923 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			923 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************************
 | |
|  * Driver for Solarflare network controllers and boards
 | |
|  * Copyright 2005-2006 Fen Systems Ltd.
 | |
|  * Copyright 2005-2013 Solarflare Communications Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation, incorporated herein by reference.
 | |
|  */
 | |
| 
 | |
| #include <linux/pci.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/ipv6.h>
 | |
| #include <linux/slab.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/cache.h>
 | |
| #include "net_driver.h"
 | |
| #include "efx.h"
 | |
| #include "io.h"
 | |
| #include "nic.h"
 | |
| #include "tx.h"
 | |
| #include "workarounds.h"
 | |
| #include "ef10_regs.h"
 | |
| 
 | |
| #ifdef EFX_USE_PIO
 | |
| 
 | |
| #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
 | |
| unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
 | |
| 
 | |
| #endif /* EFX_USE_PIO */
 | |
| 
 | |
| static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
 | |
| 					 struct efx_tx_buffer *buffer)
 | |
| {
 | |
| 	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
 | |
| 	struct efx_buffer *page_buf =
 | |
| 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
 | |
| 	unsigned int offset =
 | |
| 		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
 | |
| 
 | |
| 	if (unlikely(!page_buf->addr) &&
 | |
| 	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
 | |
| 				 GFP_ATOMIC))
 | |
| 		return NULL;
 | |
| 	buffer->dma_addr = page_buf->dma_addr + offset;
 | |
| 	buffer->unmap_len = 0;
 | |
| 	return (u8 *)page_buf->addr + offset;
 | |
| }
 | |
| 
 | |
| u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
 | |
| 				   struct efx_tx_buffer *buffer, size_t len)
 | |
| {
 | |
| 	if (len > EFX_TX_CB_SIZE)
 | |
| 		return NULL;
 | |
| 	return efx_tx_get_copy_buffer(tx_queue, buffer);
 | |
| }
 | |
| 
 | |
| static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
 | |
| 			       struct efx_tx_buffer *buffer,
 | |
| 			       unsigned int *pkts_compl,
 | |
| 			       unsigned int *bytes_compl)
 | |
| {
 | |
| 	if (buffer->unmap_len) {
 | |
| 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
 | |
| 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
 | |
| 		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
 | |
| 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
 | |
| 					 DMA_TO_DEVICE);
 | |
| 		else
 | |
| 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
 | |
| 				       DMA_TO_DEVICE);
 | |
| 		buffer->unmap_len = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (buffer->flags & EFX_TX_BUF_SKB) {
 | |
| 		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
 | |
| 
 | |
| 		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
 | |
| 		(*pkts_compl)++;
 | |
| 		(*bytes_compl) += skb->len;
 | |
| 		if (tx_queue->timestamping &&
 | |
| 		    (tx_queue->completed_timestamp_major ||
 | |
| 		     tx_queue->completed_timestamp_minor)) {
 | |
| 			struct skb_shared_hwtstamps hwtstamp;
 | |
| 
 | |
| 			hwtstamp.hwtstamp =
 | |
| 				efx_ptp_nic_to_kernel_time(tx_queue);
 | |
| 			skb_tstamp_tx(skb, &hwtstamp);
 | |
| 
 | |
| 			tx_queue->completed_timestamp_major = 0;
 | |
| 			tx_queue->completed_timestamp_minor = 0;
 | |
| 		}
 | |
| 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
 | |
| 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
 | |
| 			   "TX queue %d transmission id %x complete\n",
 | |
| 			   tx_queue->queue, tx_queue->read_count);
 | |
| 	}
 | |
| 
 | |
| 	buffer->len = 0;
 | |
| 	buffer->flags = 0;
 | |
| }
 | |
| 
 | |
| unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
 | |
| {
 | |
| 	/* Header and payload descriptor for each output segment, plus
 | |
| 	 * one for every input fragment boundary within a segment
 | |
| 	 */
 | |
| 	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
 | |
| 
 | |
| 	/* Possibly one more per segment for option descriptors */
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 | |
| 		max_descs += EFX_TSO_MAX_SEGS;
 | |
| 
 | |
| 	/* Possibly more for PCIe page boundaries within input fragments */
 | |
| 	if (PAGE_SIZE > EFX_PAGE_SIZE)
 | |
| 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
 | |
| 				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
 | |
| 
 | |
| 	return max_descs;
 | |
| }
 | |
| 
 | |
| static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
 | |
| {
 | |
| 	/* We need to consider both queues that the net core sees as one */
 | |
| 	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
 | |
| 	struct efx_nic *efx = txq1->efx;
 | |
| 	unsigned int fill_level;
 | |
| 
 | |
| 	fill_level = max(txq1->insert_count - txq1->old_read_count,
 | |
| 			 txq2->insert_count - txq2->old_read_count);
 | |
| 	if (likely(fill_level < efx->txq_stop_thresh))
 | |
| 		return;
 | |
| 
 | |
| 	/* We used the stale old_read_count above, which gives us a
 | |
| 	 * pessimistic estimate of the fill level (which may even
 | |
| 	 * validly be >= efx->txq_entries).  Now try again using
 | |
| 	 * read_count (more likely to be a cache miss).
