789 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			789 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* bnx2x_init.h: Qlogic Everest network driver.
 | |
|  *               Structures and macroes needed during the initialization.
 | |
|  *
 | |
|  * Copyright (c) 2007-2013 Broadcom Corporation
 | |
|  * Copyright (c) 2014 QLogic Corporation
 | |
|  All rights reserved
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation.
 | |
|  *
 | |
|  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
 | |
|  * Written by: Eliezer Tamir
 | |
|  * Modified by: Vladislav Zolotarov
 | |
|  */
 | |
| 
 | |
| #ifndef BNX2X_INIT_H
 | |
| #define BNX2X_INIT_H
 | |
| 
 | |
| /* Init operation types and structures */
 | |
| enum {
 | |
| 	OP_RD = 0x1,	/* read a single register */
 | |
| 	OP_WR,		/* write a single register */
 | |
| 	OP_SW,		/* copy a string to the device */
 | |
| 	OP_ZR,		/* clear memory */
 | |
| 	OP_ZP,		/* unzip then copy with DMAE */
 | |
| 	OP_WR_64,	/* write 64 bit pattern */
 | |
| 	OP_WB,		/* copy a string using DMAE */
 | |
| 	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
 | |
| 	/* Skip the following ops if all of the init modes don't match */
 | |
| 	OP_IF_MODE_OR,
 | |
| 	/* Skip the following ops if any of the init modes don't match */
 | |
| 	OP_IF_MODE_AND,
 | |
| 	OP_MAX
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	STAGE_START,
 | |
| 	STAGE_END,
 | |
| };
 | |
| 
 | |
| /* Returns the index of start or end of a specific block stage in ops array*/
 | |
| #define BLOCK_OPS_IDX(block, stage, end) \
 | |
| 	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
 | |
| 
 | |
| 
 | |
| /* structs for the various opcodes */
 | |
| struct raw_op {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| 	u32 raw_data;
 | |
| };
 | |
| 
 | |
| struct op_read {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| 	u32 val;
 | |
| };
 | |
| 
 | |
| struct op_write {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| 	u32 val;
 | |
| };
 | |
| 
 | |
| struct op_arr_write {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	u16 data_len;
 | |
| 	u16 data_off;
 | |
| #else /* __LITTLE_ENDIAN */
 | |
| 	u16 data_off;
 | |
| 	u16 data_len;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| struct op_zero {
 | |
| 	u32 op:8;
 | |
| 	u32 offset:24;
 | |
| 	u32 len;
 | |
| };
 | |
| 
 | |
| struct op_if_mode {
 | |
| 	u32 op:8;
 | |
| 	u32 cmd_offset:24;
 | |
| 	u32 mode_bit_map;
 | |
| };
 | |
| 
 | |
| 
 | |
| union init_op {
 | |
| 	struct op_read		read;
 | |
| 	struct op_write		write;
 | |
| 	struct op_arr_write	arr_wr;
 | |
| 	struct op_zero		zero;
 | |
| 	struct raw_op		raw;
 | |
| 	struct op_if_mode	if_mode;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Init Phases */
 | |
| enum {
 | |
| 	PHASE_COMMON,
 | |
| 	PHASE_PORT0,
 | |
| 	PHASE_PORT1,
 | |
| 	PHASE_PF0,
 | |
| 	PHASE_PF1,
 | |
| 	PHASE_PF2,
 | |
| 	PHASE_PF3,
 | |
| 	PHASE_PF4,
 | |
| 	PHASE_PF5,
 | |
| 	PHASE_PF6,
 | |
| 	PHASE_PF7,
 | |
| 	NUM_OF_INIT_PHASES
 | |
| };
 | |
| 
 | |
| /* Init Modes */
 | |
| enum {
 | |
| 	MODE_ASIC                      = 0x00000001,
 | |
| 	MODE_FPGA                      = 0x00000002,
 | |
| 	MODE_EMUL                      = 0x00000004,
 | |
| 	MODE_E2                        = 0x00000008,
 | |
| 	MODE_E3                        = 0x00000010,
 | |
| 	MODE_PORT2                     = 0x00000020,
 | |
| 	MODE_PORT4                     = 0x00000040,
 | |
| 	MODE_SF                        = 0x00000080,
 | |
| 	MODE_MF                        = 0x00000100,
 | |
| 	MODE_MF_SD                     = 0x00000200,
 | |
| 	MODE_MF_SI                     = 0x00000400,
 | |
| 	MODE_MF_AFEX                   = 0x00000800,
 | |
| 	MODE_E3_A0                     = 0x00001000,
 | |
| 	MODE_E3_B0                     = 0x00002000,
 | |
| 	MODE_COS3                      = 0x00004000,
 | |
| 	MODE_COS6                      = 0x00008000,
