2933 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2933 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Common Flash Interface support:
 | |
|  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
 | |
|  *
 | |
|  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
 | |
|  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
 | |
|  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
 | |
|  *
 | |
|  * 2_by_8 routines added by Simon Munton
 | |
|  *
 | |
|  * 4_by_16 work by Carolyn J. Smith
 | |
|  *
 | |
|  * XIP support hooks by Vitaly Wool (based on code for Intel flash
 | |
|  * by Nicolas Pitre)
 | |
|  *
 | |
|  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
 | |
|  *
 | |
|  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
 | |
|  *
 | |
|  * This code is GPL
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/byteorder.h>
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/mtd/map.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/cfi.h>
 | |
| #include <linux/mtd/xip.h>
 | |
| 
 | |
| #define AMD_BOOTLOC_BUG
 | |
| #define FORCE_WORD_WRITE 0
 | |
| 
 | |
| #define MAX_RETRIES 3
 | |
| 
 | |
| #define SST49LF004B		0x0060
 | |
| #define SST49LF040B		0x0050
 | |
| #define SST49LF008A		0x005a
 | |
| #define AT49BV6416		0x00d6
 | |
| 
 | |
| static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
 | |
| static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
 | |
| static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
 | |
| static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
 | |
| static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
 | |
| static void cfi_amdstd_sync (struct mtd_info *);
 | |
| static int cfi_amdstd_suspend (struct mtd_info *);
 | |
| static void cfi_amdstd_resume (struct mtd_info *);
 | |
| static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
 | |
| static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
 | |
| 					 size_t *, struct otp_info *);
 | |
| static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
 | |
| 					 size_t *, struct otp_info *);
 | |
| static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
 | |
| static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
 | |
| 					 size_t *, u_char *);
 | |
| static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
 | |
| 					 size_t *, u_char *);
 | |
| static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
 | |
| 					  size_t *, u_char *);
 | |
| static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
 | |
| 
 | |
| static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 				  size_t *retlen, const u_char *buf);
 | |
| 
 | |
| static void cfi_amdstd_destroy(struct mtd_info *);
 | |
| 
 | |
| struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
 | |
| static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
 | |
| 
 | |
| static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
 | |
| static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
 | |
| #include "fwh_lock.h"
 | |
| 
 | |
| static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 | |
| static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 | |
| 
 | |
| static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 | |
| static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 | |
| static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 | |
| 
 | |
| static struct mtd_chip_driver cfi_amdstd_chipdrv = {
 | |
| 	.probe		= NULL, /* Not usable directly */
 | |
| 	.destroy	= cfi_amdstd_destroy,
 | |
| 	.name		= "cfi_cmdset_0002",
 | |
| 	.module		= THIS_MODULE
 | |
| };
 | |
| 
 | |
| 
 | |
| /* #define DEBUG_CFI_FEATURES */
 | |
| 
 | |
| 
 | |
| #ifdef DEBUG_CFI_FEATURES
 | |
| static void cfi_tell_features(struct cfi_pri_amdstd *extp)
 | |
| {
 | |
| 	const char* erase_suspend[3] = {
 | |
| 		"Not supported", "Read only", "Read/write"
 | |
| 	};
 | |
| 	const char* top_bottom[6] = {
 | |
| 		"No WP", "8x8KiB sectors at top & bottom, no WP",
 | |
| 		"Bottom boot", "Top boot",
 | |
| 		"Uniform, Bottom WP", "Uniform, Top WP"
 | |
| 	};
 | |
| 
 | |
| 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
 | |
| 	printk("  Address sensitive unlock: %s\n",
 | |
| 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
 | |
| 
 | |
| 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
 | |
| 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
 | |
| 	else
 | |
| 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
 | |
| 
 | |
| 	if (extp->BlkProt == 0)
 | |
| 		printk("  Block protection: Not supported\n");
 | |
| 	else
 | |
| 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
 | |
| 
 | |
| 
 | |
| 	printk("  Temporary block unprotect: %s\n",
 | |
| 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
 | |
| 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
 | |
| 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
 | |
| 	printk("  Burst mode: %s\n",
 | |
| 	       extp->BurstMode ? "Supported" : "Not supported");
 | |
| 	if (extp->PageMode == 0)
 | |
| 		printk("  Page mode: Not supported\n");
 | |
| 	else
 | |
| 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
 | |
| 
 | |
| 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
 | |
| 	       extp->VppMin >> 4, extp->VppMin & 0xf);
 | |
| 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
 | |
| 	       extp->VppMax >> 4, extp->VppMax & 0xf);
 | |
| 
 | |
| 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
 | |
| 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
 | |
| 	else
 | |
| 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef AMD_BOOTLOC_BUG
 | |
| /* Wheee. Bring me the head of someone at AMD. */
 | |
| static void fixup_amd_bootblock(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 | |
| 	__u8 major = extp->MajorVersion;
 | |
| 	__u8 minor = extp->MinorVersion;
 | |
| 
 | |
| 	if (((major << 8) | minor) < 0x3131) {
 | |
| 		/* CFI version 1.0 => don't trust bootloc */
 | |
| 
 | |
| 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
 | |
| 			map->name, cfi->mfr, cfi->id);
 | |
| 
 | |
| 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
 | |
| 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
 | |
| 		 * These were badly detected as they have the 0x80 bit set
 | |
| 		 * so treat them as a special case.
 | |
| 		 */
 | |
| 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
 | |
| 
 | |
| 			/* Macronix added CFI to their 2nd generation
 | |
| 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
 | |
| 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
 | |
| 			 * has CFI.
 | |
| 			 *
 | |
| 			 * Therefore also check the manufacturer.
 | |
| 			 * This reduces the risk of false detection due to
 | |
| 			 * the 8-bit device ID.
 | |
| 			 */
 | |
| 			(cfi->mfr == CFI_MFR_MACRONIX)) {
 | |
| 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
 | |
| 				" detected\n", map->name);
 | |
| 			extp->TopBottom = 2;	/* bottom boot */
 | |
| 		} else
 | |
| 		if (cfi->id & 0x80) {
 | |
| 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
 | |
| 			extp->TopBottom = 3;	/* top boot */
 | |
| 		} else {
 | |
| 			extp->TopBottom = 2;	/* bottom boot */
 | |
| 		}
 | |
| 
 | |
| 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
 | |
| 			" deduced %s from Device ID\n", map->name, major, minor,
 | |
| 			extp->TopBottom == 2 ? "bottom" : "top");
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void fixup_use_write_buffers(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	if (cfi->cfiq->BufWriteTimeoutTyp) {
 | |
| 		pr_debug("Using buffer write method\n");
 | |
| 		mtd->_write = cfi_amdstd_write_buffers;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Atmel chips don't use the same PRI format as AMD chips */
 | |
| static void fixup_convert_atmel_pri(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 | |
| 	struct cfi_pri_atmel atmel_pri;
 | |
| 
 | |
| 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
 | |
| 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
 | |
| 
 | |
| 	if (atmel_pri.Features & 0x02)
 | |
| 		extp->EraseSuspend = 2;
 | |
| 
 | |
| 	/* Some chips got it backwards... */
 | |
| 	if (cfi->id == AT49BV6416) {
 | |
| 		if (atmel_pri.BottomBoot)
 | |
| 			extp->TopBottom = 3;
 | |
| 		else
 | |
| 			extp->TopBottom = 2;
 | |
| 	} else {
 | |
| 		if (atmel_pri.BottomBoot)
 | |
| 			extp->TopBottom = 2;
 | |
| 		else
 | |
| 			extp->TopBottom = 3;
 | |
| 	}
 | |
| 
 | |
| 	/* burst write mode not supported */
 | |
| 	cfi->cfiq->BufWriteTimeoutTyp = 0;
 | |
| 	cfi->cfiq->BufWriteTimeoutMax = 0;
 | |
| }
 | |
| 
 | |
| static void fixup_use_secsi(struct mtd_info *mtd)
 | |
| {
 | |
| 	/* Setup for chips with a secsi area */
 | |
| 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
 | |
| 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
 | |
| }
 | |
| 
 | |
| static void fixup_use_erase_chip(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	if ((cfi->cfiq->NumEraseRegions == 1) &&
 | |
| 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
 | |
| 		mtd->_erase = cfi_amdstd_erase_chip;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
 | |
|  * locked by default.
 | |
|  */
 | |
| static void fixup_use_atmel_lock(struct mtd_info *mtd)
 | |
| {
 | |
| 	mtd->_lock = cfi_atmel_lock;
 | |
| 	mtd->_unlock = cfi_atmel_unlock;
 | |
| 	mtd->flags |= MTD_POWERUP_LOCK;
 | |
| }
 | |
| 
 | |
| static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	/*
 | |
| 	 * These flashes report two separate eraseblock regions based on the
 | |
| 	 * sector_erase-size and block_erase-size, although they both operate on the
 | |
| 	 * same memory. This is not allowed according to CFI, so we just pick the
 | |
| 	 * sector_erase-size.
 | |
| 	 */
 | |
| 	cfi->cfiq->NumEraseRegions = 1;
 | |
| }
 | |
| 
 | |
| static void fixup_sst39vf(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	fixup_old_sst_eraseregion(mtd);
 | |
| 
 | |
| 	cfi->addr_unlock1 = 0x5555;
 | |
| 	cfi->addr_unlock2 = 0x2AAA;
 | |
| }
 | |
| 
 | |
| static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	fixup_old_sst_eraseregion(mtd);
 | |
| 
 | |
| 	cfi->addr_unlock1 = 0x555;
 | |
| 	cfi->addr_unlock2 = 0x2AA;
 | |
| 
 | |
| 	cfi->sector_erase_cmd = CMD(0x50);
 | |
| }
 | |
| 
 | |
| static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	fixup_sst39vf_rev_b(mtd);
 | |
| 
 | |
| 	/*
 | |
| 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
 | |
| 	 * it should report a size of 8KBytes (0x0020*256).
 | |
| 	 */
 | |
| 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
 | |
| 	pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
 | |
| 		mtd->name);
 | |
| }
 | |
| 
 | |
| static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
 | |
| 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
 | |
| 		pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
 | |
| 			mtd->name);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
 | |
| 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
 | |
| 		pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
 | |
| 			mtd->name);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	/*
 | |
| 	 *  S29NS512P flash uses more than 8bits to report number of sectors,
 | |
| 	 * which is not permitted by CFI.