 | |
| 	 *
 | |
| 	 * If we read read_count and then conditionally stop the
 | |
| 	 * queue, it is possible for the completion path to race with
 | |
| 	 * us and complete all outstanding descriptors in the middle,
 | |
| 	 * after which there will be no more completions to wake it.
 | |
| 	 * Therefore we stop the queue first, then read read_count
 | |
| 	 * (with a memory barrier to ensure the ordering), then
 | |
| 	 * restart the queue if the fill level turns out to be low
 | |
| 	 * enough.
 | |
| 	 */
 | |
| 	netif_tx_stop_queue(txq1->core_txq);
 | |
| 	smp_mb();
 | |
| 	txq1->old_read_count = READ_ONCE(txq1->read_count);
 | |
| 	txq2->old_read_count = READ_ONCE(txq2->read_count);
 | |
| 
 | |
| 	fill_level = max(txq1->insert_count - txq1->old_read_count,
 | |
| 			 txq2->insert_count - txq2->old_read_count);
 | |
| 	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
 | |
| 	if (likely(fill_level < efx->txq_stop_thresh)) {
 | |
| 		smp_mb();
 | |
| 		if (likely(!efx->loopback_selftest))
 | |
| 			netif_tx_start_queue(txq1->core_txq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
 | |
| 				struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int copy_len = skb->len;
 | |
| 	struct efx_tx_buffer *buffer;
 | |
| 	u8 *copy_buffer;
 | |
| 	int rc;
 | |
| 
 | |
| 	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
 | |
| 
 | |
| 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 | |
| 
 | |
| 	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
 | |
| 	if (unlikely(!copy_buffer))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
 | |
| 	EFX_WARN_ON_PARANOID(rc);
 | |
| 	buffer->len = copy_len;
 | |
| 
 | |
| 	buffer->skb = skb;
 | |
| 	buffer->flags = EFX_TX_BUF_SKB;
 | |
| 
 | |
| 	++tx_queue->insert_count;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #ifdef EFX_USE_PIO
 | |
| 
 | |
| struct efx_short_copy_buffer {
 | |
| 	int used;
 | |
| 	u8 buf[L1_CACHE_BYTES];
 | |
| };
 | |
| 
 | |
| /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
 | |
|  * Advances piobuf pointer. Leaves additional data in the copy buffer.
 | |
|  */
 | |
| static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
 | |
| 				    u8 *data, int len,
 | |
| 				    struct efx_short_copy_buffer *copy_buf)
 | |
| {
 | |
| 	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
 | |
| 
 | |
| 	__iowrite64_copy(*piobuf, data, block_len >> 3);
 | |
| 	*piobuf += block_len;
 | |
| 	len -= block_len;
 | |
| 
 | |
| 	if (len) {
 | |
| 		data += block_len;
 | |
| 		BUG_ON(copy_buf->used);
 | |
| 		BUG_ON(len > sizeof(copy_buf->buf));
 | |
| 		memcpy(copy_buf->buf, data, len);
 | |
| 		copy_buf->used = len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
 | |
|  * Advances piobuf pointer. Leaves additional data in the copy buffer.