 | |
| 	MODE_LITTLE_ENDIAN             = 0x00010000,
 | |
| 	MODE_BIG_ENDIAN                = 0x00020000,
 | |
| };
 | |
| 
 | |
| /* Init Blocks */
 | |
| enum {
 | |
| 	BLOCK_ATC,
 | |
| 	BLOCK_BRB1,
 | |
| 	BLOCK_CCM,
 | |
| 	BLOCK_CDU,
 | |
| 	BLOCK_CFC,
 | |
| 	BLOCK_CSDM,
 | |
| 	BLOCK_CSEM,
 | |
| 	BLOCK_DBG,
 | |
| 	BLOCK_DMAE,
 | |
| 	BLOCK_DORQ,
 | |
| 	BLOCK_HC,
 | |
| 	BLOCK_IGU,
 | |
| 	BLOCK_MISC,
 | |
| 	BLOCK_NIG,
 | |
| 	BLOCK_PBF,
 | |
| 	BLOCK_PGLUE_B,
 | |
| 	BLOCK_PRS,
 | |
| 	BLOCK_PXP2,
 | |
| 	BLOCK_PXP,
 | |
| 	BLOCK_QM,
 | |
| 	BLOCK_SRC,
 | |
| 	BLOCK_TCM,
 | |
| 	BLOCK_TM,
 | |
| 	BLOCK_TSDM,
 | |
| 	BLOCK_TSEM,
 | |
| 	BLOCK_UCM,
 | |
| 	BLOCK_UPB,
 | |
| 	BLOCK_USDM,
 | |
| 	BLOCK_USEM,
 | |
| 	BLOCK_XCM,
 | |
| 	BLOCK_XPB,
 | |
| 	BLOCK_XSDM,
 | |
| 	BLOCK_XSEM,
 | |
| 	BLOCK_MISC_AEU,
 | |
| 	NUM_OF_INIT_BLOCKS
 | |
| };
 | |
| 
 | |
| /* QM queue numbers */
 | |
| #define BNX2X_ETH_Q		0
 | |
| #define BNX2X_TOE_Q		3
 | |
| #define BNX2X_TOE_ACK_Q		6
 | |
| #define BNX2X_ISCSI_Q		9
 | |
| #define BNX2X_ISCSI_ACK_Q	11
 | |
| #define BNX2X_FCOE_Q		10
 | |
| 
 | |
| /* Vnics per mode */
 | |
| #define BNX2X_PORT2_MODE_NUM_VNICS 4
 | |
| #define BNX2X_PORT4_MODE_NUM_VNICS 2
 | |
| 
 | |
| /* COS offset for port1 in E3 B0 4port mode */
 | |
| #define BNX2X_E3B0_PORT1_COS_OFFSET 3
 | |
| 
 | |
| /* QM Register addresses */
 | |
| #define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
 | |
| 	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
 | |
| #define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
 | |
| 	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
 | |
| #define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
 | |
| 	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
 | |
| 
 | |
| /* extracts the QM queue number for the specified port and vnic */
 | |
| #define BNX2X_PF_Q_NUM(q_num, port, vnic)\
 | |
| 	((((port) << 1) | (vnic)) * 16 + (q_num))
 | |
| 
 | |
| 
 | |
| /* Maps the specified queue to the specified COS */
 | |
| static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
 | |
| {
 | |
| 	/* find current COS mapping */
 | |
| 	u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
 | |
| 
 | |
| 	/* check if queue->COS mapping has changed */
 | |
| 	if (curr_cos != new_cos) {
 | |
| 		u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
 | |
| 		u32 reg_addr, reg_bit_map, vnic;
 | |
| 
 | |
| 		/* update parameters for 4port mode */
 | |
| 		if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
 | |
| 			num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
 | |
| 			if (BP_PORT(bp)) {
 | |
| 				curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
 | |
| 				new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* change queue mapping for each VNIC */
 | |
| 		for (vnic = 0; vnic < num_vnics; vnic++) {
 | |
| 			u32 pf_q_num =
 | |
| 				BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
 | |
| 			u32 q_bit_map = 1 << (pf_q_num & 0x1f);
 | |
| 
 | |
| 			/* overwrite queue->VOQ mapping */
 | |
| 			REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
 | |
| 
 | |
| 			/* clear queue bit from current COS bit map */
 | |
| 			reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
 | |
| 			reg_bit_map = REG_RD(bp, reg_addr);
 | |
| 			REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
 | |
| 
 | |
| 			/* set queue bit in new COS bit map */
 | |
| 			reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
 | |
| 			reg_bit_map = REG_RD(bp, reg_addr);
 | |
| 			REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
 | |
| 
 | |
| 			/* set/clear queue bit in command-queue bit map
 | |
| 			 * (E2/E3A0 only, valid COS values are 0/1)
 | |
| 			 */
 | |
| 			if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
 | |
| 				reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
 | |
| 				reg_bit_map = REG_RD(bp, reg_addr);
 | |