 | |
| 	 */
 | |
| 	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
 | |
| 	pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
 | |
| 		mtd->name);
 | |
| }
 | |
| 
 | |
| /* Used to fix CFI-Tables of chips without Extended Query Tables */
 | |
| static struct cfi_fixup cfi_nopri_fixup_table[] = {
 | |
| 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
 | |
| 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
 | |
| 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
 | |
| 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
 | |
| 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
 | |
| 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
 | |
| 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
 | |
| 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
 | |
| 	{ 0, 0, NULL }
 | |
| };
 | |
| 
 | |
| static struct cfi_fixup cfi_fixup_table[] = {
 | |
| 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
 | |
| #ifdef AMD_BOOTLOC_BUG
 | |
| 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
 | |
| 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
 | |
| 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
 | |
| #endif
 | |
| 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
 | |
| 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
 | |
| 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
 | |
| 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
 | |
| 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
 | |
| 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
 | |
| 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
 | |
| 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
 | |
| 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
 | |
| 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
 | |
| 	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
 | |
| 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
 | |
| 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
 | |
| 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
 | |
| 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
 | |
| #if !FORCE_WORD_WRITE
 | |
| 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
 | |
| #endif
 | |
| 	{ 0, 0, NULL }
 | |
| };
 | |
| static struct cfi_fixup jedec_fixup_table[] = {
 | |
| 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
 | |
| 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
 | |
| 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
 | |
| 	{ 0, 0, NULL }
 | |
| };
 | |
| 
 | |
| static struct cfi_fixup fixup_table[] = {
 | |
| 	/* The CFI vendor ids and the JEDEC vendor IDs appear
 | |
| 	 * to be common.  It is like the devices id's are as
 | |
| 	 * well.  This table is to pick all cases where
 | |
| 	 * we know that is the case.
 | |
| 	 */
 | |
| 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
 | |
| 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
 | |
| 	{ 0, 0, NULL }
 | |
| };
 | |
| 
 | |
| 
 | |
| static void cfi_fixup_major_minor(struct cfi_private *cfi,
 | |
| 				  struct cfi_pri_amdstd *extp)
 | |
| {
 | |
| 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
 | |
| 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
 | |
| 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
 | |
| 			/*
 | |
| 			 * Samsung K8P2815UQB and K8D6x16UxM chips
 | |
| 			 * report major=0 / minor=0.
 | |
| 			 * K8D3x16UxC chips report major=3 / minor=3.
 | |
| 			 */
 | |
| 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
 | |
| 			       " Extended Query version to 1.%c\n",
 | |
| 			       extp->MinorVersion);
 | |
| 			extp->MajorVersion = '1';
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
 | |
| 	 */
 | |
| 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
 | |
| 		extp->MajorVersion = '1';
 | |
| 		extp->MinorVersion = '0';
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int is_m29ew(struct cfi_private *cfi)
 | |
| {
 | |
| 	if (cfi->mfr == CFI_MFR_INTEL &&
 | |
| 	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
 | |
| 	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
 | |
|  * Some revisions of the M29EW suffer from erase suspend hang ups. In
 | |
|  * particular, it can occur when the sequence
 | |
|  * Erase Confirm -> Suspend -> Program -> Resume
 | |
|  * causes a lockup due to internal timing issues. The consequence is that the
 | |
|  * erase cannot be resumed without inserting a dummy command after programming
 | |
|  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
 | |
|  * that writes an F0 command code before the RESUME command.
 | |
|  */
 | |
| static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
 | |
| 					  unsigned long adr)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
 | |
| 	if (is_m29ew(cfi))
 | |
| 		map_write(map, CMD(0xF0), adr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
 | |
|  *
 | |
|  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
 | |
|  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
 | |
|  * command is issued after an ERASE RESUME operation without waiting for a
 | |
|  * minimum delay.  The result is that once the ERASE seems to be completed
 | |
|  * (no bits are toggling), the contents of the Flash memory block on which
 | |
|  * the erase was ongoing could be inconsistent with the expected values
 | |
|  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
 | |
|  * values), causing a consequent failure of the ERASE operation.
 | |
|  * The occurrence of this issue could be high, especially when file system
 | |
|  * operations on the Flash are intensive.  As a result, it is recommended
 | |
|  * that a patch be applied.  Intensive file system operations can cause many
 | |
|  * calls to the garbage routine to free Flash space (also by erasing physical
 | |
|  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
 | |
|  * commands can occur.  The problem disappears when a delay is inserted after
 | |
|  * the RESUME command by using the udelay() function available in Linux.
 | |
|  * The DELAY value must be tuned based on the customer's platform.
 | |
|  * The maximum value that fixes the problem in all cases is 500us.
 | |
|  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
 | |
|  * in most cases.
 | |
|  * We have chosen 500µs because this latency is acceptable.
 | |
|  */
 | |
| static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
 | |
| {
 | |
| 	/*
 | |
| 	 * Resolving the Delay After Resume Issue see Micron TN-13-07
 | |
| 	 * Worst case delay must be 500µs but 30-50µs should be ok as well
 | |
| 	 */
 | |
| 	if (is_m29ew(cfi))
 | |
| 		cfi_udelay(500);
 | |
| }
 | |
| 
 | |
| struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	struct device_node __maybe_unused *np = map->device_node;
 | |
| 	struct mtd_info *mtd;
 | |
| 	int i;
 | |
| 
 | |
| 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 | |
| 	if (!mtd)
 | |
| 		return NULL;
 | |
| 	mtd->priv = map;
 | |
| 	mtd->type = MTD_NORFLASH;
 | |
| 
 | |
| 	/* Fill in the default mtd operations */
 | |
| 	mtd->_erase   = cfi_amdstd_erase_varsize;
 | |
| 	mtd->_write   = cfi_amdstd_write_words;
 | |
| 	mtd->_read    = cfi_amdstd_read;
 | |
| 	mtd->_sync    = cfi_amdstd_sync;
 | |
| 	mtd->_suspend = cfi_amdstd_suspend;
 | |
| 	mtd->_resume  = cfi_amdstd_resume;
 | |
| 	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
 | |
| 	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
 | |
| 	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
 | |
| 	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
 | |
| 	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
 | |
| 	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
 | |
| 	mtd->flags   = MTD_CAP_NORFLASH;
 | |
| 	mtd->name    = map->name;
 | |
| 	mtd->writesize = 1;
 | |
| 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
 | |
| 
 | |
| 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
 | |
| 			mtd->writebufsize);
 | |
| 
 | |
| 	mtd->_panic_write = cfi_amdstd_panic_write;
 | |
| 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
 | |
| 
 | |
| 	if (cfi->cfi_mode==CFI_MODE_CFI){
 | |
| 		unsigned char bootloc;
 | |
| 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
 | |
| 		struct cfi_pri_amdstd *extp;
 | |
| 
 | |
| 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
 | |
| 		if (extp) {
 | |
| 			/*
 | |
| 			 * It's a real CFI chip, not one for which the probe
 | |
| 			 * routine faked a CFI structure.
 | |
| 			 */
 | |
| 			cfi_fixup_major_minor(cfi, extp);
 | |
| 
 | |
| 			/*
 | |
| 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
 | |
| 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 
 | |
| 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
 | |
| 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
 | |
| 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
 | |
| 			 */
 | |
| 			if (extp->MajorVersion != '1' ||
 | |
| 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
 | |
| 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
 | |
| 				       "version %c.%c (%#02x/%#02x).\n",
 | |
| 				       extp->MajorVersion, extp->MinorVersion,
 | |
| 				       extp->MajorVersion, extp->MinorVersion);
 | |
| 				kfree(extp);
 | |
| 				kfree(mtd);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
 | |
| 			       extp->MajorVersion, extp->MinorVersion);
 | |
| 
 | |
| 			/* Install our own private info structure */
 | |
| 			cfi->cmdset_priv = extp;
 | |
| 
 | |
| 			/* Apply cfi device specific fixups */
 | |
| 			cfi_fixup(mtd, cfi_fixup_table);
 | |
| 
 | |
| #ifdef DEBUG_CFI_FEATURES
 | |
| 			/* Tell the user about it in lots of lovely detail */
 | |
| 			cfi_tell_features(extp);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_OF
 | |
| 			if (np && of_property_read_bool(
 | |
| 				    np, "use-advanced-sector-protection")
 | |
| 			    && extp->BlkProtUnprot == 8) {
 | |
| 				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
 | |
| 				mtd->_lock = cfi_ppb_lock;
 | |
| 				mtd->_unlock = cfi_ppb_unlock;
 | |
| 				mtd->_is_locked = cfi_ppb_is_locked;
 | |
| 			}
 | |
| #endif
 | |
| 
 | |
| 			bootloc = extp->TopBottom;
 | |
| 			if ((bootloc < 2) || (bootloc > 5)) {
 | |
| 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
 | |
| 				       "bank location (%d). Assuming bottom.\n",
 | |
| 				       map->name, bootloc);
 | |
| 				bootloc = 2;
 | |
| 			}
 | |
| 
 | |
| 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
 | |
| 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
 | |
| 
 | |
| 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
 | |
| 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
 | |
| 
 | |
| 					swap(cfi->cfiq->EraseRegionInfo[i],
 | |
| 					     cfi->cfiq->EraseRegionInfo[j]);
 | |
| 				}
 | |
| 			}
 | |
| 			/* Set the default CFI lock/unlock addresses */
 | |
| 			cfi->addr_unlock1 = 0x555;
 | |
| 			cfi->addr_unlock2 = 0x2aa;
 | |
| 		}
 | |
| 		cfi_fixup(mtd, cfi_nopri_fixup_table);
 | |
| 
 | |
| 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
 | |
| 			kfree(mtd);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 	} /* CFI mode */
 | |
| 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
 | |
| 		/* Apply jedec specific fixups */
 | |
| 		cfi_fixup(mtd, jedec_fixup_table);
 | |
| 	}
 | |
| 	/* Apply generic fixups */
 | |
| 	cfi_fixup(mtd, fixup_table);
 | |
| 
 | |
| 	for (i=0; i< cfi->numchips; i++) {
 | |
| 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
 | |
| 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
 | |
| 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
 | |
| 		/*
 | |
| 		 * First calculate the timeout max according to timeout field
 | |
| 		 * of struct cfi_ident that probed from chip's CFI aera, if
 | |
| 		 * available. Specify a minimum of 2000us, in case the CFI data
 | |
| 		 * is wrong.
 | |
| 		 */
 | |
| 		if (cfi->cfiq->BufWriteTimeoutTyp &&
 | |
| 		    cfi->cfiq->BufWriteTimeoutMax)
 | |
| 			cfi->chips[i].buffer_write_time_max =
 | |
| 				1 << (cfi->cfiq->BufWriteTimeoutTyp +
 | |
| 				      cfi->cfiq->BufWriteTimeoutMax);
 | |
| 		else
 | |
| 			cfi->chips[i].buffer_write_time_max = 0;
 | |
| 
 | |
| 		cfi->chips[i].buffer_write_time_max =
 | |
| 			max(cfi->chips[i].buffer_write_time_max, 2000);
 | |
| 
 | |
| 		cfi->chips[i].ref_point_counter = 0;
 | |
| 		init_waitqueue_head(&(cfi->chips[i].wq));
 | |
| 	}
 | |
| 
 | |
| 	map->fldrv = &cfi_amdstd_chipdrv;
 | |
| 
 | |
| 	return cfi_amdstd_setup(mtd);
 | |
| }
 | |
| struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 | |
| struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 | |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
 | |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
 | |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
 | |
| 
 | |
| static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
 | |
| 	unsigned long offset = 0;
 | |
| 	int i,j;
 | |
| 
 | |
| 	printk(KERN_NOTICE "number of %s chips: %d\n",
 | |
| 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
 | |
| 	/* Select the correct geometry setup */
 | |
| 	mtd->size = devsize * cfi->numchips;
 | |
| 
 | |
| 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
 | |
| 	mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
 | |
| 					  sizeof(struct mtd_erase_region_info),
 | |
| 					  GFP_KERNEL);
 | |
| 	if (!mtd->eraseregions)
 | |
| 		goto setup_err;
 | |
| 
 | |
| 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
 | |
| 		unsigned long ernum, ersize;
 | |
| 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
 | |
| 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
 | |
| 
 | |
| 		if (mtd->erasesize < ersize) {
 | |
| 			mtd->erasesize = ersize;
 | |
| 		}
 | |
| 		for (j=0; j<cfi->numchips; j++) {
 | |
| 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
 | |
| 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
 | |
| 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
 | |
| 		}
 | |
| 		offset += (ersize * ernum);
 | |
| 	}
 | |
| 	if (offset != devsize) {
 | |
| 		/* Argh */
 | |
| 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
 | |
| 		goto setup_err;
 | |
| 	}
 | |
| 
 | |
| 	__module_get(THIS_MODULE);
 | |
| 	register_reboot_notifier(&mtd->reboot_notifier);
 | |
| 	return mtd;
 | |
| 
 | |
|  setup_err:
 | |
| 	kfree(mtd->eraseregions);
 | |
| 	kfree(mtd);
 | |
| 	kfree(cfi->cmdset_priv);
 | |
| 	kfree(cfi->cfiq);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the chip is ready.