 | |
|  */
 | |
| static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
 | |
| 				       u8 *data, int len,
 | |
| 				       struct efx_short_copy_buffer *copy_buf)
 | |
| {
 | |
| 	if (copy_buf->used) {
 | |
| 		/* if the copy buffer is partially full, fill it up and write */
 | |
| 		int copy_to_buf =
 | |
| 			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
 | |
| 
 | |
| 		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
 | |
| 		copy_buf->used += copy_to_buf;
 | |
| 
 | |
| 		/* if we didn't fill it up then we're done for now */
 | |
| 		if (copy_buf->used < sizeof(copy_buf->buf))
 | |
| 			return;
 | |
| 
 | |
| 		__iowrite64_copy(*piobuf, copy_buf->buf,
 | |
| 				 sizeof(copy_buf->buf) >> 3);
 | |
| 		*piobuf += sizeof(copy_buf->buf);
 | |
| 		data += copy_to_buf;
 | |
| 		len -= copy_to_buf;
 | |
| 		copy_buf->used = 0;
 | |
| 	}
 | |
| 
 | |
| 	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
 | |
| }
 | |
| 
 | |
| static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
 | |
| 				  struct efx_short_copy_buffer *copy_buf)
 | |
| {
 | |
| 	/* if there's anything in it, write the whole buffer, including junk */
 | |
| 	if (copy_buf->used)
 | |
| 		__iowrite64_copy(piobuf, copy_buf->buf,
 | |
| 				 sizeof(copy_buf->buf) >> 3);
 | |
| }
 | |
| 
 | |
| /* Traverse skb structure and copy fragments in to PIO buffer.
 | |
|  * Advances piobuf pointer.
 | |
|  */
 | |
| static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
 | |
| 				     u8 __iomem **piobuf,
 | |
| 				     struct efx_short_copy_buffer *copy_buf)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
 | |
| 				copy_buf);
 | |
| 
 | |
| 	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
 | |
| 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 | |
| 		u8 *vaddr;
 | |
| 
 | |
| 		vaddr = kmap_atomic(skb_frag_page(f));
 | |
| 
 | |
| 		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
 | |
| 					   skb_frag_size(f), copy_buf);
 | |
| 		kunmap_atomic(vaddr);
 | |
| 	}
 | |
| 
 | |
| 	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
 | |
| }
 | |
| 
 | |
| static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
 | |
| 			       struct sk_buff *skb)
 | |
| {
 | |
| 	struct efx_tx_buffer *buffer =
 | |
| 		efx_tx_queue_get_insert_buffer(tx_queue);
 | |
| 	u8 __iomem *piobuf = tx_queue->piobuf;
 | |
| 
 | |
| 	/* Copy to PIO buffer. Ensure the writes are padded to the end
 | |
| 	 * of a cache line, as this is required for write-combining to be
 | |
| 	 * effective on at least x86.
 | |
| 	 */
 | |
| 
 | |
| 	if (skb_shinfo(skb)->nr_frags) {
 | |
| 		/* The size of the copy buffer will ensure all writes
 | |
| 		 * are the size of a cache line.
 | |
| 		 */
 | |
| 		struct efx_short_copy_buffer copy_buf;
 | |
| 
 | |
| 		copy_buf.used = 0;
 | |
| 
 | |
| 		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
 | |
| 					 &piobuf, ©_buf);
 | |
| 		efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf);
 | |
| 	} else {
 | |
| 		/* Pad the write to the size of a cache line.
 | |
| 		 * We can do this because we know the skb_shared_info struct is
 | |
| 		 * after the source, and the destination buffer is big enough.