| 				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
 | |
| 				reg_bit_map = new_cos ?
 | |
| 					      (reg_bit_map | q_bit_map) :
 | |
| 					      (reg_bit_map & (~q_bit_map));
 | |
| 				REG_WR(bp, reg_addr, reg_bit_map);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Configures the QM according to the specified per-traffic-type COSes */
 | |
| static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
 | |
| 				       struct priority_cos *traffic_cos)
 | |
| {
 | |
| 	bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
 | |
| 			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
 | |
| 	bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
 | |
| 			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
 | |
| 	bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
 | |
| 		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
 | |
| 	if (mode != STATIC_COS) {
 | |
| 		/* required only in backward compatible COS mode */
 | |
| 		bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
 | |
| 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
 | |
| 		bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
 | |
| 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
 | |
| 		bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
 | |
| 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* congestion management port init api description
 | |
|  * the api works as follows:
 | |
|  * the driver should pass the cmng_init_input struct, the port_init function
 | |
|  * will prepare the required internal ram structure which will be passed back
 | |
|  * to the driver (cmng_init) that will write it into the internal ram.
 | |
|  *
 | |
|  * IMPORTANT REMARKS:
 | |
|  * 1. the cmng_init struct does not represent the contiguous internal ram
 | |
|  *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
 | |
|  *    offset in order to write the port sub struct and the
 | |
|  *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
 | |
|  *    words - don't use memcpy!).
 | |
|  * 2. although the cmng_init struct is filled for the maximal vnic number
 | |
|  *    possible, the driver should only write the valid vnics into the internal
 | |
|  *    ram according to the appropriate port mode.
 | |
|  */
 | |
| #define BITS_TO_BYTES(x) ((x)/8)
 | |
| 
 | |
| /* CMNG constants, as derived from system spec calculations */
 | |
| 
 | |
| /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
 | |
| #define DEF_MIN_RATE 100
 | |
| 
 | |
| /* resolution of the rate shaping timer - 400 usec */
 | |
| #define RS_PERIODIC_TIMEOUT_USEC 400
 | |
| 
 | |
| /* number of bytes in single QM arbitration cycle -
 | |
|  * coefficient for calculating the fairness timer
 | |
|  */
 | |
| #define QM_ARB_BYTES 160000
 | |
| 
 | |
| /* resolution of Min algorithm 1:100 */
 | |
| #define MIN_RES 100
 | |
| 
 | |
| /* how many bytes above threshold for
 | |
|  * the minimal credit of Min algorithm
 | |
|  */
 | |
| #define MIN_ABOVE_THRESH 32768
 | |
| 
 | |
| /* Fairness algorithm integration time coefficient -
 | |
|  * for calculating the actual Tfair
 | |
|  */
 | |
| #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
 | |
| 
 | |
| /* Memory of fairness algorithm - 2 cycles */
 | |
| #define FAIR_MEM 2
 | |
| #define SAFC_TIMEOUT_USEC 52
 | |
| 
 | |
| #define SDM_TICKS 4
 | |
| 
 | |
| 
 | |
| static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
 | |
| 				  u32 r_param, struct cmng_init *ram_data)
 | |
| {
 | |
| 	u32 vnic;
 | |
| 	struct cmng_vnic *vdata = &ram_data->vnic;
 | |
| 	struct cmng_struct_per_port *pdata = &ram_data->port;
 | |
| 	/* rate shaping per-port variables
 | |
| 	 * 100 micro seconds in SDM ticks = 25
 | |
| 	 * since each tick is 4 microSeconds
 | |
| 	 */
 | |
| 
 | |
| 	pdata->rs_vars.rs_periodic_timeout =
 | |
| 	RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
 | |
| 
 | |
| 	/* this is the threshold below which no timer arming will occur.
