628 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			628 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *     * Redistributions of source code must retain the above copyright
 | |
|  *	 notice, this list of conditions and the following disclaimer.
 | |
|  *     * Redistributions in binary form must reproduce the above copyright
 | |
|  *	 notice, this list of conditions and the following disclaimer in the
 | |
|  *	 documentation and/or other materials provided with the distribution.
 | |
|  *     * Neither the name of Freescale Semiconductor nor the
 | |
|  *	 names of its contributors may be used to endorse or promote products
 | |
|  *	 derived from this software without specific prior written permission.
 | |
|  *
 | |
|  * ALTERNATIVELY, this software may be distributed under the terms of the
 | |
|  * GNU General Public License ("GPL") as published by the Free Software
 | |
|  * Foundation, either version 2 of that License or (at your option) any
 | |
|  * later version.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
 | |
|  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
|  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
 | |
|  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 | |
|  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
|  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 | |
|  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include "qman_test.h"
 | |
| 
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/delay.h>
 | |
| 
 | |
| /*
 | |
|  * Algorithm:
 | |
|  *
 | |
|  * Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
 | |
|  * an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
 | |
|  * organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
 | |
|  * shuttle a "hot potato" frame around them such that every forwarding action
 | |
|  * moves it from one cpu to another. (The use of more than one handler per cpu
 | |
|  * is to allow enough handlers/FQs to truly test the significance of caching -
 | |
|  * ie. when cache-expiries are occurring.)
 | |
|  *
 | |
|  * The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
 | |
|  * first and last words of the frame data will undergo a transformation step on
 | |
|  * each forwarding action. To achieve this, each handler will be assigned a
 | |
|  * 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
 | |
|  * received by a handler, the mixer of the expected sender is XOR'd into all
 | |
|  * words of the entire frame, which is then validated against the original
 | |
|  * values. Then, before forwarding, the entire frame is XOR'd with the mixer of
 | |
|  * the current handler. Apart from validating that the frame is taking the
 | |
|  * expected path, this also provides some quasi-realistic overheads to each
 | |
|  * forwarding action - dereferencing *all* the frame data, computation, and
 | |
|  * conditional branching. There is a "special" handler designated to act as the
 | |
|  * instigator of the test by creating an enqueuing the "hot potato" frame, and
 | |
|  * to determine when the test has completed by counting HP_LOOPS iterations.
 | |
|  *
 | |
|  * Init phases:
 | |
|  *
 | |
|  * 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
 | |
|  *    into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
 | |
|  *    handlers and link-list them (but do no other handler setup).
 | |
|  *
 | |
|  * 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
 | |
|  *    hp_cpu's 'iterator' to point to its first handler. With each loop,
 | |
|  *    allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
 | |
|  *    and advance the iterator for the next loop. This includes a final fixup,
 | |
|  *    which connects the last handler to the first (and which is why phase 2
 | |
|  *    and 3 are separate).
 | |
|  *
 | |
|  * 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
 | |
|  *    hp_cpu's 'iterator' to point to its first handler. With each loop,
 | |
|  *    initialise FQ objects and advance the iterator for the next loop.
 | |
|  *    Moreover, do this initialisation on the cpu it applies to so that Rx FQ
 | |
|  *    initialisation targets the correct cpu.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * helper to run something on all cpus (can't use on_each_cpu(), as that invokes
 | |
|  * the fn from irq context, which is too restrictive).