 | |
|  *
 | |
|  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 | |
|  * non-suspended sector) and is indicated by no toggle bits toggling.
 | |
|  *
 | |
|  * Note that anything more complicated than checking if no bits are toggling
 | |
|  * (including checking DQ5 for an error status) is tricky to get working
 | |
|  * correctly and is therefore not done	(particularly with interleaved chips
 | |
|  * as each chip must be checked independently of the others).
 | |
|  */
 | |
| static int __xipram chip_ready(struct map_info *map, unsigned long addr)
 | |
| {
 | |
| 	map_word d, t;
 | |
| 
 | |
| 	d = map_read(map, addr);
 | |
| 	t = map_read(map, addr);
 | |
| 
 | |
| 	return map_word_equal(map, d, t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the chip is ready and has the correct value.
 | |
|  *
 | |
|  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 | |
|  * non-suspended sector) and it is indicated by no bits toggling.
 | |
|  *
 | |
|  * Error are indicated by toggling bits or bits held with the wrong value,
 | |
|  * or with bits toggling.
 | |
|  *
 | |
|  * Note that anything more complicated than checking if no bits are toggling
 | |
|  * (including checking DQ5 for an error status) is tricky to get working
 | |
|  * correctly and is therefore not done	(particularly with interleaved chips
 | |
|  * as each chip must be checked independently of the others).
 | |
|  *
 | |
|  */
 | |
| static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
 | |
| {
 | |
| 	map_word oldd, curd;
 | |
| 
 | |
| 	oldd = map_read(map, addr);
 | |
| 	curd = map_read(map, addr);
 | |
| 
 | |
| 	return	map_word_equal(map, oldd, curd) &&
 | |
| 		map_word_equal(map, curd, expected);
 | |
| }
 | |
| 
 | |
| static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
 | |
| {
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long timeo;
 | |
| 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
 | |
| 
 | |
|  resettime:
 | |
| 	timeo = jiffies + HZ;
 | |
|  retry:
 | |
| 	switch (chip->state) {
 | |
| 
 | |
| 	case FL_STATUS:
 | |
| 		for (;;) {
 | |
| 			if (chip_ready(map, adr))
 | |
| 				break;
 | |
| 
 | |
| 			if (time_after(jiffies, timeo)) {
 | |
| 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 			cfi_udelay(1);
 | |
| 			mutex_lock(&chip->mutex);
 | |
| 			/* Someone else might have been playing with it. */
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 	case FL_READY:
 | |
| 	case FL_CFI_QUERY:
 | |
| 	case FL_JEDEC_QUERY:
 | |
| 		return 0;
 | |
| 
 | |
| 	case FL_ERASING:
 | |
| 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
 | |
| 		    !(mode == FL_READY || mode == FL_POINT ||
 | |
| 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
 | |
| 			goto sleep;
 | |
| 
 | |
| 		/* Do not allow suspend iff read/write to EB address */
 | |
| 		if ((adr & chip->in_progress_block_mask) ==
 | |
| 		    chip->in_progress_block_addr)
 | |
| 			goto sleep;
 | |
| 
 | |
| 		/* Erase suspend */
 | |
| 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
 | |
| 		 * commands when the erase algorithm isn't in progress. */
 | |
| 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
 | |
| 		chip->oldstate = FL_ERASING;
 | |
| 		chip->state = FL_ERASE_SUSPENDING;
 | |
| 		chip->erase_suspended = 1;
 | |
| 		for (;;) {
 | |
| 			if (chip_ready(map, adr))
 | |
| 				break;
 | |
| 
 | |
| 			if (time_after(jiffies, timeo)) {
 | |
| 				/* Should have suspended the erase by now.
 | |
| 				 * Send an Erase-Resume command as either
 | |
| 				 * there was an error (so leave the erase
 | |
| 				 * routine to recover from it) or we trying to
 | |
| 				 * use the erase-in-progress sector. */
 | |
| 				put_chip(map, chip, adr);
 | |
| 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 			cfi_udelay(1);
 | |
| 			mutex_lock(&chip->mutex);
 | |
| 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
 | |
| 			   So we can just loop here. */
 | |
| 		}
 | |
| 		chip->state = FL_READY;
 | |
| 		return 0;
 | |
| 
 | |
| 	case FL_XIP_WHILE_ERASING:
 | |
| 		if (mode != FL_READY && mode != FL_POINT &&
 | |
| 		    (!cfip || !(cfip->EraseSuspend&2)))
 | |
| 			goto sleep;
 | |
| 		chip->oldstate = chip->state;
 | |
| 		chip->state = FL_READY;
 | |
| 		return 0;
 | |
| 
 | |
| 	case FL_SHUTDOWN:
 | |
| 		/* The machine is rebooting */
 | |
| 		return -EIO;
 | |
| 
 | |
| 	case FL_POINT:
 | |
| 		/* Only if there's no operation suspended... */
 | |
| 		if (mode == FL_READY && chip->oldstate == FL_READY)
 | |
| 			return 0;
 | |
| 
 | |
| 	default:
 | |
| 	sleep:
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		add_wait_queue(&chip->wq, &wait);
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 		schedule();
 | |
| 		remove_wait_queue(&chip->wq, &wait);
 | |
| 		mutex_lock(&chip->mutex);
 | |
| 		goto resettime;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	switch(chip->oldstate) {
 | |
| 	case FL_ERASING:
 | |
| 		cfi_fixup_m29ew_erase_suspend(map,
 | |
| 			chip->in_progress_block_addr);
 | |
| 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
 | |
| 		cfi_fixup_m29ew_delay_after_resume(cfi);
 | |
| 		chip->oldstate = FL_READY;
 | |
| 		chip->state = FL_ERASING;
 | |
| 		break;
 | |
| 
 | |
| 	case FL_XIP_WHILE_ERASING:
 | |
| 		chip->state = chip->oldstate;
 | |
| 		chip->oldstate = FL_READY;
 | |
| 		break;
 | |
| 
 | |
| 	case FL_READY:
 | |
| 	case FL_STATUS:
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
 | |
| 	}
 | |
| 	wake_up(&chip->wq);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MTD_XIP
 | |
| 
 | |
| /*
 | |
|  * No interrupt what so ever can be serviced while the flash isn't in array
 | |
|  * mode.  This is ensured by the xip_disable() and xip_enable() functions
 | |
|  * enclosing any code path where the flash is known not to be in array mode.
 | |
|  * And within a XIP disabled code path, only functions marked with __xipram
 | |
|  * may be called and nothing else (it's a good thing to inspect generated
 | |
|  * assembly to make sure inline functions were actually inlined and that gcc
 | |
|  * didn't emit calls to its own support functions). Also configuring MTD CFI
 | |
|  * support to a single buswidth and a single interleave is also recommended.
 | |
|  */
 | |
| 
 | |
| static void xip_disable(struct map_info *map, struct flchip *chip,
 | |
| 			unsigned long adr)
 | |
| {
 | |
| 	/* TODO: chips with no XIP use should ignore and return */
 | |
| 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
 | |
| 	local_irq_disable();
 | |
| }
 | |
| 
 | |
| static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
 | |
| 				unsigned long adr)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	if (chip->state != FL_POINT && chip->state != FL_READY) {
 | |
| 		map_write(map, CMD(0xf0), adr);
 | |
| 		chip->state = FL_READY;
 | |
| 	}
 | |
| 	(void) map_read(map, adr);
 | |
| 	xip_iprefetch();
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a delay is required for the flash operation to complete, the
 | |
|  * xip_udelay() function is polling for both the given timeout and pending
 | |
|  * (but still masked) hardware interrupts.  Whenever there is an interrupt
 | |
|  * pending then the flash erase operation is suspended, array mode restored
 | |
|  * and interrupts unmasked.  Task scheduling might also happen at that
 | |
|  * point.  The CPU eventually returns from the interrupt or the call to
 | |
|  * schedule() and the suspended flash operation is resumed for the remaining
 | |
|  * of the delay period.
 | |
|  *
 | |
|  * Warning: this function _will_ fool interrupt latency tracing tools.
 | |
|  */
 | |
| 
 | |
| static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
 | |
| 				unsigned long adr, int usec)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 | |
| 	map_word status, OK = CMD(0x80);
 | |
| 	unsigned long suspended, start = xip_currtime();
 | |
| 	flstate_t oldstate;
 | |
| 
 | |
| 	do {
 | |
| 		cpu_relax();
 | |
| 		if (xip_irqpending() && extp &&
 | |
| 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
 | |
| 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
 | |
| 			/*
 | |
| 			 * Let's suspend the erase operation when supported.
 | |
| 			 * Note that we currently don't try to suspend
 | |
| 			 * interleaved chips if there is already another
 | |
| 			 * operation suspended (imagine what happens
 | |
| 			 * when one chip was already done with the current
 | |
| 			 * operation while another chip suspended it, then
 | |
| 			 * we resume the whole thing at once).  Yes, it
 | |
| 			 * can happen!
 | |
| 			 */
 | |
| 			map_write(map, CMD(0xb0), adr);
 | |
| 			usec -= xip_elapsed_since(start);
 | |
| 			suspended = xip_currtime();
 | |
| 			do {
 | |
| 				if (xip_elapsed_since(suspended) > 100000) {
 | |
| 					/*
 | |
| 					 * The chip doesn't want to suspend
 | |
| 					 * after waiting for 100 msecs.
 | |
| 					 * This is a critical error but there
 | |
| 					 * is not much we can do here.
 | |
| 					 */
 | |
| 					return;
 | |
| 				}
 | |
| 				status = map_read(map, adr);
 | |
| 			} while (!map_word_andequal(map, status, OK, OK));
 | |
| 
 | |
| 			/* Suspend succeeded */
 | |
| 			oldstate = chip->state;
 | |
| 			if (!map_word_bitsset(map, status, CMD(0x40)))
 | |
| 				break;
 | |
| 			chip->state = FL_XIP_WHILE_ERASING;
 | |
| 			chip->erase_suspended = 1;
 | |
| 			map_write(map, CMD(0xf0), adr);
 | |
| 			(void) map_read(map, adr);
 | |
| 			xip_iprefetch();
 | |
| 			local_irq_enable();
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 			xip_iprefetch();
 | |
| 			cond_resched();
 | |
| 
 | |
| 			/*
 | |
| 			 * We're back.  However someone else might have
 | |
| 			 * decided to go write to the chip if we are in
 | |
| 			 * a suspended erase state.  If so let's wait
 | |
| 			 * until it's done.