 | |
| 		 */
 | |
| 		BUILD_BUG_ON(L1_CACHE_BYTES >
 | |
| 			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
 | |
| 		__iowrite64_copy(tx_queue->piobuf, skb->data,
 | |
| 				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
 | |
| 	}
 | |
| 
 | |
| 	buffer->skb = skb;
 | |
| 	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
 | |
| 
 | |
| 	EFX_POPULATE_QWORD_5(buffer->option,
 | |
| 			     ESF_DZ_TX_DESC_IS_OPT, 1,
 | |
| 			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
 | |
| 			     ESF_DZ_TX_PIO_CONT, 0,
 | |
| 			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
 | |
| 			     ESF_DZ_TX_PIO_BUF_ADDR,
 | |
| 			     tx_queue->piobuf_offset);
 | |
| 	++tx_queue->insert_count;
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* EFX_USE_PIO */
 | |
| 
 | |
| static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
 | |
| 					      dma_addr_t dma_addr,
 | |
| 					      size_t len)
 | |
| {
 | |
| 	const struct efx_nic_type *nic_type = tx_queue->efx->type;
 | |
| 	struct efx_tx_buffer *buffer;
 | |
| 	unsigned int dma_len;
 | |
| 
 | |
| 	/* Map the fragment taking account of NIC-dependent DMA limits. */
 | |
| 	do {
 | |
| 		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 | |
| 		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
 | |
| 
 | |
| 		buffer->len = dma_len;
 | |
| 		buffer->dma_addr = dma_addr;
 | |
| 		buffer->flags = EFX_TX_BUF_CONT;
 | |
| 		len -= dma_len;
 | |
| 		dma_addr += dma_len;
 | |
| 		++tx_queue->insert_count;
 | |
| 	} while (len);
 | |
| 
 | |
| 	return buffer;
 | |
| }
 | |
| 
 | |
| /* Map all data from an SKB for DMA and create descriptors on the queue.
 | |
|  */
 | |
| static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
 | |
| 			   unsigned int segment_count)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	struct device *dma_dev = &efx->pci_dev->dev;
 | |
| 	unsigned int frag_index, nr_frags;
 | |
| 	dma_addr_t dma_addr, unmap_addr;
 | |
| 	unsigned short dma_flags;
 | |
| 	size_t len, unmap_len;
 | |
| 
 | |
| 	nr_frags = skb_shinfo(skb)->nr_frags;
 | |
| 	frag_index = 0;
 | |
| 
 | |
| 	/* Map header data. */
 | |
| 	len = skb_headlen(skb);
 | |
| 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
 | |
| 	dma_flags = EFX_TX_BUF_MAP_SINGLE;
 | |
| 	unmap_len = len;
 | |
| 	unmap_addr = dma_addr;
 | |
| 
 | |
| 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (segment_count) {
 | |
| 		/* For TSO we need to put the header in to a separate
 | |
| 		 * descriptor. Map this separately if necessary.
 | |
| 		 */
 | |
| 		size_t header_len = skb_transport_header(skb) - skb->data +
 | |
| 				(tcp_hdr(skb)->doff << 2u);
 | |
| 
 | |
| 		if (header_len != len) {
 | |
| 			tx_queue->tso_long_headers++;
 | |
| 			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
 | |
| 			len -= header_len;
 | |
| 			dma_addr += header_len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Add descriptors for each fragment. */
 | |
| 	do {
 | |
| 		struct efx_tx_buffer *buffer;
 | |
| 		skb_frag_t *fragment;
 | |
| 
 | |
| 		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
 | |
| 
 | |
| 		/* The final descriptor for a fragment is responsible for
 | |
| 		 * unmapping the whole fragment.
 | |
| 		 */
 | |
| 		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
 | |
| 		buffer->unmap_len = unmap_len;
 | |
| 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
 | |
| 
 | |
| 		if (frag_index >= nr_frags) {
 | |
| 			/* Store SKB details with the final buffer for
 | |
| 			 * the completion.
 | |
| 			 */
 | |
| 			buffer->skb = skb;
 | |
| 			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Move on to the next fragment. */
 | |
| 		fragment = &skb_shinfo(skb)->frags[frag_index++];
 | |
| 		len = skb_frag_size(fragment);
 | |
| 		dma_addr = skb_frag_dma_map(dma_dev, fragment,
 | |
| 				0, len, DMA_TO_DEVICE);
 | |
| 		dma_flags = 0;
 | |
| 		unmap_len = len;
 | |
| 		unmap_addr = dma_addr;
 | |
| 
 | |
| 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 | |
| 			return -EIO;
 | |
| 	} while (1);
 | |
| }
 | |
| 
 | |
| /* Remove buffers put into a tx_queue for the current packet.
 | |
|  * None of the buffers must have an skb attached.