 | |
|  */
 | |
| struct bstrap {
 | |
| 	int (*fn)(void);
 | |
| 	atomic_t started;
 | |
| };
 | |
| static int bstrap_fn(void *bs)
 | |
| {
 | |
| 	struct bstrap *bstrap = bs;
 | |
| 	int err;
 | |
| 
 | |
| 	atomic_inc(&bstrap->started);
 | |
| 	err = bstrap->fn();
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	while (!kthread_should_stop())
 | |
| 		msleep(20);
 | |
| 	return 0;
 | |
| }
 | |
| static int on_all_cpus(int (*fn)(void))
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, cpu_online_mask) {
 | |
| 		struct bstrap bstrap = {
 | |
| 			.fn = fn,
 | |
| 			.started = ATOMIC_INIT(0)
 | |
| 		};
 | |
| 		struct task_struct *k = kthread_create(bstrap_fn, &bstrap,
 | |
| 			"hotpotato%d", cpu);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (IS_ERR(k))
 | |
| 			return -ENOMEM;
 | |
| 		kthread_bind(k, cpu);
 | |
| 		wake_up_process(k);
 | |
| 		/*
 | |
| 		 * If we call kthread_stop() before the "wake up" has had an
 | |
| 		 * effect, then the thread may exit with -EINTR without ever
 | |
| 		 * running the function. So poll until it's started before
 | |
| 		 * requesting it to stop.
 | |
| 		 */
 | |
| 		while (!atomic_read(&bstrap.started))
 | |
| 			msleep(20);
 | |
| 		ret = kthread_stop(k);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct hp_handler {
 | |
| 
 | |
| 	/* The following data is stashed when 'rx' is dequeued; */
 | |
| 	/* -------------- */
 | |
| 	/* The Rx FQ, dequeues of which will stash the entire hp_handler */
 | |
| 	struct qman_fq rx;
 | |
| 	/* The Tx FQ we should forward to */
 | |
| 	struct qman_fq tx;
 | |
| 	/* The value we XOR post-dequeue, prior to validating */
 | |
| 	u32 rx_mixer;
 | |
| 	/* The value we XOR pre-enqueue, after validating */
 | |
| 	u32 tx_mixer;
 | |
| 	/* what the hotpotato address should be on dequeue */
 | |
| 	dma_addr_t addr;
 | |
| 	u32 *frame_ptr;
 | |
| 
 | |
| 	/* The following data isn't (necessarily) stashed on dequeue; */
 | |
| 	/* -------------- */
 | |
| 	u32 fqid_rx, fqid_tx;
 | |
| 	/* list node for linking us into 'hp_cpu' */
 | |
| 	struct list_head node;
 | |
| 	/* Just to check ... */
 | |
| 	unsigned int processor_id;
 | |
| } ____cacheline_aligned;
 | |
| 
 | |
| struct hp_cpu {
 | |
| 	/* identify the cpu we run on; */
 | |
| 	unsigned int processor_id;
 | |
| 	/* root node for the per-cpu list of handlers */
 | |
| 	struct list_head handlers;
 | |
| 	/* list node for linking us into 'hp_cpu_list' */
 | |
| 	struct list_head node;
 | |
| 	/*
 | |
| 	 * when repeatedly scanning 'hp_list', each time linking the n'th
 | |
| 	 * handlers together, this is used as per-cpu iterator state
 | |
| 	 */
 | |
| 	struct hp_handler *iterator;
 | |
| };
 | |
| 
 | |
| /* Each cpu has one of these */
 | |
| static DEFINE_PER_CPU(struct hp_cpu, hp_cpus);
 | |
| 
 | |
| /* links together the hp_cpu structs, in first-come first-serve order. */
 | |
| static LIST_HEAD(hp_cpu_list);
 | |
| static DEFINE_SPINLOCK(hp_lock);
 | |
| 
 | |
| static unsigned int hp_cpu_list_length;
 | |
| 
 | |
| /* the "special" handler, that starts and terminates the test. */
 | |
| static struct hp_handler *special_handler;
 | |
| static int loop_counter;
 | |
| 
 | |
| /* handlers are allocated out of this, so they're properly aligned. */
 | |
| static struct kmem_cache *hp_handler_slab;
 | |
| 