 | |
| 			 */
 | |
| 			mutex_lock(&chip->mutex);
 | |
| 			while (chip->state != FL_XIP_WHILE_ERASING) {
 | |
| 				DECLARE_WAITQUEUE(wait, current);
 | |
| 				set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 				add_wait_queue(&chip->wq, &wait);
 | |
| 				mutex_unlock(&chip->mutex);
 | |
| 				schedule();
 | |
| 				remove_wait_queue(&chip->wq, &wait);
 | |
| 				mutex_lock(&chip->mutex);
 | |
| 			}
 | |
| 			/* Disallow XIP again */
 | |
| 			local_irq_disable();
 | |
| 
 | |
| 			/* Correct Erase Suspend Hangups for M29EW */
 | |
| 			cfi_fixup_m29ew_erase_suspend(map, adr);
 | |
| 			/* Resume the write or erase operation */
 | |
| 			map_write(map, cfi->sector_erase_cmd, adr);
 | |
| 			chip->state = oldstate;
 | |
| 			start = xip_currtime();
 | |
| 		} else if (usec >= 1000000/HZ) {
 | |
| 			/*
 | |
| 			 * Try to save on CPU power when waiting delay
 | |
| 			 * is at least a system timer tick period.
 | |
| 			 * No need to be extremely accurate here.
 | |
| 			 */
 | |
| 			xip_cpu_idle();
 | |
| 		}
 | |
| 		status = map_read(map, adr);
 | |
| 	} while (!map_word_andequal(map, status, OK, OK)
 | |
| 		 && xip_elapsed_since(start) < usec);
 | |
| }
 | |
| 
 | |
| #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
 | |
| 
 | |
| /*
 | |
|  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
 | |
|  * the flash is actively programming or erasing since we have to poll for
 | |
|  * the operation to complete anyway.  We can't do that in a generic way with
 | |
|  * a XIP setup so do it before the actual flash operation in this case
 | |
|  * and stub it out from INVALIDATE_CACHE_UDELAY.
 | |
|  */
 | |
| #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
 | |
| 	INVALIDATE_CACHED_RANGE(map, from, size)
 | |
| 
 | |
| #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
 | |
| 	UDELAY(map, chip, adr, usec)
 | |
| 
 | |
| /*
 | |
|  * Extra notes:
 | |
|  *
 | |
|  * Activating this XIP support changes the way the code works a bit.  For
 | |
|  * example the code to suspend the current process when concurrent access
 | |
|  * happens is never executed because xip_udelay() will always return with the
 | |
|  * same chip state as it was entered with.  This is why there is no care for
 | |
|  * the presence of add_wait_queue() or schedule() calls from within a couple
 | |
|  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
 | |
|  * The queueing and scheduling are always happening within xip_udelay().
 | |
|  *
 | |
|  * Similarly, get_chip() and put_chip() just happen to always be executed
 | |
|  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
 | |
|  * is in array mode, therefore never executing many cases therein and not
 | |
|  * causing any problem with XIP.
 | |
|  */
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define xip_disable(map, chip, adr)
 | |
| #define xip_enable(map, chip, adr)
 | |
| #define XIP_INVAL_CACHED_RANGE(x...)
 | |
| 
 | |
| #define UDELAY(map, chip, adr, usec)  \
 | |
| do {  \
 | |
| 	mutex_unlock(&chip->mutex);  \
 | |
| 	cfi_udelay(usec);  \
 | |
| 	mutex_lock(&chip->mutex);  \
 | |
| } while (0)
 | |
| 
 | |
| #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
 | |
| do {  \
 | |
| 	mutex_unlock(&chip->mutex);  \
 | |
| 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
 | |
| 	cfi_udelay(usec);  \
 | |
| 	mutex_lock(&chip->mutex);  \
 | |
| } while (0)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
 | |
| {
 | |
| 	unsigned long cmd_addr;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	adr += chip->start;
 | |
| 
 | |
| 	/* Ensure cmd read/writes are aligned. */
 | |
| 	cmd_addr = adr & ~(map_bankwidth(map)-1);
 | |
| 
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 	ret = get_chip(map, chip, cmd_addr, FL_READY);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (chip->state != FL_POINT && chip->state != FL_READY) {
 | |
| 		map_write(map, CMD(0xf0), cmd_addr);
 | |
| 		chip->state = FL_READY;
 | |
| 	}
 | |
| 
 | |
| 	map_copy_from(map, buf, adr, len);
 | |
| 
 | |
| 	put_chip(map, chip, cmd_addr);
 | |
| 
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long ofs;
 | |
| 	int chipnum;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* ofs: offset within the first chip that the first read should start */
 | |
| 	chipnum = (from >> cfi->chipshift);
 | |
| 	ofs = from - (chipnum <<  cfi->chipshift);
 | |
| 
 | |
| 	while (len) {
 | |
| 		unsigned long thislen;
 | |
| 
 | |
| 		if (chipnum >= cfi->numchips)
 | |
| 			break;
 | |
| 
 | |
| 		if ((len + ofs -1) >> cfi->chipshift)
 | |
| 			thislen = (1<<cfi->chipshift) - ofs;
 | |
| 		else
 | |
| 			thislen = len;
 | |
| 
 | |
| 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		*retlen += thislen;
 | |
| 		len -= thislen;
 | |
| 		buf += thislen;
 | |
| 
 | |
| 		ofs = 0;
 | |
| 		chipnum++;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
 | |
| 			loff_t adr, size_t len, u_char *buf, size_t grouplen);
 | |
| 
 | |
| static inline void otp_enter(struct map_info *map, struct flchip *chip,
 | |
| 			     loff_t adr, size_t len)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 
 | |
| 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
 | |
| }
 | |
| 
 | |
| static inline void otp_exit(struct map_info *map, struct flchip *chip,
 | |
| 			    loff_t adr, size_t len)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 
 | |
| 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
 | |
| }
 | |
| 
 | |
| static inline int do_read_secsi_onechip(struct map_info *map,
 | |
| 					struct flchip *chip, loff_t adr,
 | |
| 					size_t len, u_char *buf,
 | |
| 					size_t grouplen)
 | |
| {
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
|  retry:
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 
 | |
| 	if (chip->state != FL_READY){
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		add_wait_queue(&chip->wq, &wait);
 | |
| 
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 		schedule();
 | |
| 		remove_wait_queue(&chip->wq, &wait);
 | |
| 
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	adr += chip->start;
 | |
| 
 | |
| 	chip->state = FL_READY;
 | |
| 
 | |
| 	otp_enter(map, chip, adr, len);
 | |
| 	map_copy_from(map, buf, adr, len);
 | |
| 	otp_exit(map, chip, adr, len);
 | |
| 
 | |
| 	wake_up(&chip->wq);
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long ofs;
 | |
| 	int chipnum;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* ofs: offset within the first chip that the first read should start */
 | |
| 	/* 8 secsi bytes per chip */
 | |
| 	chipnum=from>>3;
 | |
| 	ofs=from & 7;
 | |
| 
 | |
| 	while (len) {
 | |
| 		unsigned long thislen;
 | |
| 
 | |
| 		if (chipnum >= cfi->numchips)
 | |
| 			break;
 | |
| 
 | |
| 		if ((len + ofs -1) >> 3)
 | |
| 			thislen = (1<<3) - ofs;
 | |
| 		else
 | |
| 			thislen = len;
 | |
| 
 | |
| 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
 | |
| 					    thislen, buf, 0);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		*retlen += thislen;
 | |
| 		len -= thislen;
 | |
| 		buf += thislen;
 | |
| 
 | |
| 		ofs = 0;
 | |
| 		chipnum++;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
 | |
| 				     unsigned long adr, map_word datum,
 | |
| 				     int mode);
 | |
| 
 | |
| static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
 | |
| 			size_t len, u_char *buf, size_t grouplen)
 | |
| {
 | |
| 	int ret;
 | |
| 	while (len) {
 | |
| 		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
 | |
| 		int gap = adr - bus_ofs;
 | |
| 		int n = min_t(int, len, map_bankwidth(map) - gap);
 | |
| 		map_word datum = map_word_ff(map);
 | |
| 
 | |
| 		if (n != map_bankwidth(map)) {
 | |
| 			/* partial write of a word, load old contents */
 | |
| 			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
 | |
| 			datum = map_read(map, bus_ofs);
 | |
| 			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
 | |
| 		}
 | |
| 
 | |
| 		datum = map_word_load_partial(map, datum, buf, gap, n);
 | |
| 		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		adr += n;
 | |
| 		buf += n;
 | |
| 		len -= n;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
 | |
| 		       size_t len, u_char *buf, size_t grouplen)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	uint8_t lockreg;
 | |
| 	unsigned long timeo;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* make sure area matches group boundaries */
 | |
| 	if ((adr != 0) || (len != grouplen))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 	ret = get_chip(map, chip, chip->start, FL_LOCKING);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	chip->state = FL_LOCKING;
 | |
| 
 | |
| 	/* Enter lock register command */
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 
 | |
| 	/* read lock register */
 | |
| 	lockreg = cfi_read_query(map, 0);
 | |
| 
 | |
| 	/* set bit 0 to protect extended memory block */
 | |
| 	lockreg &= ~0x01;
 | |
| 
 | |
| 	/* set bit 0 to protect extended memory block */
 | |
| 	/* write lock register */
 | |
| 	map_write(map, CMD(0xA0), chip->start);
 | |
| 	map_write(map, CMD(lockreg), chip->start);
 | |
| 
 | |
| 	/* wait for chip to become ready */
 | |
| 	timeo = jiffies + msecs_to_jiffies(2);
 | |
| 	for (;;) {
 | |
| 		if (chip_ready(map, adr))
 | |
| 			break;
 | |
| 
 | |
| 		if (time_after(jiffies, timeo)) {
 | |
| 			pr_err("Waiting for chip to be ready timed out.\n");
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		UDELAY(map, chip, 0, 1);
 | |
| 	}
 | |
| 
 | |
| 	/* exit protection commands */
 | |
| 	map_write(map, CMD(0x90), chip->start);
 | |
| 	map_write(map, CMD(0x00), chip->start);
 | |
| 
 | |
| 	chip->state = FL_READY;
 | |
| 	put_chip(map, chip, chip->start);
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
 | |
| 			       size_t *retlen, u_char *buf,
 | |
| 			       otp_op_t action, int user_regs)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int ofs_factor = cfi->interleave * cfi->device_type;
 | |
| 	unsigned long base;
 | |
| 	int chipnum;
 | |
| 	struct flchip *chip;
 | |
| 	uint8_t otp, lockreg;
 | |
| 	int ret;
 | |
| 
 | |
| 	size_t user_size, factory_size, otpsize;
 | |
| 	loff_t user_offset, factory_offset, otpoffset;
 | |
| 	int user_locked = 0, otplocked;
 | |
| 
 | |
| 	*retlen = 0;
 | |
| 
 | |
| 	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
 | |
| 		chip = &cfi->chips[chipnum];
 | |
| 		factory_size = 0;
 | |
| 		user_size = 0;
 | |
| 
 | |
| 		/* Micron M29EW family */
 | |
| 		if (is_m29ew(cfi)) {
 | |
| 			base = chip->start;
 | |
| 
 | |
| 			/* check whether secsi area is factory locked
 | |
| 			   or user lockable */
 | |
| 			mutex_lock(&chip->mutex);
 | |
| 			ret = get_chip(map, chip, base, FL_CFI_QUERY);
 | |
| 			if (ret) {
 | |
| 				mutex_unlock(&chip->mutex);
 | |
| 				return ret;
 | |
| 			}
 | |
| 			cfi_qry_mode_on(base, map, cfi);
 | |
| 			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
 | |
| 			cfi_qry_mode_off(base, map, cfi);
 | |
| 			put_chip(map, chip, base);
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 			if (otp & 0x80) {