 | |
|  */
 | |
| static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
 | |
| 			       unsigned int insert_count)
 | |
| {
 | |
| 	struct efx_tx_buffer *buffer;
 | |
| 	unsigned int bytes_compl = 0;
 | |
| 	unsigned int pkts_compl = 0;
 | |
| 
 | |
| 	/* Work backwards until we hit the original insert pointer value */
 | |
| 	while (tx_queue->insert_count != insert_count) {
 | |
| 		--tx_queue->insert_count;
 | |
| 		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
 | |
| 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fallback to software TSO.
 | |
|  *
 | |
|  * This is used if we are unable to send a GSO packet through hardware TSO.
 | |
|  * This should only ever happen due to per-queue restrictions - unsupported
 | |
|  * packets should first be filtered by the feature flags.
 | |
|  *
 | |
|  * Returns 0 on success, error code otherwise.
 | |
|  */
 | |
| static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
 | |
| 			       struct sk_buff *skb)
 | |
| {
 | |
| 	struct sk_buff *segments, *next;
 | |
| 
 | |
| 	segments = skb_gso_segment(skb, 0);
 | |
| 	if (IS_ERR(segments))
 | |
| 		return PTR_ERR(segments);
 | |
| 
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	skb = segments;
 | |
| 
 | |
| 	while (skb) {
 | |
| 		next = skb->next;
 | |
| 		skb->next = NULL;
 | |
| 
 | |
| 		if (next)
 | |
| 			skb->xmit_more = true;
 | |
| 		efx_enqueue_skb(tx_queue, skb);
 | |
| 		skb = next;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a socket buffer to a TX queue
 | |
|  *
 | |
|  * This maps all fragments of a socket buffer for DMA and adds them to
 | |
|  * the TX queue.  The queue's insert pointer will be incremented by
 | |
|  * the number of fragments in the socket buffer.
 | |
|  *
 | |
|  * If any DMA mapping fails, any mapped fragments will be unmapped,
 | |
|  * the queue's insert pointer will be restored to its original value.
 | |
|  *
 | |
|  * This function is split out from efx_hard_start_xmit to allow the
 | |
|  * loopback test to direct packets via specific TX queues.
 | |
|  *
 | |
|  * Returns NETDEV_TX_OK.
 | |
|  * You must hold netif_tx_lock() to call this function.
 | |
|  */
 | |
| netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int old_insert_count = tx_queue->insert_count;
 | |
| 	bool xmit_more = skb->xmit_more;
 | |
| 	bool data_mapped = false;
 | |
| 	unsigned int segments;
 | |
| 	unsigned int skb_len;
 | |
| 	int rc;
 | |
| 
 | |
| 	skb_len = skb->len;
 | |
| 	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
 | |
| 	if (segments == 1)
 | |
| 		segments = 0; /* Don't use TSO for a single segment. */
 | |
| 
 | |
| 	/* Handle TSO first - it's *possible* (although unlikely) that we might
 | |
| 	 * be passed a packet to segment that's smaller than the copybreak/PIO
 | |
| 	 * size limit.
 | |
| 	 */
 | |
| 	if (segments) {
 | |
| 		EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
 | |
| 		rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
 | |
| 		if (rc == -EINVAL) {
 | |
| 			rc = efx_tx_tso_fallback(tx_queue, skb);
 | |
| 			tx_queue->tso_fallbacks++;
 | |
| 			if (rc == 0)
 | |
| 				return 0;
 | |
| 		}
 | |
| 		if (rc)
 | |
| 			goto err;
 | |
| #ifdef EFX_USE_PIO
 | |
| 	} else if (skb_len <= efx_piobuf_size && !skb->xmit_more &&
 | |
| 		   efx_nic_may_tx_pio(tx_queue)) {
 | |
| 		/* Use PIO for short packets with an empty queue. */
 | |
| 		if (efx_enqueue_skb_pio(tx_queue, skb))
 | |
| 			goto err;
 | |
| 		tx_queue->pio_packets++;
 | |
| 		data_mapped = true;
 | |
| #endif
 | |
| 	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
 | |
| 		/* Pad short packets or coalesce short fragmented packets. */
 | |
| 		if (efx_enqueue_skb_copy(tx_queue, skb))
 | |
| 			goto err;
 | |
| 		tx_queue->cb_packets++;
 | |
| 		data_mapped = true;
 | |
| 	}
 | |
| 
 | |
| 	/* Map for DMA and create descriptors if we haven't done so already. */
 | |
| 	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
 | |
| 		goto err;
 | |
| 
 | |
| 	/* Update BQL */
 | |
| 	netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
 | |
| 
 | |
| 	efx_tx_maybe_stop_queue(tx_queue);
 | |
| 
 | |
| 	/* Pass off to hardware */
 | |
| 	if (!xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
 | |
| 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
 | |
| 
 | |
| 		/* There could be packets left on the partner queue if those
 | |
| 		 * SKBs had skb->xmit_more set. If we do not push those they
 | |
| 		 * could be left for a long time and cause a netdev watchdog.