 | |
| 	 * 1.25 coefficient is for the threshold to be a little bigger
 | |
| 	 * then the real time to compensate for timer in-accuracy
 | |
| 	 */
 | |
| 	pdata->rs_vars.rs_threshold =
 | |
| 	(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
 | |
| 
 | |
| 	/* rate shaping per-vnic variables */
 | |
| 	for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
 | |
| 		/* global vnic counter */
 | |
| 		vdata->vnic_max_rate[vnic].vn_counter.rate =
 | |
| 		input_data->vnic_max_rate[vnic];
 | |
| 		/* maximal Mbps for this vnic
 | |
| 		 * the quota in each timer period - number of bytes
 | |
| 		 * transmitted in this period
 | |
| 		 */
 | |
| 		vdata->vnic_max_rate[vnic].vn_counter.quota =
 | |
| 			RS_PERIODIC_TIMEOUT_USEC *
 | |
| 			(u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
 | |
| 				  u32 r_param, struct cmng_init *ram_data)
 | |
| {
 | |
| 	u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
 | |
| 	struct cmng_vnic *vdata = &ram_data->vnic;
 | |
| 	struct cmng_struct_per_port *pdata = &ram_data->port;
 | |
| 
 | |
| 	/* this is the resolution of the fairness timer */
 | |
| 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
 | |
| 
 | |
| 	/* fairness per-port variables
 | |
| 	 * for 10G it is 1000usec. for 1G it is 10000usec.
 | |
| 	 */
 | |
| 	tFair = T_FAIR_COEF / input_data->port_rate;
 | |
| 
 | |
| 	/* this is the threshold below which we won't arm the timer anymore */
 | |
| 	pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
 | |
| 
 | |
| 	/* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
 | |
| 	 * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
 | |
| 	 */
 | |
| 	pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
 | |
| 
 | |
| 	/* since each tick is 4 microSeconds */
 | |
| 	pdata->fair_vars.fairness_timeout =
 | |
| 				fair_periodic_timeout_usec / SDM_TICKS;
 | |
| 
 | |
| 	/* calculate sum of weights */
 | |
| 	vnicWeightSum = 0;
 | |
| 
 | |
| 	for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
 | |
| 		vnicWeightSum += input_data->vnic_min_rate[vnic];
 | |
| 
 | |
| 	/* global vnic counter */
 | |
| 	if (vnicWeightSum > 0) {
 | |
| 		/* fairness per-vnic variables */
 | |
| 		for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
 | |
| 			/* this is the credit for each period of the fairness
 | |
| 			 * algorithm - number of bytes in T_FAIR (this vnic
 | |
| 			 * share of the port rate)
 | |
| 			 */
 | |
| 			vdata->vnic_min_rate[vnic].vn_credit_delta =
 | |
| 				(u32)input_data->vnic_min_rate[vnic] * 100 *
 | |
| 				(T_FAIR_COEF / (8 * 100 * vnicWeightSum));
 | |
| 			if (vdata->vnic_min_rate[vnic].vn_credit_delta <
 | |
| 			    pdata->fair_vars.fair_threshold +
 | |
| 			    MIN_ABOVE_THRESH) {
 | |
| 				vdata->vnic_min_rate[vnic].vn_credit_delta =
 | |
| 					pdata->fair_vars.fair_threshold +
 | |
| 					MIN_ABOVE_THRESH;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
 | |
| 				     u32 r_param, struct cmng_init *ram_data)
 | |
| {
 | |
| 	u32 vnic, cos;
 | |
| 	u32 cosWeightSum = 0;
 | |
| 	struct cmng_vnic *vdata = &ram_data->vnic;
 | |
| 	struct cmng_struct_per_port *pdata = &ram_data->port;
 | |
| 
 | |
| 	for (cos = 0; cos < MAX_COS_NUMBER; cos++)
 | |
| 		cosWeightSum += input_data->cos_min_rate[cos];
 | |
| 
 | |
| 	if (cosWeightSum > 0) {
 | |
| 
 | |
| 		for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
 | |
| 			/* Since cos and vnic shouldn't work together the rate
 | |
| 			 * to divide between the coses is the port rate.