 | |
| /* this is the frame data */
 | |
| static void *__frame_ptr;
 | |
| static u32 *frame_ptr;
 | |
| static dma_addr_t frame_dma;
 | |
| 
 | |
| /* needed for dma_map*() */
 | |
| static const struct qm_portal_config *pcfg;
 | |
| 
 | |
| /* the main function waits on this */
 | |
| static DECLARE_WAIT_QUEUE_HEAD(queue);
 | |
| 
 | |
| #define HP_PER_CPU	2
 | |
| #define HP_LOOPS	8
 | |
| /* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
 | |
| #define HP_NUM_WORDS	80
 | |
| /* First word of the LFSR-based frame data */
 | |
| #define HP_FIRST_WORD	0xabbaf00d
 | |
| 
 | |
| static inline u32 do_lfsr(u32 prev)
 | |
| {
 | |
| 	return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u);
 | |
| }
 | |
| 
 | |
| static int allocate_frame_data(void)
 | |
| {
 | |
| 	u32 lfsr = HP_FIRST_WORD;
 | |
| 	int loop;
 | |
| 
 | |
| 	if (!qman_dma_portal) {
 | |
| 		pr_crit("portal not available\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	pcfg = qman_get_qm_portal_config(qman_dma_portal);
 | |
| 
 | |
| 	__frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL);
 | |
| 	if (!__frame_ptr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	frame_ptr = PTR_ALIGN(__frame_ptr, 64);
 | |
| 	for (loop = 0; loop < HP_NUM_WORDS; loop++) {
 | |
| 		frame_ptr[loop] = lfsr;
 | |
| 		lfsr = do_lfsr(lfsr);
 | |
| 	}
 | |
| 
 | |
| 	frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS,
 | |
| 				   DMA_BIDIRECTIONAL);
 | |
| 	if (dma_mapping_error(pcfg->dev, frame_dma)) {
 | |
| 		pr_crit("dma mapping failure\n");
 | |
| 		kfree(__frame_ptr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void deallocate_frame_data(void)
 | |
| {
 | |
| 	dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS,
 | |
| 			 DMA_BIDIRECTIONAL);
 | |
| 	kfree(__frame_ptr);
 | |
| }
 | |
| 
 | |
| static inline int process_frame_data(struct hp_handler *handler,
 | |
| 				     const struct qm_fd *fd)
 | |
| {
 | |
| 	u32 *p = handler->frame_ptr;
 | |
| 	u32 lfsr = HP_FIRST_WORD;
 | |
| 	int loop;
 | |
| 
 | |
| 	if (qm_fd_addr_get64(fd) != handler->addr) {
 | |
| 		pr_crit("bad frame address, [%llX != %llX]\n",
 | |
| 			qm_fd_addr_get64(fd), handler->addr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
 | |
| 		*p ^= handler->rx_mixer;
 | |
| 		if (*p != lfsr) {
 | |
| 			pr_crit("corrupt frame data");
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		*p ^= handler->tx_mixer;
 | |
| 		lfsr = do_lfsr(lfsr);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal,
 | |
| 					    struct qman_fq *fq,
 | |
| 					    const struct qm_dqrr_entry *dqrr)
 | |
| {
 | |
| 	struct hp_handler *handler = (struct hp_handler *)fq;
 | |
| 
 | |
| 	if (process_frame_data(handler, &dqrr->fd)) {
 | |
| 		WARN_ON(1);
 | |
| 		goto skip;
 | |
| 	}
 | |
| 	if (qman_enqueue(&handler->tx, &dqrr->fd)) {
 | |
| 		pr_crit("qman_enqueue() failed");
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| skip:
 | |
| 	return qman_cb_dqrr_consume;
 | |
| }
 | |
| 
 | |
| static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal,
 | |
| 					     struct qman_fq *fq,
 | |
| 					     const struct qm_dqrr_entry *dqrr)
 | |
| {
 | |
| 	struct hp_handler *handler = (struct hp_handler *)fq;
 | |
| 
 | |
| 	process_frame_data(handler, &dqrr->fd);
 | |
| 	if (++loop_counter < HP_LOOPS) {
 | |