 | |
| 				/* factory locked */
 | |
| 				factory_offset = 0;
 | |
| 				factory_size = 0x100;
 | |
| 			} else {
 | |
| 				/* customer lockable */
 | |
| 				user_offset = 0;
 | |
| 				user_size = 0x100;
 | |
| 
 | |
| 				mutex_lock(&chip->mutex);
 | |
| 				ret = get_chip(map, chip, base, FL_LOCKING);
 | |
| 				if (ret) {
 | |
| 					mutex_unlock(&chip->mutex);
 | |
| 					return ret;
 | |
| 				}
 | |
| 
 | |
| 				/* Enter lock register command */
 | |
| 				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
 | |
| 						 chip->start, map, cfi,
 | |
| 						 cfi->device_type, NULL);
 | |
| 				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
 | |
| 						 chip->start, map, cfi,
 | |
| 						 cfi->device_type, NULL);
 | |
| 				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
 | |
| 						 chip->start, map, cfi,
 | |
| 						 cfi->device_type, NULL);
 | |
| 				/* read lock register */
 | |
| 				lockreg = cfi_read_query(map, 0);
 | |
| 				/* exit protection commands */
 | |
| 				map_write(map, CMD(0x90), chip->start);
 | |
| 				map_write(map, CMD(0x00), chip->start);
 | |
| 				put_chip(map, chip, chip->start);
 | |
| 				mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 				user_locked = ((lockreg & 0x01) == 0x00);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		otpsize = user_regs ? user_size : factory_size;
 | |
| 		if (!otpsize)
 | |
| 			continue;
 | |
| 		otpoffset = user_regs ? user_offset : factory_offset;
 | |
| 		otplocked = user_regs ? user_locked : 1;
 | |
| 
 | |
| 		if (!action) {
 | |
| 			/* return otpinfo */
 | |
| 			struct otp_info *otpinfo;
 | |
| 			len -= sizeof(*otpinfo);
 | |
| 			if (len <= 0)
 | |
| 				return -ENOSPC;
 | |
| 			otpinfo = (struct otp_info *)buf;
 | |
| 			otpinfo->start = from;
 | |
| 			otpinfo->length = otpsize;
 | |
| 			otpinfo->locked = otplocked;
 | |
| 			buf += sizeof(*otpinfo);
 | |
| 			*retlen += sizeof(*otpinfo);
 | |
| 			from += otpsize;
 | |
| 		} else if ((from < otpsize) && (len > 0)) {
 | |
| 			size_t size;
 | |
| 			size = (len < otpsize - from) ? len : otpsize - from;
 | |
| 			ret = action(map, chip, otpoffset + from, size, buf,
 | |
| 				     otpsize);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 
 | |
| 			buf += size;
 | |
| 			len -= size;
 | |
| 			*retlen += size;
 | |
| 			from = 0;
 | |
| 		} else {
 | |
| 			from -= otpsize;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
 | |
| 					 size_t *retlen, struct otp_info *buf)
 | |
| {
 | |
| 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
 | |
| 				   NULL, 0);
 | |
| }
 | |
| 
 | |
| static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
 | |
| 					 size_t *retlen, struct otp_info *buf)
 | |
| {
 | |
| 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
 | |
| 				   NULL, 1);
 | |
| }
 | |
| 
 | |
| static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
 | |
| 					 size_t len, size_t *retlen,
 | |
| 					 u_char *buf)
 | |
| {
 | |
| 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
 | |
| 				   buf, do_read_secsi_onechip, 0);
 | |
| }
 | |
| 
 | |
| static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
 | |
| 					 size_t len, size_t *retlen,
 | |
| 					 u_char *buf)
 | |
| {
 | |
| 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
 | |
| 				   buf, do_read_secsi_onechip, 1);
 | |
| }
 | |
| 
 | |
| static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
 | |
| 					  size_t len, size_t *retlen,
 | |
| 					  u_char *buf)
 | |
| {
 | |
| 	return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
 | |
| 				   do_otp_write, 1);
 | |
| }
 | |
| 
 | |
| static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
 | |
| 					 size_t len)
 | |
| {
 | |
| 	size_t retlen;
 | |
| 	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
 | |
| 				   do_otp_lock, 1);
 | |
| }
 | |
| 
 | |
| static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
 | |
| 				     unsigned long adr, map_word datum,
 | |
| 				     int mode)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long timeo = jiffies + HZ;
 | |
| 	/*
 | |
| 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
 | |
| 	 * have a max write time of a few hundreds usec). However, we should
 | |
| 	 * use the maximum timeout value given by the chip at probe time
 | |
| 	 * instead.  Unfortunately, struct flchip does have a field for
 | |
| 	 * maximum timeout, only for typical which can be far too short
 | |
| 	 * depending of the conditions.	 The ' + 1' is to avoid having a
 | |
| 	 * timeout of 0 jiffies if HZ is smaller than 1000.
 | |
| 	 */
 | |
| 	unsigned long uWriteTimeout = (HZ / 1000) + 1;
 | |
| 	int ret = 0;
 | |
| 	map_word oldd;
 | |
| 	int retry_cnt = 0;
 | |
| 
 | |
| 	adr += chip->start;
 | |
| 
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 	ret = get_chip(map, chip, adr, mode);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
 | |
| 		 __func__, adr, datum.x[0]);
 | |
| 
 | |
| 	if (mode == FL_OTP_WRITE)
 | |
| 		otp_enter(map, chip, adr, map_bankwidth(map));
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for a NOP for the case when the datum to write is already
 | |
| 	 * present - it saves time and works around buggy chips that corrupt
 | |
| 	 * data at other locations when 0xff is written to a location that
 | |
| 	 * already contains 0xff.
 | |
| 	 */
 | |
| 	oldd = map_read(map, adr);
 | |
| 	if (map_word_equal(map, oldd, datum)) {
 | |
| 		pr_debug("MTD %s(): NOP\n",
 | |
| 		       __func__);
 | |
| 		goto op_done;
 | |
| 	}
 | |
| 
 | |
| 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
 | |
| 	ENABLE_VPP(map);
 | |
| 	xip_disable(map, chip, adr);
 | |
| 
 | |
|  retry:
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	map_write(map, datum, adr);
 | |
| 	chip->state = mode;
 | |
| 
 | |
| 	INVALIDATE_CACHE_UDELAY(map, chip,
 | |
| 				adr, map_bankwidth(map),
 | |
| 				chip->word_write_time);
 | |
| 
 | |
| 	/* See comment above for timeout value. */
 | |
| 	timeo = jiffies + uWriteTimeout;
 | |
| 	for (;;) {
 | |
| 		if (chip->state != mode) {
 | |
| 			/* Someone's suspended the write. Sleep */
 | |
| 			DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			add_wait_queue(&chip->wq, &wait);
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 			schedule();
 | |
| 			remove_wait_queue(&chip->wq, &wait);
 | |
| 			timeo = jiffies + (HZ / 2); /* FIXME */
 | |
| 			mutex_lock(&chip->mutex);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We check "time_after" and "!chip_good" before checking
 | |
| 		 * "chip_good" to avoid the failure due to scheduling.
 | |
| 		 */
 | |
| 		if (time_after(jiffies, timeo) && !chip_good(map, adr, datum)) {
 | |
| 			xip_enable(map, chip, adr);
 | |
| 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
 | |
| 			xip_disable(map, chip, adr);
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (chip_good(map, adr, datum))
 | |
| 			break;
 | |
| 
 | |
| 		/* Latency issues. Drop the lock, wait a while and retry */
 | |
| 		UDELAY(map, chip, adr, 1);
 | |
| 	}
 | |
| 
 | |
| 	/* Did we succeed? */
 | |
| 	if (ret) {
 | |
| 		/* reset on all failures. */
 | |
| 		map_write(map, CMD(0xF0), chip->start);
 | |
| 		/* FIXME - should have reset delay before continuing */
 | |
| 
 | |
| 		if (++retry_cnt <= MAX_RETRIES) {
 | |
| 			ret = 0;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 	xip_enable(map, chip, adr);
 | |
|  op_done:
 | |
| 	if (mode == FL_OTP_WRITE)
 | |
| 		otp_exit(map, chip, adr, map_bankwidth(map));
 | |
| 	chip->state = FL_READY;
 | |
| 	DISABLE_VPP(map);
 | |
| 	put_chip(map, chip, adr);
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 				  size_t *retlen, const u_char *buf)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int ret = 0;
 | |
| 	int chipnum;
 | |
| 	unsigned long ofs, chipstart;
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
| 	chipnum = to >> cfi->chipshift;
 | |
| 	ofs = to  - (chipnum << cfi->chipshift);
 | |
| 	chipstart = cfi->chips[chipnum].start;
 | |
| 
 | |
| 	/* If it's not bus-aligned, do the first byte write */
 | |
| 	if (ofs & (map_bankwidth(map)-1)) {
 | |
| 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
 | |
| 		int i = ofs - bus_ofs;
 | |
| 		int n = 0;
 | |
| 		map_word tmp_buf;
 | |
| 
 | |
|  retry:
 | |
| 		mutex_lock(&cfi->chips[chipnum].mutex);
 | |
| 
 | |
| 		if (cfi->chips[chipnum].state != FL_READY) {
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
 | |
| 
 | |
| 			mutex_unlock(&cfi->chips[chipnum].mutex);
 | |
| 
 | |
| 			schedule();
 | |
| 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		/* Load 'tmp_buf' with old contents of flash */
 | |
| 		tmp_buf = map_read(map, bus_ofs+chipstart);
 | |
| 
 | |
| 		mutex_unlock(&cfi->chips[chipnum].mutex);
 | |
| 
 | |
| 		/* Number of bytes to copy from buffer */
 | |
| 		n = min_t(int, len, map_bankwidth(map)-i);
 | |
| 
 | |
| 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
 | |
| 
 | |
| 		ret = do_write_oneword(map, &cfi->chips[chipnum],
 | |
| 				       bus_ofs, tmp_buf, FL_WRITING);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ofs += n;
 | |
| 		buf += n;
 | |
| 		(*retlen) += n;
 | |
| 		len -= n;
 | |
| 
 | |
| 		if (ofs >> cfi->chipshift) {
 | |
| 			chipnum ++;
 | |
| 			ofs = 0;
 | |
| 			if (chipnum == cfi->numchips)
 | |
| 				return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We are now aligned, write as much as possible */
 | |
| 	while(len >= map_bankwidth(map)) {
 | |
| 		map_word datum;
 | |
| 
 | |
| 		datum = map_word_load(map, buf);
 | |
| 
 | |
| 		ret = do_write_oneword(map, &cfi->chips[chipnum],
 | |
| 				       ofs, datum, FL_WRITING);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ofs += map_bankwidth(map);
 | |
| 		buf += map_bankwidth(map);
 | |
| 		(*retlen) += map_bankwidth(map);
 | |
| 		len -= map_bankwidth(map);
 | |
| 
 | |
| 		if (ofs >> cfi->chipshift) {
 | |
| 			chipnum ++;
 | |
| 			ofs = 0;
 | |
| 			if (chipnum == cfi->numchips)
 | |
| 				return 0;
 | |
| 			chipstart = cfi->chips[chipnum].start;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Write the trailing bytes if any */
 | |
| 	if (len & (map_bankwidth(map)-1)) {
 | |
| 		map_word tmp_buf;
 | |
| 
 | |
|  retry1:
 | |
| 		mutex_lock(&cfi->chips[chipnum].mutex);
 | |
| 
 | |
| 		if (cfi->chips[chipnum].state != FL_READY) {
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
 | |
| 
 | |
| 			mutex_unlock(&cfi->chips[chipnum].mutex);
 | |
| 
 | |
| 			schedule();
 | |
| 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
 | |
| 			goto retry1;
 | |
| 		}
 | |
| 
 | |
| 		tmp_buf = map_read(map, ofs + chipstart);
 | |
| 
 | |
| 		mutex_unlock(&cfi->chips[chipnum].mutex);
 | |
| 
 | |
| 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
 | |
| 
 | |
| 		ret = do_write_oneword(map, &cfi->chips[chipnum],
 | |
| 				       ofs, tmp_buf, FL_WRITING);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		(*retlen) += len;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * FIXME: interleaved mode not tested, and probably not supported!