 | |
| 			 */
 | |
| 			u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
 | |
| 			for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
 | |
| 				/* this is the credit for each period of
 | |
| 				 * the fairness algorithm - number of bytes
 | |
| 				 * in T_FAIR (this cos share of the vnic rate)
 | |
| 				 */
 | |
| 				ccd[cos] =
 | |
| 				    (u32)input_data->cos_min_rate[cos] * 100 *
 | |
| 				    (T_FAIR_COEF / (8 * 100 * cosWeightSum));
 | |
| 				 if (ccd[cos] < pdata->fair_vars.fair_threshold
 | |
| 						+ MIN_ABOVE_THRESH) {
 | |
| 					ccd[cos] =
 | |
| 					    pdata->fair_vars.fair_threshold +
 | |
| 					    MIN_ABOVE_THRESH;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
 | |
| 				   struct cmng_init *ram_data)
 | |
| {
 | |
| 	/* in microSeconds */
 | |
| 	ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
 | |
| }
 | |
| 
 | |
| /* Congestion management port init */
 | |
| static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
 | |
| 				   struct cmng_init *ram_data)
 | |
| {
 | |
| 	u32 r_param;
 | |
| 	memset(ram_data, 0, sizeof(struct cmng_init));
 | |
| 
 | |
| 	ram_data->port.flags = input_data->flags;
 | |
| 
 | |
| 	/* number of bytes transmitted in a rate of 10Gbps
 | |
| 	 * in one usec = 1.25KB.
 | |
| 	 */
 | |
| 	r_param = BITS_TO_BYTES(input_data->port_rate);
 | |
| 	bnx2x_init_max(input_data, r_param, ram_data);
 | |
| 	bnx2x_init_min(input_data, r_param, ram_data);
 | |
| 	bnx2x_init_fw_wrr(input_data, r_param, ram_data);
 | |
| 	bnx2x_init_safc(input_data, ram_data);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Returns the index of start or end of a specific block stage in ops array */
 | |
| #define BLOCK_OPS_IDX(block, stage, end) \
 | |
| 			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
 | |
| 
 | |
| 
 | |
| #define INITOP_SET		0	/* set the HW directly */
 | |
| #define INITOP_CLEAR		1	/* clear the HW directly */
 | |
| #define INITOP_INIT		2	/* set the init-value array */
 | |
| 
 | |
| /****************************************************************************
 | |
| * ILT management
 | |
| ****************************************************************************/
 | |
| struct ilt_line {
 | |
| 	dma_addr_t page_mapping;
 | |
| 	void *page;
 | |
| 	u32 size;
 | |
| };
 | |
| 
 | |
| struct ilt_client_info {
 | |
| 	u32 page_size;
 | |
| 	u16 start;
 | |
| 	u16 end;
 | |
| 	u16 client_num;
 | |
| 	u16 flags;
 | |
| #define ILT_CLIENT_SKIP_INIT	0x1
 | |
| #define ILT_CLIENT_SKIP_MEM	0x2
 | |
| };
 | |
| 
 | |
| struct bnx2x_ilt {
 | |
| 	u32 start_line;
 | |
| 	struct ilt_line		*lines;
 | |
| 	struct ilt_client_info	clients[4];
 | |
| #define ILT_CLIENT_CDU	0
 | |
| #define ILT_CLIENT_QM	1
 | |
| #define ILT_CLIENT_SRC	2
 | |
| #define ILT_CLIENT_TM	3
 | |
| };
 | |
| 
 | |
| /****************************************************************************
 | |
| * SRC configuration
 | |
| ****************************************************************************/
 | |
| struct src_ent {
 | |
| 	u8 opaque[56];
 | |
| 	u64 next;
 | |
| };
 | |
| 
 | |
| /****************************************************************************
 | |
| * Parity configuration
 | |
| ****************************************************************************/
 | |
| #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
 | |
| { \
 | |
| 	block##_REG_##block##_PRTY_MASK, \
 | |
| 	block##_REG_##block##_PRTY_STS_CLR, \
 | |
| 	en_mask, {m1, m1h, m2, m3}, #block \
 | |
| }
 | |
| 
 | |
| #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
 | |
| { \
 | |
| 	block##_REG_##block##_PRTY_MASK_0, \
 | |
| 	block##_REG_##block##_PRTY_STS_CLR_0, \
 | |
| 	en_mask, {m1, m1h, m2, m3}, #block"_0" \
 | |
| }
 | |
| 
 | |
| #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
 | |
| { \
 | |
| 	block##_REG_##block##_PRTY_MASK_1, \
 | |
| 	block##_REG_##block##_PRTY_STS_CLR_1, \
 | |
| 	en_mask, {m1, m1h, m2, m3}, #block"_1" \
 | |
| }
 | |
| 
 | |
| static const struct {
 | |
| 	u32 mask_addr;
 | |
| 	u32 sts_clr_addr;
 | |
| 	u32 en_mask;		/* Mask to enable parity attentions */
 | |
| 	struct {
 | |
| 		u32 e1;		/* 57710 */
 | |
| 		u32 e1h;	/* 57711 */
 | |
| 		u32 e2;		/* 57712 */
 | |
| 		u32 e3;		/* 578xx */
 | |
| 	} reg_mask;		/* Register mask (all valid bits) */
 | |