| 		if (qman_enqueue(&handler->tx, &dqrr->fd)) {
 | |
| 			pr_crit("qman_enqueue() failed");
 | |
| 			WARN_ON(1);
 | |
| 			goto skip;
 | |
| 		}
 | |
| 	} else {
 | |
| 		pr_info("Received final (%dth) frame\n", loop_counter);
 | |
| 		wake_up(&queue);
 | |
| 	}
 | |
| skip:
 | |
| 	return qman_cb_dqrr_consume;
 | |
| }
 | |
| 
 | |
| static int create_per_cpu_handlers(void)
 | |
| {
 | |
| 	struct hp_handler *handler;
 | |
| 	int loop;
 | |
| 	struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
 | |
| 
 | |
| 	hp_cpu->processor_id = smp_processor_id();
 | |
| 	spin_lock(&hp_lock);
 | |
| 	list_add_tail(&hp_cpu->node, &hp_cpu_list);
 | |
| 	hp_cpu_list_length++;
 | |
| 	spin_unlock(&hp_lock);
 | |
| 	INIT_LIST_HEAD(&hp_cpu->handlers);
 | |
| 	for (loop = 0; loop < HP_PER_CPU; loop++) {
 | |
| 		handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL);
 | |
| 		if (!handler) {
 | |
| 			pr_crit("kmem_cache_alloc() failed");
 | |
| 			WARN_ON(1);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		handler->processor_id = hp_cpu->processor_id;
 | |
| 		handler->addr = frame_dma;
 | |
| 		handler->frame_ptr = frame_ptr;
 | |
| 		list_add_tail(&handler->node, &hp_cpu->handlers);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int destroy_per_cpu_handlers(void)
 | |
| {
 | |
| 	struct list_head *loop, *tmp;
 | |
| 	struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
 | |
| 
 | |
| 	spin_lock(&hp_lock);
 | |
| 	list_del(&hp_cpu->node);
 | |
| 	spin_unlock(&hp_lock);
 | |
| 	list_for_each_safe(loop, tmp, &hp_cpu->handlers) {
 | |
| 		u32 flags = 0;
 | |
| 		struct hp_handler *handler = list_entry(loop, struct hp_handler,
 | |
| 							node);
 | |
| 		if (qman_retire_fq(&handler->rx, &flags) ||
 | |
| 		    (flags & QMAN_FQ_STATE_BLOCKOOS)) {
 | |
| 			pr_crit("qman_retire_fq(rx) failed, flags: %x", flags);
 | |
| 			WARN_ON(1);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		if (qman_oos_fq(&handler->rx)) {
 | |
| 			pr_crit("qman_oos_fq(rx) failed");
 | |
| 			WARN_ON(1);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		qman_destroy_fq(&handler->rx);
 | |
| 		qman_destroy_fq(&handler->tx);
 | |
| 		qman_release_fqid(handler->fqid_rx);
 | |
| 		list_del(&handler->node);
 | |
| 		kmem_cache_free(hp_handler_slab, handler);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline u8 num_cachelines(u32 offset)
 | |
| {
 | |
| 	u8 res = (offset + (L1_CACHE_BYTES - 1))
 | |
| 			 / (L1_CACHE_BYTES);
 | |
| 	if (res > 3)
 | |
| 		return 3;
 | |
| 	return res;
 | |
| }
 | |
| #define STASH_DATA_CL \
 | |
| 	num_cachelines(HP_NUM_WORDS * 4)
 | |
| #define STASH_CTX_CL \
 | |
| 	num_cachelines(offsetof(struct hp_handler, fqid_rx))
 | |
| 
 | |
| static int init_handler(void *h)
 | |
| {
 | |
| 	struct qm_mcc_initfq opts;
 | |
| 	struct hp_handler *handler = h;
 | |
| 	int err;
 | |
| 
 | |
| 	if (handler->processor_id != smp_processor_id()) {
 | |
| 		err = -EIO;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 	/* Set up rx */
 | |
| 	memset(&handler->rx, 0, sizeof(handler->rx));
 | |
| 	if (handler == special_handler)
 | |
| 		handler->rx.cb.dqrr = special_dqrr;
 | |
| 	else
 | |
| 		handler->rx.cb.dqrr = normal_dqrr;
 | |
| 	err = qman_create_fq(handler->fqid_rx, 0, &handler->rx);
 | |
| 	if (err) {
 | |
| 		pr_crit("qman_create_fq(rx) failed");
 | |
| 		goto failed;