 | |
|  */
 | |
| static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
 | |
| 				    unsigned long adr, const u_char *buf,
 | |
| 				    int len)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long timeo = jiffies + HZ;
 | |
| 	/*
 | |
| 	 * Timeout is calculated according to CFI data, if available.
 | |
| 	 * See more comments in cfi_cmdset_0002().
 | |
| 	 */
 | |
| 	unsigned long uWriteTimeout =
 | |
| 				usecs_to_jiffies(chip->buffer_write_time_max);
 | |
| 	int ret = -EIO;
 | |
| 	unsigned long cmd_adr;
 | |
| 	int z, words;
 | |
| 	map_word datum;
 | |
| 
 | |
| 	adr += chip->start;
 | |
| 	cmd_adr = adr;
 | |
| 
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 	ret = get_chip(map, chip, adr, FL_WRITING);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	datum = map_word_load(map, buf);
 | |
| 
 | |
| 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
 | |
| 		 __func__, adr, datum.x[0]);
 | |
| 
 | |
| 	XIP_INVAL_CACHED_RANGE(map, adr, len);
 | |
| 	ENABLE_VPP(map);
 | |
| 	xip_disable(map, chip, cmd_adr);
 | |
| 
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 
 | |
| 	/* Write Buffer Load */
 | |
| 	map_write(map, CMD(0x25), cmd_adr);
 | |
| 
 | |
| 	chip->state = FL_WRITING_TO_BUFFER;
 | |
| 
 | |
| 	/* Write length of data to come */
 | |
| 	words = len / map_bankwidth(map);
 | |
| 	map_write(map, CMD(words - 1), cmd_adr);
 | |
| 	/* Write data */
 | |
| 	z = 0;
 | |
| 	while(z < words * map_bankwidth(map)) {
 | |
| 		datum = map_word_load(map, buf);
 | |
| 		map_write(map, datum, adr + z);
 | |
| 
 | |
| 		z += map_bankwidth(map);
 | |
| 		buf += map_bankwidth(map);
 | |
| 	}
 | |
| 	z -= map_bankwidth(map);
 | |
| 
 | |
| 	adr += z;
 | |
| 
 | |
| 	/* Write Buffer Program Confirm: GO GO GO */
 | |
| 	map_write(map, CMD(0x29), cmd_adr);
 | |
| 	chip->state = FL_WRITING;
 | |
| 
 | |
| 	INVALIDATE_CACHE_UDELAY(map, chip,
 | |
| 				adr, map_bankwidth(map),
 | |
| 				chip->word_write_time);
 | |
| 
 | |
| 	timeo = jiffies + uWriteTimeout;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (chip->state != FL_WRITING) {
 | |
| 			/* Someone's suspended the write. Sleep */
 | |
| 			DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			add_wait_queue(&chip->wq, &wait);
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 			schedule();
 | |
| 			remove_wait_queue(&chip->wq, &wait);
 | |
| 			timeo = jiffies + (HZ / 2); /* FIXME */
 | |
| 			mutex_lock(&chip->mutex);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
 | |
| 			break;
 | |
| 
 | |
| 		if (chip_good(map, adr, datum)) {
 | |
| 			xip_enable(map, chip, adr);
 | |
| 			goto op_done;
 | |
| 		}
 | |
| 
 | |
| 		/* Latency issues. Drop the lock, wait a while and retry */
 | |
| 		UDELAY(map, chip, adr, 1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Recovery from write-buffer programming failures requires
 | |
| 	 * the write-to-buffer-reset sequence.  Since the last part
 | |
| 	 * of the sequence also works as a normal reset, we can run
 | |
| 	 * the same commands regardless of why we are here.
 | |
| 	 * See e.g.
 | |
| 	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
 | |
| 	 */
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	xip_enable(map, chip, adr);
 | |
| 	/* FIXME - should have reset delay before continuing */
 | |
| 
 | |
| 	printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
 | |
| 	       __func__, adr);
 | |
| 
 | |
| 	ret = -EIO;
 | |
|  op_done:
 | |
| 	chip->state = FL_READY;
 | |
| 	DISABLE_VPP(map);
 | |
| 	put_chip(map, chip, adr);
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 				    size_t *retlen, const u_char *buf)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
 | |
| 	int ret = 0;
 | |
| 	int chipnum;
 | |
| 	unsigned long ofs;
 | |
| 
 | |
| 	chipnum = to >> cfi->chipshift;
 | |
| 	ofs = to  - (chipnum << cfi->chipshift);
 | |
| 
 | |
| 	/* If it's not bus-aligned, do the first word write */
 | |
| 	if (ofs & (map_bankwidth(map)-1)) {
 | |
| 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
 | |
| 		if (local_len > len)
 | |
| 			local_len = len;
 | |
| 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
 | |
| 					     local_len, retlen, buf);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		ofs += local_len;
 | |
| 		buf += local_len;
 | |
| 		len -= local_len;
 | |
| 
 | |
| 		if (ofs >> cfi->chipshift) {
 | |
| 			chipnum ++;
 | |
| 			ofs = 0;
 | |
| 			if (chipnum == cfi->numchips)
 | |
| 				return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Write buffer is worth it only if more than one word to write... */
 | |
| 	while (len >= map_bankwidth(map) * 2) {
 | |
| 		/* We must not cross write block boundaries */
 | |
| 		int size = wbufsize - (ofs & (wbufsize-1));
 | |
| 
 | |
| 		if (size > len)
 | |
| 			size = len;
 | |
| 		if (size % map_bankwidth(map))
 | |
| 			size -= size % map_bankwidth(map);
 | |
| 
 | |
| 		ret = do_write_buffer(map, &cfi->chips[chipnum],
 | |
| 				      ofs, buf, size);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ofs += size;
 | |
| 		buf += size;
 | |
| 		(*retlen) += size;
 | |
| 		len -= size;
 | |
| 
 | |
| 		if (ofs >> cfi->chipshift) {
 | |
| 			chipnum ++;
 | |
| 			ofs = 0;
 | |
| 			if (chipnum == cfi->numchips)
 | |
| 				return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (len) {
 | |
| 		size_t retlen_dregs = 0;
 | |
| 
 | |
| 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
 | |
| 					     len, &retlen_dregs, buf);
 | |
| 
 | |
| 		*retlen += retlen_dregs;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for the flash chip to become ready to write data
 | |
|  *
 | |
|  * This is only called during the panic_write() path. When panic_write()
 | |
|  * is called, the kernel is in the process of a panic, and will soon be
 | |
|  * dead. Therefore we don't take any locks, and attempt to get access
 | |
|  * to the chip as soon as possible.
 | |
|  */
 | |
| static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
 | |
| 				 unsigned long adr)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int retries = 10;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the driver thinks the chip is idle, and no toggle bits
 | |
| 	 * are changing, then the chip is actually idle for sure.
 | |
| 	 */
 | |
| 	if (chip->state == FL_READY && chip_ready(map, adr))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try several times to reset the chip and then wait for it
 | |
| 	 * to become idle. The upper limit of a few milliseconds of
 | |
| 	 * delay isn't a big problem: the kernel is dying anyway. It
 | |
| 	 * is more important to save the messages.
 | |
| 	 */
 | |
| 	while (retries > 0) {
 | |
| 		const unsigned long timeo = (HZ / 1000) + 1;
 | |
| 
 | |
| 		/* send the reset command */
 | |
| 		map_write(map, CMD(0xF0), chip->start);
 | |
| 
 | |
| 		/* wait for the chip to become ready */
 | |
| 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
 | |
| 			if (chip_ready(map, adr))
 | |
| 				return 0;
 | |
| 
 | |
| 			udelay(1);
 | |
| 		}
 | |
| 
 | |
| 		retries--;
 | |
| 	}
 | |
| 
 | |
| 	/* the chip never became ready */
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out one word of data to a single flash chip during a kernel panic
 | |
|  *
 | |
|  * This is only called during the panic_write() path. When panic_write()
 | |
|  * is called, the kernel is in the process of a panic, and will soon be
 | |
|  * dead. Therefore we don't take any locks, and attempt to get access
 | |
|  * to the chip as soon as possible.
 | |
|  *
 | |
|  * The implementation of this routine is intentionally similar to
 | |
|  * do_write_oneword(), in order to ease code maintenance.
 | |
|  */
 | |
| static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
 | |
| 				  unsigned long adr, map_word datum)
 | |
| {
 | |
| 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int retry_cnt = 0;
 | |
| 	map_word oldd;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	adr += chip->start;
 | |
| 
 | |
| 	ret = cfi_amdstd_panic_wait(map, chip, adr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
 | |
| 			__func__, adr, datum.x[0]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for a NOP for the case when the datum to write is already
 | |
| 	 * present - it saves time and works around buggy chips that corrupt
 | |
| 	 * data at other locations when 0xff is written to a location that
 | |
| 	 * already contains 0xff.