| 	char name[8];		/* Block's longest name is 7 characters long
 | |
| 				 * (name + suffix)
 | |
| 				 */
 | |
| } bnx2x_blocks_parity_data[] = {
 | |
| 	/* bit 19 masked */
 | |
| 	/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
 | |
| 	/* bit 5,18,20-31 */
 | |
| 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
 | |
| 	/* bit 5 */
 | |
| 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
 | |
| 	/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
 | |
| 	/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
 | |
| 
 | |
| 	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
 | |
| 	 * want to handle "system kill" flow at the moment.
 | |
| 	 */
 | |
| 	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
 | |
| 			0x7ffffff),
 | |
| 	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
 | |
| 			  0xffffffff),
 | |
| 	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
 | |
| 	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
 | |
| 	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
 | |
| 	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
 | |
| 	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff),
 | |
| 	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
 | |
| 	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
 | |
| 	BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
 | |
| 	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
 | |
| 	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
 | |
| 	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
 | |
| 	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
 | |
| 		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
 | |
| 		{0xf, 0xf, 0xf, 0xf}, "UPB"},
 | |
| 	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
 | |
| 		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
 | |
| 		{0xf, 0xf, 0xf, 0xf}, "XPB"},
 | |
| 	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
 | |
| 	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
 | |
| 	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
 | |
| 	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
 | |
| 	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
 | |
| 	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
 | |
| 	BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
 | |
| 	BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
 | |
| 	BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
 | |
| 	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 | |
| 	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 | |
| 	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 | |
| 	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 | |
| 	BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
 | |
| 	BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
 | |
| 	BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
 | |
| 	BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
 | |
| 	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 | |
| 			  0xffffffff),
 | |
| 	BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
 | |
| 	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 | |
| 			  0xffffffff),
 | |
| 	BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
 | |
| 	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 | |
| 			  0xffffffff),
 | |
| 	BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
 | |
| 	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 | |
| 			  0xffffffff),
 | |
| 	BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
 | |
| };
 | |
| 
 | |
| 
 | |
| /* [28] MCP Latched rom_parity
 | |
|  * [29] MCP Latched ump_rx_parity
 | |
|  * [30] MCP Latched ump_tx_parity
 | |
|  * [31] MCP Latched scpad_parity
 | |
|  */
 | |
| #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS	\
 | |
| 	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
 | |
| 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
 | |
| 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
 | |
| 
 | |
| #define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
 | |
| 	(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
 | |
| 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
 | |
| 
 | |
| /* Below registers control the MCP parity attention output. When
 | |
|  * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
 | |
|  * enabled, when cleared - disabled.
