 b[AES_BLOCK_SIZE];
 | |
| };
 | |
| 
 | |
| static int num_rounds(struct crypto_aes_ctx *ctx)
 | |
| {
 | |
| 	/*
 | |
| 	 * # of rounds specified by AES:
 | |
| 	 * 128 bit key		10 rounds
 | |
| 	 * 192 bit key		12 rounds
 | |
| 	 * 256 bit key		14 rounds
 | |
| 	 * => n byte key	=> 6 + (n/4) rounds
 | |
| 	 */
 | |
| 	return 6 + ctx->key_length / 4;
 | |
| }
 | |
| 
 | |
| static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
 | |
| 			    unsigned int key_len)
 | |
| {
 | |
| 	/*
 | |
| 	 * The AES key schedule round constants
 | |
| 	 */
 | |
| 	static u8 const rcon[] = {
 | |
| 		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
 | |
| 	};
 | |
| 
 | |
| 	u32 kwords = key_len / sizeof(u32);
 | |
| 	struct aes_block *key_enc, *key_dec;
 | |
| 	int i, j;
 | |
| 
 | |
| 	if (key_len != AES_KEYSIZE_128 &&
 | |
| 	    key_len != AES_KEYSIZE_192 &&
 | |
| 	    key_len != AES_KEYSIZE_256)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(ctx->key_enc, in_key, key_len);
 | |
| 	ctx->key_length = key_len;
 | |
| 
 | |
| 	kernel_neon_begin();
 | |
| 	for (i = 0; i < sizeof(rcon); i++) {
 | |
| 		u32 *rki = ctx->key_enc + (i * kwords);
 | |
| 		u32 *rko = rki + kwords;
 | |
| 
 | |
| #ifndef CONFIG_CPU_BIG_ENDIAN
 | |
| 		rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
 | |
| 		rko[0] = rko[0] ^ rki[0] ^ rcon[i];
 | |
| #else
 | |
| 		rko[0] = rol32(ce_aes_sub(rki[kwords - 1]), 8);
 | |
| 		rko[0] = rko[0] ^ rki[0] ^ (rcon[i] << 24);
 | |
| #endif
 | |
| 		rko[1] = rko[0] ^ rki[1];
 | |
| 		rko[2] = rko[1] ^ rki[2];
 | |
| 		rko[3] = rko[2] ^ rki[3];
 | |
| 
 | |
| 		if (key_len == AES_KEYSIZE_192) {
 | |
| 			if (i >= 7)
 | |
| 				break;
 | |
| 			rko[4] = rko[3] ^ rki[4];
 | |
| 			rko[5] = rko[4] ^ rki[5];
 | |
| 		} else if (key_len == AES_KEYSIZE_256) {
 | |
| 			if (i >= 6)
 | |
| 				break;
 | |
| 			rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
 | |
| 			rko[5] = rko[4] ^ rki[5];
 | |
| 			rko[6] = rko[5] ^ rki[6];
 | |
| 			rko[7] = rko[6] ^ rki[7];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate the decryption keys for the Equivalent Inverse Cipher.
 | |
| 	 * This involves reversing the order of the round keys, and applying
 | |
| 	 * the Inverse Mix Columns transformation on all but the first and
 | |
| 	 * the last one.