 | |
| 		 */
 | |
| 		if (txq2->xmit_more_available)
 | |
| 			efx_nic_push_buffers(txq2);
 | |
| 
 | |
| 		efx_nic_push_buffers(tx_queue);
 | |
| 	} else {
 | |
| 		tx_queue->xmit_more_available = skb->xmit_more;
 | |
| 	}
 | |
| 
 | |
| 	if (segments) {
 | |
| 		tx_queue->tso_bursts++;
 | |
| 		tx_queue->tso_packets += segments;
 | |
| 		tx_queue->tx_packets  += segments;
 | |
| 	} else {
 | |
| 		tx_queue->tx_packets++;
 | |
| 	}
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| 
 | |
| err:
 | |
| 	efx_enqueue_unwind(tx_queue, old_insert_count);
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 
 | |
| 	/* If we're not expecting another transmit and we had something to push
 | |
| 	 * on this queue or a partner queue then we need to push here to get the
 | |
| 	 * previous packets out.
 | |
| 	 */
 | |
| 	if (!xmit_more) {
 | |
| 		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
 | |
| 
 | |
| 		if (txq2->xmit_more_available)
 | |
| 			efx_nic_push_buffers(txq2);
 | |
| 
 | |
| 		efx_nic_push_buffers(tx_queue);
 | |
| 	}
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| /* Remove packets from the TX queue
 | |
|  *
 | |
|  * This removes packets from the TX queue, up to and including the
 | |
|  * specified index.
 | |
|  */
 | |
| static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
 | |
| 				unsigned int index,
 | |
| 				unsigned int *pkts_compl,
 | |
| 				unsigned int *bytes_compl)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	unsigned int stop_index, read_ptr;
 | |
| 
 | |
| 	stop_index = (index + 1) & tx_queue->ptr_mask;
 | |
| 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 | |
| 
 | |
| 	while (read_ptr != stop_index) {
 | |
| 		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 | |
| 
 | |
| 		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
 | |
| 		    unlikely(buffer->len == 0)) {
 | |
| 			netif_err(efx, tx_err, efx->net_dev,
 | |
| 				  "TX queue %d spurious TX completion id %x\n",
 | |
| 				  tx_queue->queue, read_ptr);
 | |
| 			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
 | |
| 
 | |
| 		++tx_queue->read_count;
 | |
| 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Initiate a packet transmission.  We use one channel per CPU
 | |
|  * (sharing when we have more CPUs than channels).  On Falcon, the TX
 | |
|  * completion events will be directed back to the CPU that transmitted
 | |
|  * the packet, which should be cache-efficient.
 | |
|  *
 | |
|  * Context: non-blocking.
 | |
|  * Note that returning anything other than NETDEV_TX_OK will cause the
 | |
|  * OS to free the skb.