 | |
|  */
 | |
| static const struct {
 | |
| 	u32 addr;
 | |
| 	u32 bits;
 | |
| } mcp_attn_ctl_regs[] = {
 | |
| 	{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
 | |
| 		MISC_AEU_ENABLE_MCP_PRTY_BITS },
 | |
| 	{ MISC_REG_AEU_ENABLE4_NIG_0,
 | |
| 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
 | |
| 	{ MISC_REG_AEU_ENABLE4_PXP_0,
 | |
| 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
 | |
| 	{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
 | |
| 		MISC_AEU_ENABLE_MCP_PRTY_BITS },
 | |
| 	{ MISC_REG_AEU_ENABLE4_NIG_1,
 | |
| 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
 | |
| 	{ MISC_REG_AEU_ENABLE4_PXP_1,
 | |
| 		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
 | |
| };
 | |
| 
 | |
| static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 reg_val;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
 | |
| 		reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
 | |
| 
 | |
| 		if (enable)
 | |
| 			reg_val |= mcp_attn_ctl_regs[i].bits;
 | |
| 		else
 | |
| 			reg_val &= ~mcp_attn_ctl_regs[i].bits;
 | |
| 
 | |
| 		REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
 | |
| {
 | |
| 	if (CHIP_IS_E1(bp))
 | |
| 		return bnx2x_blocks_parity_data[idx].reg_mask.e1;
 | |
| 	else if (CHIP_IS_E1H(bp))
 | |
| 		return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
 | |
| 	else if (CHIP_IS_E2(bp))
 | |
| 		return bnx2x_blocks_parity_data[idx].reg_mask.e2;
 | |
| 	else /* CHIP_IS_E3 */
 | |
| 		return bnx2x_blocks_parity_data[idx].reg_mask.e3;
 | |
| }
 | |
| 
 | |
| static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
 | |
| 		u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
 | |
| 
 | |
| 		if (dis_mask) {
 | |
| 			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
 | |
| 			       dis_mask);
 | |
| 			DP(NETIF_MSG_HW, "Setting parity mask "
 | |
| 						 "for %s to\t\t0x%x\n",
 | |
| 				    bnx2x_blocks_parity_data[i].name, dis_mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Disable MCP parity attentions */
 | |
| 	bnx2x_set_mcp_parity(bp, false);
 | |
| }
 | |
| 
 | |
| /* Clear the parity error status registers. */
 | |
| static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 reg_val, mcp_aeu_bits =
 | |
| 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
 | |
| 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
 | |
| 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
 | |
| 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
 | |
| 
 | |
| 	/* Clear SEM_FAST parities */
 | |
| 	REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 | |
| 	REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 | |
| 	REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 | |
| 	REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
 | |
| 		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
 | |
| 
 | |
| 		if (reg_mask) {
 | |
| 			reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
 | |
| 					 sts_clr_addr);
 | |
| 			if (reg_val & reg_mask)
 | |
| 				DP(NETIF_MSG_HW,
 | |
| 					    "Parity errors in %s: 0x%x\n",
 | |
| 					    bnx2x_blocks_parity_data[i].name,
 | |
| 					    reg_val & reg_mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check if there were parity attentions in MCP */
 | |
| 	reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
 | |
| 	if (reg_val & mcp_aeu_bits)
 | |
| 		DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
 | |
| 		   reg_val & mcp_aeu_bits);
 | |
| 
 | |
| 	/* Clear parity attentions in MCP:
 | |
| 	 * [7]  clears Latched rom_parity
 | |
| 	 * [8]  clears Latched ump_rx_parity
 | |
| 	 * [9]  clears Latched ump_tx_parity
 | |
| 	 * [10] clears Latched scpad_parity (both ports)
 | |
| 	 */
 | |
| 	REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
 | |
| }
 | |
| 
 | |
| static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
 | |
| 		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
 | |
| 
 | |
| 		if (reg_mask)
 | |
| 			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
 | |
| 				bnx2x_blocks_parity_data[i].en_mask & reg_mask);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable MCP parity attentions */
 | |
| 	bnx2x_set_mcp_parity(bp, true);
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif /* BNX2X_INIT_H */
 | |
| 
 | 