 | |
| 	 */
 | |
| 	key_enc = (struct aes_block *)ctx->key_enc;
 | |
| 	key_dec = (struct aes_block *)ctx->key_dec;
 | |
| 	j = num_rounds(ctx);
 | |
| 
 | |
| 	key_dec[0] = key_enc[j];
 | |
| 	for (i = 1, j--; j > 0; i++, j--)
 | |
| 		ce_aes_invert(key_dec + i, key_enc + j);
 | |
| 	key_dec[i] = key_enc[0];
 | |
| 
 | |
| 	kernel_neon_end();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
 | |
| 			 unsigned int key_len)
 | |
| {
 | |
| 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = ce_aes_expandkey(ctx, in_key, key_len);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| struct crypto_aes_xts_ctx {
 | |
| 	struct crypto_aes_ctx key1;
 | |
| 	struct crypto_aes_ctx __aligned(8) key2;
 | |
| };
 | |
| 
 | |
| static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
 | |
| 		       unsigned int key_len)
 | |
| {
 | |
| 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = xts_verify_key(tfm, in_key, key_len);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
 | |
| 	if (!ret)
 | |
| 		ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
 | |
| 				       key_len / 2);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int ecb_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct skcipher_walk walk;
 | |
| 	unsigned int blocks;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skcipher_walk_virt(&walk, req, true);
 | |
| 
 | |
| 	kernel_neon_begin();
 | |
| 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
 | |
| 		ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
 | |
| 				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks);
 | |
| 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
 | |
| 	}
 | |
| 	kernel_neon_end();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int ecb_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct skcipher_walk walk;
 | |
| 	unsigned int blocks;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skcipher_walk_virt(&walk, req, true);
 | |
| 
 | |
| 	kernel_neon_begin();
 | |
| 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
 | |
| 		ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
 | |
| 				   (u8 *)ctx->key_dec, num_rounds(ctx), blocks);
 | |
| 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
 | |
| 	}
 | |
| 	kernel_neon_end();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int cbc_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct skcipher_walk walk;
 | |
| 	unsigned int blocks;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skcipher_walk_virt(&walk, req, true);
 | |
| 
 | |
| 	kernel_neon_begin();
 | |
| 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
 | |
| 		ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
 | |
| 				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
 | |
| 				   walk.iv);
 | |
| 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
 | |
| 	}
 | |
| 	kernel_neon_end();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int cbc_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct skcipher_walk walk;
 | |
| 	unsigned int blocks;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skcipher_walk_virt(&walk, req, true);
 | |
| 
 | |
| 	kernel_neon_begin();
 | |
| 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
 | |
| 		ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
 | |
| 				   (u8 *)ctx->key_dec, num_rounds(ctx), blocks,
 | |
| 				   walk.iv);
 | |
| 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
 | |
| 	}
 | |
| 	kernel_neon_end();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int ctr_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct skcipher_walk walk;
 | |
| 	int err, blocks;
 | |
| 
 | |
| 	err = skcipher_walk_virt(&walk, req, true);
 | |
| 
 | |
| 	kernel_neon_begin();
 | |
| 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
 | |
| 		ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
 | |
| 				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
 | |
| 				   walk.iv);
 | |
| 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
 | |
| 	}
 | |
| 	if (walk.nbytes) {
 | |
| 		u8 __aligned(8) tail[AES_BLOCK_SIZE];
 | |
| 		unsigned int nbytes = walk.nbytes;
 | |
| 		u8 *tdst = walk.dst.virt.addr;
 | |
| 		u8 *tsrc = walk.src.virt.addr;
 | |
| 
 | |
| 		/*
 | |
| 		 * Tell aes_ctr_encrypt() to process a tail block.
 | |
| 		 */
 | |
| 		blocks = -1;
 | |
| 
 | |
| 		ce_aes_ctr_encrypt(tail, NULL, (u8 *)ctx->key_enc,
 | |
| 				   num_rounds(ctx), blocks, walk.iv);
 | |
| 		crypto_xor_cpy(tdst, tsrc, tail, nbytes);
 | |
| 		err = skcipher_walk_done(&walk, 0);
 | |
| 	}
 | |
| 	kernel_neon_end();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int xts_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	int err, first, rounds = num_rounds(&ctx->key1);