 | |
| 	 */
 | |
| 	oldd = map_read(map, adr);
 | |
| 	if (map_word_equal(map, oldd, datum)) {
 | |
| 		pr_debug("MTD %s(): NOP\n", __func__);
 | |
| 		goto op_done;
 | |
| 	}
 | |
| 
 | |
| 	ENABLE_VPP(map);
 | |
| 
 | |
| retry:
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	map_write(map, datum, adr);
 | |
| 
 | |
| 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
 | |
| 		if (chip_ready(map, adr))
 | |
| 			break;
 | |
| 
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	if (!chip_good(map, adr, datum)) {
 | |
| 		/* reset on all failures. */
 | |
| 		map_write(map, CMD(0xF0), chip->start);
 | |
| 		/* FIXME - should have reset delay before continuing */
 | |
| 
 | |
| 		if (++retry_cnt <= MAX_RETRIES)
 | |
| 			goto retry;
 | |
| 
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| op_done:
 | |
| 	DISABLE_VPP(map);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out some data during a kernel panic
 | |
|  *
 | |
|  * This is used by the mtdoops driver to save the dying messages from a
 | |
|  * kernel which has panic'd.
 | |
|  *
 | |
|  * This routine ignores all of the locking used throughout the rest of the
 | |
|  * driver, in order to ensure that the data gets written out no matter what
 | |
|  * state this driver (and the flash chip itself) was in when the kernel crashed.
 | |
|  *
 | |
|  * The implementation of this routine is intentionally similar to
 | |
|  * cfi_amdstd_write_words(), in order to ease code maintenance.
 | |
|  */
 | |
| static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 				  size_t *retlen, const u_char *buf)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long ofs, chipstart;
 | |
| 	int ret = 0;
 | |
| 	int chipnum;
 | |
| 
 | |
| 	chipnum = to >> cfi->chipshift;
 | |
| 	ofs = to - (chipnum << cfi->chipshift);
 | |
| 	chipstart = cfi->chips[chipnum].start;
 | |
| 
 | |
| 	/* If it's not bus aligned, do the first byte write */
 | |
| 	if (ofs & (map_bankwidth(map) - 1)) {
 | |
| 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
 | |
| 		int i = ofs - bus_ofs;
 | |
| 		int n = 0;
 | |
| 		map_word tmp_buf;
 | |
| 
 | |
| 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/* Load 'tmp_buf' with old contents of flash */
 | |
| 		tmp_buf = map_read(map, bus_ofs + chipstart);
 | |
| 
 | |
| 		/* Number of bytes to copy from buffer */
 | |
| 		n = min_t(int, len, map_bankwidth(map) - i);
 | |
| 
 | |
| 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
 | |
| 
 | |
| 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
 | |
| 					     bus_ofs, tmp_buf);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ofs += n;
 | |
| 		buf += n;
 | |
| 		(*retlen) += n;
 | |
| 		len -= n;
 | |
| 
 | |
| 		if (ofs >> cfi->chipshift) {
 | |
| 			chipnum++;
 | |
| 			ofs = 0;
 | |
| 			if (chipnum == cfi->numchips)
 | |
| 				return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We are now aligned, write as much as possible */
 | |
| 	while (len >= map_bankwidth(map)) {
 | |
| 		map_word datum;
 | |
| 
 | |
| 		datum = map_word_load(map, buf);
 | |
| 
 | |
| 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
 | |
| 					     ofs, datum);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ofs += map_bankwidth(map);
 | |
| 		buf += map_bankwidth(map);
 | |
| 		(*retlen) += map_bankwidth(map);
 | |
| 		len -= map_bankwidth(map);
 | |
| 
 | |
| 		if (ofs >> cfi->chipshift) {
 | |
| 			chipnum++;
 | |
| 			ofs = 0;
 | |
| 			if (chipnum == cfi->numchips)
 | |
| 				return 0;
 | |
| 
 | |
| 			chipstart = cfi->chips[chipnum].start;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Write the trailing bytes if any */
 | |
| 	if (len & (map_bankwidth(map) - 1)) {
 | |
| 		map_word tmp_buf;
 | |
| 
 | |
| 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		tmp_buf = map_read(map, ofs + chipstart);
 | |
| 
 | |
| 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
 | |
| 
 | |
| 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
 | |
| 					     ofs, tmp_buf);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		(*retlen) += len;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Handle devices with one erase region, that only implement
 | |
|  * the chip erase command.
 | |
|  */
 | |
| static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long timeo = jiffies + HZ;
 | |
| 	unsigned long int adr;
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 	int ret = 0;
 | |
| 	int retry_cnt = 0;
 | |
| 
 | |
| 	adr = cfi->addr_unlock1;
 | |
| 
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 	ret = get_chip(map, chip, adr, FL_WRITING);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
 | |
| 	       __func__, chip->start);
 | |
| 
 | |
| 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
 | |
| 	ENABLE_VPP(map);
 | |
| 	xip_disable(map, chip, adr);
 | |
| 
 | |
|  retry:
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 
 | |
| 	chip->state = FL_ERASING;
 | |
| 	chip->erase_suspended = 0;
 | |
| 	chip->in_progress_block_addr = adr;
 | |
| 	chip->in_progress_block_mask = ~(map->size - 1);
 | |
| 
 | |
| 	INVALIDATE_CACHE_UDELAY(map, chip,
 | |
| 				adr, map->size,
 | |
| 				chip->erase_time*500);
 | |
| 
 | |
| 	timeo = jiffies + (HZ*20);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (chip->state != FL_ERASING) {
 | |
| 			/* Someone's suspended the erase. Sleep */
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			add_wait_queue(&chip->wq, &wait);
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 			schedule();
 | |
| 			remove_wait_queue(&chip->wq, &wait);
 | |
| 			mutex_lock(&chip->mutex);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (chip->erase_suspended) {
 | |
| 			/* This erase was suspended and resumed.
 | |
| 			   Adjust the timeout */
 | |
| 			timeo = jiffies + (HZ*20); /* FIXME */
 | |
| 			chip->erase_suspended = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (chip_good(map, adr, map_word_ff(map)))
 | |
| 			break;
 | |
| 
 | |
| 		if (time_after(jiffies, timeo)) {
 | |
| 			printk(KERN_WARNING "MTD %s(): software timeout\n",
 | |
| 			       __func__);
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Latency issues. Drop the lock, wait a while and retry */
 | |
| 		UDELAY(map, chip, adr, 1000000/HZ);
 | |
| 	}
 | |
| 	/* Did we succeed? */
 | |
| 	if (ret) {
 | |
| 		/* reset on all failures. */
 | |
| 		map_write(map, CMD(0xF0), chip->start);
 | |
| 		/* FIXME - should have reset delay before continuing */
 | |
| 
 | |
| 		if (++retry_cnt <= MAX_RETRIES) {
 | |
| 			ret = 0;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	chip->state = FL_READY;
 | |
| 	xip_enable(map, chip, adr);
 | |
| 	DISABLE_VPP(map);
 | |
| 	put_chip(map, chip, adr);
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long timeo = jiffies + HZ;
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 	int ret = 0;
 | |
| 	int retry_cnt = 0;
 | |
| 
 | |
| 	adr += chip->start;
 | |
| 
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 	ret = get_chip(map, chip, adr, FL_ERASING);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
 | |
| 		 __func__, adr);
 | |
| 
 | |
| 	XIP_INVAL_CACHED_RANGE(map, adr, len);
 | |
| 	ENABLE_VPP(map);
 | |
| 	xip_disable(map, chip, adr);
 | |
| 
 | |
|  retry:
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
 | |
| 	map_write(map, cfi->sector_erase_cmd, adr);
 | |
| 
 | |
| 	chip->state = FL_ERASING;
 | |
| 	chip->erase_suspended = 0;
 | |
| 	chip->in_progress_block_addr = adr;
 | |
| 	chip->in_progress_block_mask = ~(len - 1);
 | |
| 
 | |
| 	INVALIDATE_CACHE_UDELAY(map, chip,
 | |
| 				adr, len,
 | |
| 				chip->erase_time*500);
 | |
| 
 | |
| 	timeo = jiffies + (HZ*20);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (chip->state != FL_ERASING) {
 | |
| 			/* Someone's suspended the erase. Sleep */
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			add_wait_queue(&chip->wq, &wait);
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 			schedule();
 | |
| 			remove_wait_queue(&chip->wq, &wait);
 | |
| 			mutex_lock(&chip->mutex);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (chip->erase_suspended) {
 | |
| 			/* This erase was suspended and resumed.
 | |
| 			   Adjust the timeout */
 | |
| 			timeo = jiffies + (HZ*20); /* FIXME */
 | |
| 			chip->erase_suspended = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (chip_good(map, adr, map_word_ff(map)))
 | |
| 			break;
 | |
| 
 | |
| 		if (time_after(jiffies, timeo)) {
 | |
| 			printk(KERN_WARNING "MTD %s(): software timeout\n",
 | |
| 			       __func__);
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Latency issues. Drop the lock, wait a while and retry */
 | |
| 		UDELAY(map, chip, adr, 1000000/HZ);
 | |
| 	}
 | |
| 	/* Did we succeed? */
 | |
| 	if (ret) {
 | |
| 		/* reset on all failures. */
 | |
| 		map_write(map, CMD(0xF0), chip->start);
 | |
| 		/* FIXME - should have reset delay before continuing */
 | |
| 
 | |
| 		if (++retry_cnt <= MAX_RETRIES) {
 | |
| 			ret = 0;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	chip->state = FL_READY;
 | |
| 	xip_enable(map, chip, adr);
 | |
| 	DISABLE_VPP(map);
 | |
| 	put_chip(map, chip, adr);
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
 | |
| {
 | |
| 	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
 | |
| 				instr->len, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	if (instr->addr != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (instr->len != mtd->size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_erase_chip(map, &cfi->chips[0]);
 | |
| }
 | |
| 
 | |
| static int do_atmel_lock(struct map_info *map, struct flchip *chip,
 | |
| 			 unsigned long adr, int len, void *thunk)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 	chip->state = FL_LOCKING;
 | |
| 
 | |
| 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
 | |
| 
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	map_write(map, CMD(0x40), chip->start + adr);
 | |
| 
 | |
| 	chip->state = FL_READY;
 | |
| 	put_chip(map, chip, adr + chip->start);
 | |
| 	ret = 0;
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
 | |
| 			   unsigned long adr, int len, void *thunk)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 	chip->state = FL_UNLOCKING;
 | |
| 
 | |
| 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
 | |
| 
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	map_write(map, CMD(0x70), adr);
 | |
| 
 | |
| 	chip->state = FL_READY;
 | |
| 	put_chip(map, chip, adr + chip->start);
 | |
| 	ret = 0;
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 | |
| {
 | |
| 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
 | |
| }
 | |
| 
 | |
| static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 | |
| {
 | |
| 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
 | |
|  */
 | |
| 
 | |
| struct ppb_lock {
 | |
| 	struct flchip *chip;
 | |
| 	unsigned long adr;
 | |
| 	int locked;
 | |
| };
 | |
| 
 | |
| #define MAX_SECTORS			512
 | |
| 
 | |
| #define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
 | |
| #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
 | |
| #define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)
 | |
| 
 | |
| static int __maybe_unused do_ppb_xxlock(struct map_info *map,
 | |
| 					struct flchip *chip,
 | |
| 					unsigned long adr, int len, void *thunk)
 | |
| {
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	unsigned long timeo;
 | |
| 	int ret;
 | |
| 
 | |
| 	adr += chip->start;
 | |
| 	mutex_lock(&chip->mutex);
 | |
| 	ret = get_chip(map, chip, adr, FL_LOCKING);
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
 | |
| 
 | |
| 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 	/* PPB entry command */
 | |
| 	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
 | |
| 			 cfi->device_type, NULL);
 | |
| 
 | |
| 	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
 | |
| 		chip->state = FL_LOCKING;
 | |
| 		map_write(map, CMD(0xA0), adr);
 | |
| 		map_write(map, CMD(0x00), adr);
 | |
| 	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
 | |
| 		/*
 | |
| 		 * Unlocking of one specific sector is not supported, so we
 | |
| 		 * have to unlock all sectors of this device instead
 | |
| 		 */
 | |
| 		chip->state = FL_UNLOCKING;
 | |
| 		map_write(map, CMD(0x80), chip->start);
 | |
| 		map_write(map, CMD(0x30), chip->start);
 | |
| 	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
 | |
| 		chip->state = FL_JEDEC_QUERY;
 | |
| 		/* Return locked status: 0->locked, 1->unlocked */
 | |
| 		ret = !cfi_read_query(map, adr);
 | |
| 	} else
 | |
| 		BUG();
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for some time as unlocking of all sectors takes quite long
 | |
| 	 */
 | |
| 	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
 | |
| 	for (;;) {
 | |
| 		if (chip_ready(map, adr))
 | |
| 			break;
 | |
| 
 | |
| 		if (time_after(jiffies, timeo)) {
 | |
| 			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		UDELAY(map, chip, adr, 1);
 | |
| 	}
 | |
| 
 | |
| 	/* Exit BC commands */
 | |
| 	map_write(map, CMD(0x90), chip->start);
 | |
| 	map_write(map, CMD(0x00), chip->start);
 | |
| 
 | |
| 	chip->state = FL_READY;
 | |
| 	put_chip(map, chip, adr);
 | |
| 	mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
 | |
| 				       uint64_t len)
 | |
| {
 | |
| 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
 | |
| 				DO_XXLOCK_ONEBLOCK_LOCK);
 | |
| }
 | |
| 
 | |
| static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
 | |
| 					 uint64_t len)
 | |
| {
 | |
| 	struct mtd_erase_region_info *regions = mtd->eraseregions;
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	struct ppb_lock *sect;
 | |
| 	unsigned long adr;
 | |
| 	loff_t offset;
 | |
| 	uint64_t length;
 | |
| 	int chipnum;
 | |
| 	int i;
 | |
| 	int sectors;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * PPB unlocking always unlocks all sectors of the flash chip.