 | |
|  */
 | |
| netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
 | |
| 				struct net_device *net_dev)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	unsigned index, type;
 | |
| 
 | |
| 	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
 | |
| 
 | |
| 	/* PTP "event" packet */
 | |
| 	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
 | |
| 	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
 | |
| 		return efx_ptp_tx(efx, skb);
 | |
| 	}
 | |
| 
 | |
| 	index = skb_get_queue_mapping(skb);
 | |
| 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
 | |
| 	if (index >= efx->n_tx_channels) {
 | |
| 		index -= efx->n_tx_channels;
 | |
| 		type |= EFX_TXQ_TYPE_HIGHPRI;
 | |
| 	}
 | |
| 	tx_queue = efx_get_tx_queue(efx, index, type);
 | |
| 
 | |
| 	return efx_enqueue_skb(tx_queue, skb);
 | |
| }
 | |
| 
 | |
| void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 
 | |
| 	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
 | |
| 	tx_queue->core_txq =
 | |
| 		netdev_get_tx_queue(efx->net_dev,
 | |
| 				    tx_queue->queue / EFX_TXQ_TYPES +
 | |
| 				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 | |
| 				     efx->n_tx_channels : 0));
 | |
| }
 | |
| 
 | |
| int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
 | |
| 		 void *type_data)
 | |
| {
 | |
| 	struct efx_nic *efx = netdev_priv(net_dev);
 | |
| 	struct tc_mqprio_qopt *mqprio = type_data;
 | |
| 	struct efx_channel *channel;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	unsigned tc, num_tc;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (type != TC_SETUP_QDISC_MQPRIO)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	num_tc = mqprio->num_tc;
 | |
| 
 | |
| 	if (num_tc > EFX_MAX_TX_TC)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 | |
| 
 | |
| 	if (num_tc == net_dev->num_tc)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (tc = 0; tc < num_tc; tc++) {
 | |
| 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
 | |
| 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
 | |
| 	}
 | |
| 
 | |
| 	if (num_tc > net_dev->num_tc) {
 | |
| 		/* Initialise high-priority queues as necessary */
 | |
| 		efx_for_each_channel(channel, efx) {
 | |
| 			efx_for_each_possible_channel_tx_queue(tx_queue,
 | |
| 							       channel) {
 | |
| 				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
 | |
| 					continue;
 | |
| 				if (!tx_queue->buffer) {
 | |
| 					rc = efx_probe_tx_queue(tx_queue);
 | |
| 					if (rc)
 | |
| 						return rc;
 | |
| 				}
 | |
| 				if (!tx_queue->initialised)
 | |
| 					efx_init_tx_queue(tx_queue);
 | |
| 				efx_init_tx_queue_core_txq(tx_queue);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Reduce number of classes before number of queues */
 | |
| 		net_dev->num_tc = num_tc;
 | |
| 	}
 | |
| 
 | |
| 	rc = netif_set_real_num_tx_queues(net_dev,
 | |
| 					  max_t(int, num_tc, 1) *
 | |
| 					  efx->n_tx_channels);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Do not destroy high-priority queues when they become
 | |
| 	 * unused.  We would have to flush them first, and it is
 | |
| 	 * fairly difficult to flush a subset of TX queues.  Leave
 | |
| 	 * it to efx_fini_channels().
 | |
| 	 */
 | |
| 
 | |
| 	net_dev->num_tc = num_tc;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
 | |
| {
 | |
| 	unsigned fill_level;
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	struct efx_tx_queue *txq2;
 | |
| 	unsigned int pkts_compl = 0, bytes_compl = 0;
 | |
| 
 | |
| 	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
 | |
| 
 | |
| 	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
 | |
| 	tx_queue->pkts_compl += pkts_compl;
 | |
| 	tx_queue->bytes_compl += bytes_compl;
 | |
| 
 | |
| 	if (pkts_compl > 1)
 | |
| 		++tx_queue->merge_events;
 | |
| 
 | |
| 	/* See if we need to restart the netif queue.  This memory
 | |
| 	 * barrier ensures that we write read_count (inside
 | |
| 	 * efx_dequeue_buffers()) before reading the queue status.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
 | |
| 	    likely(efx->port_enabled) &&
 | |
| 	    likely(netif_device_present(efx->net_dev))) {
 | |
| 		txq2 = efx_tx_queue_partner(tx_queue);
 | |
| 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