 | |
| 	struct skcipher_walk walk;
 | |
| 	unsigned int blocks;
 | |
| 
 | |
| 	err = skcipher_walk_virt(&walk, req, true);
 | |
| 
 | |
| 	kernel_neon_begin();
 | |
| 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
 | |
| 		ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
 | |
| 				   (u8 *)ctx->key1.key_enc, rounds, blocks,
 | |
| 				   walk.iv, (u8 *)ctx->key2.key_enc, first);
 | |
| 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
 | |
| 	}
 | |
| 	kernel_neon_end();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int xts_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	int err, first, rounds = num_rounds(&ctx->key1);
 | |
| 	struct skcipher_walk walk;
 | |
| 	unsigned int blocks;
 | |
| 
 | |
| 	err = skcipher_walk_virt(&walk, req, true);
 | |
| 
 | |
| 	kernel_neon_begin();
 | |
| 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
 | |
| 		ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
 | |
| 				   (u8 *)ctx->key1.key_dec, rounds, blocks,
 | |
| 				   walk.iv, (u8 *)ctx->key2.key_enc, first);
 | |
| 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
 | |
| 	}
 | |
| 	kernel_neon_end();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct skcipher_alg aes_algs[] = { {
 | |
| 	.base = {
 | |
| 		.cra_name		= "__ecb(aes)",
 | |
| 		.cra_driver_name	= "__ecb-aes-ce",
 | |
| 		.cra_priority		= 300,
 | |
| 		.cra_flags		= CRYPTO_ALG_INTERNAL,
 | |
| 		.cra_blocksize		= AES_BLOCK_SIZE,
 | |
| 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
 | |
| 		.cra_module		= THIS_MODULE,
 | |
| 	},
 | |
| 	.min_keysize	= AES_MIN_KEY_SIZE,
 | |
| 	.max_keysize	= AES_MAX_KEY_SIZE,
 | |
| 	.setkey		= ce_aes_setkey,
 | |
| 	.encrypt	= ecb_encrypt,
 | |
| 	.decrypt	= ecb_decrypt,
 | |
| }, {
 | |
| 	.base = {
 | |
| 		.cra_name		= "__cbc(aes)",
 | |
| 		.cra_driver_name	= "__cbc-aes-ce",
 | |
| 		.cra_priority		= 300,
 | |
| 		.cra_flags		= CRYPTO_ALG_INTERNAL,
 | |
| 		.cra_blocksize		= AES_BLOCK_SIZE,
 | |
| 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
 | |
| 		.cra_module		= THIS_MODULE,
 | |
| 	},
 | |
| 	.min_keysize	= AES_MIN_KEY_SIZE,
 | |
| 	.max_keysize	= AES_MAX_KEY_SIZE,
 | |
| 	.ivsize		= AES_BLOCK_SIZE,
 | |
| 	.setkey		= ce_aes_setkey,
 | |
| 	.encrypt	= cbc_encrypt,
 | |
| 	.decrypt	= cbc_decrypt,
 | |
| }, {
 | |
| 	.base = {
 | |
| 		.cra_name		= "__ctr(aes)",
 | |
| 		.cra_driver_name	= "__ctr-aes-ce",
 | |
| 		.cra_priority		= 300,
 | |
| 		.cra_flags		= CRYPTO_ALG_INTERNAL,
 | |
| 		.cra_blocksize		= 1,
 | |
| 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
 | |
| 		.cra_module		= THIS_MODULE,
 | |
| 	},
 | |
| 	.min_keysize	= AES_MIN_KEY_SIZE,
 | |
| 	.max_keysize	= AES_MAX_KEY_SIZE,
 | |
| 	.ivsize		= AES_BLOCK_SIZE,
 | |
| 	.chunksize	= AES_BLOCK_SIZE,
 | |
| 	.setkey		= ce_aes_setkey,
 | |
| 	.encrypt	= ctr_encrypt,
 | |
| 	.decrypt	= ctr_encrypt,
 | |
| }, {
 | |
| 	.base = {
 | |
| 		.cra_name		= "__xts(aes)",
 | |
| 		.cra_driver_name	= "__xts-aes-ce",
 | |
| 		.cra_priority		= 300,
 | |
| 		.cra_flags		= CRYPTO_ALG_INTERNAL,
 | |
| 		.cra_blocksize		= AES_BLOCK_SIZE,
 | |
| 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
 | |
| 		.cra_module		= THIS_MODULE,
 | |
| 	},
 | |
| 	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
 | |
| 	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
 | |
| 	.ivsize		= AES_BLOCK_SIZE,
 | |
| 	.setkey		= xts_set_key,
 | |
| 	.encrypt	= xts_encrypt,
 | |
| 	.decrypt	= xts_decrypt,
 | |
| } };
 | |
| 
 | |
| static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
 | |
| 
 | |
| static void aes_exit(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs) && aes_simd_algs[i]; i++)
 | |
| 		simd_skcipher_free(aes_simd_algs[i]);
 | |
| 
 | |
| 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
 | |
| }
 | |
| 
 | |
| static int __init aes_init(void)
 | |
| {
 | |
| 	struct simd_skcipher_alg *simd;
 | |
| 	const char *basename;
 | |
| 	const char *algname;
 | |
| 	const char *drvname;
 | |
| 	int err;
 | |
| 	int i;
 | |
| 
 | |
| 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
 | |
| 		algname = aes_algs[i].base.cra_name + 2;
 | |
| 		drvname = aes_algs[i].base.cra_driver_name + 2;
 | |
| 		basename = aes_algs[i].base.cra_driver_name;
 | |
| 		simd = simd_skcipher_create_compat(algname, drvname, basename);
 | |
| 		err = PTR_ERR(simd);
 | |
| 		if (IS_ERR(simd))
 | |
| 			goto unregister_simds;
 | |
| 
 | |
| 		aes_simd_algs[i] = simd;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| unregister_simds:
 | |
| 	aes_exit();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| module_cpu_feature_match(AES, aes_init);
 | |
| module_exit(aes_exit);
 | 