 | |
| 	}
 | |
| 	memset(&opts, 0, sizeof(opts));
 | |
| 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL |
 | |
| 				   QM_INITFQ_WE_CONTEXTA);
 | |
| 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING);
 | |
| 	qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL);
 | |
| 	err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED |
 | |
| 			   QMAN_INITFQ_FLAG_LOCAL, &opts);
 | |
| 	if (err) {
 | |
| 		pr_crit("qman_init_fq(rx) failed");
 | |
| 		goto failed;
 | |
| 	}
 | |
| 	/* Set up tx */
 | |
| 	memset(&handler->tx, 0, sizeof(handler->tx));
 | |
| 	err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY,
 | |
| 			     &handler->tx);
 | |
| 	if (err) {
 | |
| 		pr_crit("qman_create_fq(tx) failed");
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| failed:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void init_handler_cb(void *h)
 | |
| {
 | |
| 	if (init_handler(h))
 | |
| 		WARN_ON(1);
 | |
| }
 | |
| 
 | |
| static int init_phase2(void)
 | |
| {
 | |
| 	int loop;
 | |
| 	u32 fqid = 0;
 | |
| 	u32 lfsr = 0xdeadbeef;
 | |
| 	struct hp_cpu *hp_cpu;
 | |
| 	struct hp_handler *handler;
 | |
| 
 | |
| 	for (loop = 0; loop < HP_PER_CPU; loop++) {
 | |
| 		list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
 | |
| 			int err;
 | |
| 
 | |
| 			if (!loop)
 | |
| 				hp_cpu->iterator = list_first_entry(
 | |
| 						&hp_cpu->handlers,
 | |
| 						struct hp_handler, node);
 | |
| 			else
 | |
| 				hp_cpu->iterator = list_entry(
 | |
| 						hp_cpu->iterator->node.next,
 | |
| 						struct hp_handler, node);
 | |
| 			/* Rx FQID is the previous handler's Tx FQID */
 | |
| 			hp_cpu->iterator->fqid_rx = fqid;
 | |
| 			/* Allocate new FQID for Tx */
 | |
| 			err = qman_alloc_fqid(&fqid);
 | |
| 			if (err) {
 | |
| 				pr_crit("qman_alloc_fqid() failed");
 | |
| 				return err;
 | |
| 			}
 | |
| 			hp_cpu->iterator->fqid_tx = fqid;
 | |
| 			/* Rx mixer is the previous handler's Tx mixer */
 | |
| 			hp_cpu->iterator->rx_mixer = lfsr;
 | |
| 			/* Get new mixer for Tx */
 | |
| 			lfsr = do_lfsr(lfsr);
 | |
| 			hp_cpu->iterator->tx_mixer = lfsr;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
 | |
| 	hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node);
 | |
| 	handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node);
 | |
| 	if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef)
 | |
| 		return 1;
 | |
| 	handler->fqid_rx = fqid;
 | |
| 	handler->rx_mixer = lfsr;
 | |
| 	/* and tag it as our "special" handler */
 | |
| 	special_handler = handler;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int init_phase3(void)
 | |
| {
 | |
| 	int loop, err;
 | |
| 	struct hp_cpu *hp_cpu;
 | |
| 
 | |
| 	for (loop = 0; loop < HP_PER_CPU; loop++) {
 | |
| 		list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
 | |
| 			if (!loop)
 | |
| 				hp_cpu->iterator = list_first_entry(
 | |
| 						&hp_cpu->handlers,
 | |
| 						struct hp_handler, node);
 | |
| 			else
 | |
| 				hp_cpu->iterator = list_entry(
 | |
| 						hp_cpu->iterator->node.next,
 | |
| 						struct hp_handler, node);
 | |
| 			preempt_disable();
 | |
| 			if (hp_cpu->processor_id == smp_processor_id()) {
 | |
| 				err = init_handler(hp_cpu->iterator);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			} else {
 | |