 | |
| 				 txq2->insert_count - txq2->read_count);
 | |
| 		if (fill_level <= efx->txq_wake_thresh)
 | |
| 			netif_tx_wake_queue(tx_queue->core_txq);
 | |
| 	}
 | |
| 
 | |
| 	/* Check whether the hardware queue is now empty */
 | |
| 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
 | |
| 		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
 | |
| 		if (tx_queue->read_count == tx_queue->old_write_count) {
 | |
| 			smp_mb();
 | |
| 			tx_queue->empty_read_count =
 | |
| 				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
 | |
| }
 | |
| 
 | |
| int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	unsigned int entries;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Create the smallest power-of-two aligned ring */
 | |
| 	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
 | |
| 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 | |
| 	tx_queue->ptr_mask = entries - 1;
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev,
 | |
| 		  "creating TX queue %d size %#x mask %#x\n",
 | |
| 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 | |
| 
 | |
| 	/* Allocate software ring */
 | |
| 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 | |
| 				   GFP_KERNEL);
 | |
| 	if (!tx_queue->buffer)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
 | |
| 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
 | |
| 	if (!tx_queue->cb_page) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate hardware ring */
 | |
| 	rc = efx_nic_probe_tx(tx_queue);
 | |
| 	if (rc)
 | |
| 		goto fail2;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail2:
 | |
| 	kfree(tx_queue->cb_page);
 | |
| 	tx_queue->cb_page = NULL;
 | |
| fail1:
 | |
| 	kfree(tx_queue->buffer);
 | |
| 	tx_queue->buffer = NULL;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 
 | |
| 	netif_dbg(efx, drv, efx->net_dev,
 | |
| 		  "initialising TX queue %d\n", tx_queue->queue);
 | |
| 
 | |
| 	tx_queue->insert_count = 0;
 | |
| 	tx_queue->write_count = 0;
 | |
| 	tx_queue->packet_write_count = 0;
 | |
| 	tx_queue->old_write_count = 0;
 | |
| 	tx_queue->read_count = 0;
 | |
| 	tx_queue->old_read_count = 0;
 | |
| 	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
 | |
| 	tx_queue->xmit_more_available = false;
 | |
| 	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
 | |
| 				  tx_queue->channel == efx_ptp_channel(efx));
 | |
| 	tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
 | |
| 	tx_queue->completed_timestamp_major = 0;
 | |
| 	tx_queue->completed_timestamp_minor = 0;
 | |
| 
 | |
| 	/* Set up default function pointers. These may get replaced by
 | |
| 	 * efx_nic_init_tx() based off NIC/queue capabilities.
 | |
| 	 */
 | |
| 	tx_queue->handle_tso = efx_enqueue_skb_tso;
 | |
| 
 | |
| 	/* Set up TX descriptor ring */
 | |
| 	efx_nic_init_tx(tx_queue);
 | |
| 
 | |
| 	tx_queue->initialised = true;
 | |
| }
 | |
| 
 | |
| void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_tx_buffer *buffer;
 | |
| 
 | |
| 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 | |
| 		  "shutting down TX queue %d\n", tx_queue->queue);
 | |
| 
 | |
| 	if (!tx_queue->buffer)
 | |
| 		return;
 | |
| 
 | |
| 	/* Free any buffers left in the ring */
 | |
| 	while (tx_queue->read_count != tx_queue->write_count) {
 | |
| 		unsigned int pkts_compl = 0, bytes_compl = 0;
 | |
| 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
 | |
| 		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 | |
| 
 | |
| 		++tx_queue->read_count;
 | |
| 	}
 | |
| 	tx_queue->xmit_more_available = false;
 | |
| 	netdev_tx_reset_queue(tx_queue->core_txq);
 | |
| }
 | |
| 
 | |
| void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!tx_queue->buffer)
 | |
| 		return;
 | |
| 
 | |
| 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 | |
| 		  "destroying TX queue %d\n", tx_queue->queue);
 | |
| 	efx_nic_remove_tx(tx_queue);
 | |
| 
 | |
| 	if (tx_queue->cb_page) {
 | |
| 		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
 | |
| 			efx_nic_free_buffer(tx_queue->efx,
 | |
| 					    &tx_queue->cb_page[i]);
 | |
| 		kfree(tx_queue->cb_page);
 | |
| 		tx_queue->cb_page = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kfree(tx_queue->buffer);
 | |
| 	tx_queue->buffer = NULL;
 | |
| }
 | 