| 				smp_call_function_single(hp_cpu->processor_id,
 | |
| 					init_handler_cb, hp_cpu->iterator, 1);
 | |
| 			}
 | |
| 			preempt_enable();
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int send_first_frame(void *ignore)
 | |
| {
 | |
| 	u32 *p = special_handler->frame_ptr;
 | |
| 	u32 lfsr = HP_FIRST_WORD;
 | |
| 	int loop, err;
 | |
| 	struct qm_fd fd;
 | |
| 
 | |
| 	if (special_handler->processor_id != smp_processor_id()) {
 | |
| 		err = -EIO;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 	memset(&fd, 0, sizeof(fd));
 | |
| 	qm_fd_addr_set64(&fd, special_handler->addr);
 | |
| 	qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4);
 | |
| 	for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
 | |
| 		if (*p != lfsr) {
 | |
| 			err = -EIO;
 | |
| 			pr_crit("corrupt frame data");
 | |
| 			goto failed;
 | |
| 		}
 | |
| 		*p ^= special_handler->tx_mixer;
 | |
| 		lfsr = do_lfsr(lfsr);
 | |
| 	}
 | |
| 	pr_info("Sending first frame\n");
 | |
| 	err = qman_enqueue(&special_handler->tx, &fd);
 | |
| 	if (err) {
 | |
| 		pr_crit("qman_enqueue() failed");
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| failed:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void send_first_frame_cb(void *ignore)
 | |
| {
 | |
| 	if (send_first_frame(NULL))
 | |
| 		WARN_ON(1);
 | |
| }
 | |
| 
 | |
| int qman_test_stash(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (cpumask_weight(cpu_online_mask) < 2) {
 | |
| 		pr_info("%s(): skip - only 1 CPU\n", __func__);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("%s(): Starting\n", __func__);
 | |
| 
 | |
| 	hp_cpu_list_length = 0;
 | |
| 	loop_counter = 0;
 | |
| 	hp_handler_slab = kmem_cache_create("hp_handler_slab",
 | |
| 			sizeof(struct hp_handler), L1_CACHE_BYTES,
 | |
| 			SLAB_HWCACHE_ALIGN, NULL);
 | |
| 	if (!hp_handler_slab) {
 | |
| 		err = -EIO;
 | |
| 		pr_crit("kmem_cache_create() failed");
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	err = allocate_frame_data();
 | |
| 	if (err)
 | |
| 		goto failed;
 | |
| 
 | |
| 	/* Init phase 1 */
 | |
| 	pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU);
 | |
| 	if (on_all_cpus(create_per_cpu_handlers)) {
 | |
| 		err = -EIO;
 | |
| 		pr_crit("on_each_cpu() failed");
 | |
| 		goto failed;
 | |
| 	}
 | |
| 	pr_info("Number of cpus: %d, total of %d handlers\n",
 | |
| 		hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU);
 | |
| 
 | |
| 	err = init_phase2();
 | |
| 	if (err)
 | |
| 		goto failed;
 | |
| 
 | |
| 	err = init_phase3();
 | |
| 	if (err)
 | |
| 		goto failed;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	if (special_handler->processor_id == smp_processor_id()) {
 | |
| 		err = send_first_frame(NULL);
 | |
| 		if (err)
 | |
| 			goto failed;
 | |
| 	} else {
 | |
| 		smp_call_function_single(special_handler->processor_id,
 | |
| 					 send_first_frame_cb, NULL, 1);
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	wait_event(queue, loop_counter == HP_LOOPS);
 | |
| 	deallocate_frame_data();
 | |
| 	if (on_all_cpus(destroy_per_cpu_handlers)) {
 | |
| 		err = -EIO;
 | |
| 		pr_crit("on_each_cpu() failed");
 | |
| 		goto failed;
 | |
| 	}
 | |
| 	kmem_cache_destroy(hp_handler_slab);
 | |
| 	pr_info("%s(): Finished\n", __func__);
 | |
| 
 | |
| 	return 0;
 | |
| failed:
 | |
| 	WARN_ON(1);
 | |
| 	return err;
 | |
| }
 | 