 | |
| 	 * We need to re-lock all previously locked sectors. So lets
 | |
| 	 * first check the locking status of all sectors and save
 | |
| 	 * it for future use.
 | |
| 	 */
 | |
| 	sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
 | |
| 	if (!sect)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * This code to walk all sectors is a slightly modified version
 | |
| 	 * of the cfi_varsize_frob() code.
 | |
| 	 */
 | |
| 	i = 0;
 | |
| 	chipnum = 0;
 | |
| 	adr = 0;
 | |
| 	sectors = 0;
 | |
| 	offset = 0;
 | |
| 	length = mtd->size;
 | |
| 
 | |
| 	while (length) {
 | |
| 		int size = regions[i].erasesize;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only test sectors that shall not be unlocked. The other
 | |
| 		 * sectors shall be unlocked, so lets keep their locking
 | |
| 		 * status at "unlocked" (locked=0) for the final re-locking.
 | |
| 		 */
 | |
| 		if ((offset < ofs) || (offset >= (ofs + len))) {
 | |
| 			sect[sectors].chip = &cfi->chips[chipnum];
 | |
| 			sect[sectors].adr = adr;
 | |
| 			sect[sectors].locked = do_ppb_xxlock(
 | |
| 				map, &cfi->chips[chipnum], adr, 0,
 | |
| 				DO_XXLOCK_ONEBLOCK_GETLOCK);
 | |
| 		}
 | |
| 
 | |
| 		adr += size;
 | |
| 		offset += size;
 | |
| 		length -= size;
 | |
| 
 | |
| 		if (offset == regions[i].offset + size * regions[i].numblocks)
 | |
| 			i++;
 | |
| 
 | |
| 		if (adr >> cfi->chipshift) {
 | |
| 			if (offset >= (ofs + len))
 | |
| 				break;
 | |
| 			adr = 0;
 | |
| 			chipnum++;
 | |
| 
 | |
| 			if (chipnum >= cfi->numchips)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		sectors++;
 | |
| 		if (sectors >= MAX_SECTORS) {
 | |
| 			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
 | |
| 			       MAX_SECTORS);
 | |
| 			kfree(sect);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Now unlock the whole chip */
 | |
| 	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
 | |
| 			       DO_XXLOCK_ONEBLOCK_UNLOCK);
 | |
| 	if (ret) {
 | |
| 		kfree(sect);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * PPB unlocking always unlocks all sectors of the flash chip.
 | |
| 	 * We need to re-lock all previously locked sectors.
 | |
| 	 */
 | |
| 	for (i = 0; i < sectors; i++) {
 | |
| 		if (sect[i].locked)
 | |
| 			do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
 | |
| 				      DO_XXLOCK_ONEBLOCK_LOCK);
 | |
| 	}
 | |
| 
 | |
| 	kfree(sect);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
 | |
| 					    uint64_t len)
 | |
| {
 | |
| 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
 | |
| 				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void cfi_amdstd_sync (struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int i;
 | |
| 	struct flchip *chip;
 | |
| 	int ret = 0;
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
| 	for (i=0; !ret && i<cfi->numchips; i++) {
 | |
| 		chip = &cfi->chips[i];
 | |
| 
 | |
| 	retry:
 | |
| 		mutex_lock(&chip->mutex);
 | |
| 
 | |
| 		switch(chip->state) {
 | |
| 		case FL_READY:
 | |
| 		case FL_STATUS:
 | |
| 		case FL_CFI_QUERY:
 | |
| 		case FL_JEDEC_QUERY:
 | |
| 			chip->oldstate = chip->state;
 | |
| 			chip->state = FL_SYNCING;
 | |
| 			/* No need to wake_up() on this state change -
 | |
| 			 * as the whole point is that nobody can do anything
 | |
| 			 * with the chip now anyway.
 | |
| 			 */
 | |
| 		case FL_SYNCING:
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			/* Not an idle state */
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			add_wait_queue(&chip->wq, &wait);
 | |
| 
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 
 | |
| 			schedule();
 | |
| 
 | |
| 			remove_wait_queue(&chip->wq, &wait);
 | |
| 
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Unlock the chips again */
 | |
| 
 | |
| 	for (i--; i >=0; i--) {
 | |
| 		chip = &cfi->chips[i];
 | |
| 
 | |
| 		mutex_lock(&chip->mutex);
 | |
| 
 | |
| 		if (chip->state == FL_SYNCING) {
 | |
| 			chip->state = chip->oldstate;
 | |
| 			wake_up(&chip->wq);
 | |
| 		}
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cfi_amdstd_suspend(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int i;
 | |
| 	struct flchip *chip;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for (i=0; !ret && i<cfi->numchips; i++) {
 | |
| 		chip = &cfi->chips[i];
 | |
| 
 | |
| 		mutex_lock(&chip->mutex);
 | |
| 
 | |
| 		switch(chip->state) {
 | |
| 		case FL_READY:
 | |
| 		case FL_STATUS:
 | |
| 		case FL_CFI_QUERY:
 | |
| 		case FL_JEDEC_QUERY:
 | |
| 			chip->oldstate = chip->state;
 | |
| 			chip->state = FL_PM_SUSPENDED;
 | |
| 			/* No need to wake_up() on this state change -
 | |
| 			 * as the whole point is that nobody can do anything
 | |
| 			 * with the chip now anyway.
 | |
| 			 */
 | |
| 		case FL_PM_SUSPENDED:
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			ret = -EAGAIN;
 | |
| 			break;
 | |
| 		}
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 	}
 | |
| 
 | |
| 	/* Unlock the chips again */
 | |
| 
 | |
| 	if (ret) {
 | |
| 		for (i--; i >=0; i--) {
 | |
| 			chip = &cfi->chips[i];
 | |
| 
 | |
| 			mutex_lock(&chip->mutex);
 | |
| 
 | |
| 			if (chip->state == FL_PM_SUSPENDED) {
 | |
| 				chip->state = chip->oldstate;
 | |
| 				wake_up(&chip->wq);
 | |
| 			}
 | |
| 			mutex_unlock(&chip->mutex);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cfi_amdstd_resume(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int i;
 | |
| 	struct flchip *chip;
 | |
| 
 | |
| 	for (i=0; i<cfi->numchips; i++) {
 | |
| 
 | |
| 		chip = &cfi->chips[i];
 | |
| 
 | |
| 		mutex_lock(&chip->mutex);
 | |
| 
 | |
| 		if (chip->state == FL_PM_SUSPENDED) {
 | |
| 			chip->state = FL_READY;
 | |
| 			map_write(map, CMD(0xF0), chip->start);
 | |
| 			wake_up(&chip->wq);
 | |
| 		}
 | |
| 		else
 | |
| 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
 | |
| 
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Ensure that the flash device is put back into read array mode before
 | |
|  * unloading the driver or rebooting.  On some systems, rebooting while
 | |
|  * the flash is in query/program/erase mode will prevent the CPU from
 | |
|  * fetching the bootloader code, requiring a hard reset or power cycle.
 | |
|  */
 | |
| static int cfi_amdstd_reset(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 	int i, ret;
 | |
| 	struct flchip *chip;
 | |
| 
 | |
| 	for (i = 0; i < cfi->numchips; i++) {
 | |
| 
 | |
| 		chip = &cfi->chips[i];
 | |
| 
 | |
| 		mutex_lock(&chip->mutex);
 | |
| 
 | |
| 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
 | |
| 		if (!ret) {
 | |
| 			map_write(map, CMD(0xF0), chip->start);
 | |
| 			chip->state = FL_SHUTDOWN;
 | |
| 			put_chip(map, chip, chip->start);
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&chip->mutex);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
 | |
| 			       void *v)
 | |
| {
 | |
| 	struct mtd_info *mtd;
 | |
| 
 | |
| 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
 | |
| 	cfi_amdstd_reset(mtd);
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cfi_amdstd_destroy(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct map_info *map = mtd->priv;
 | |
| 	struct cfi_private *cfi = map->fldrv_priv;
 | |
| 
 | |
| 	cfi_amdstd_reset(mtd);
 | |
| 	unregister_reboot_notifier(&mtd->reboot_notifier);
 | |
| 	kfree(cfi->cmdset_priv);
 | |
| 	kfree(cfi->cfiq);
 | |
| 	kfree(cfi);
 | |
| 	kfree(mtd->eraseregions);
 | |
| }
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
 | |
| MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
 | |
| MODULE_ALIAS("cfi_cmdset_0006");
 | |
| MODULE_ALIAS("cfi_cmdset_0701");
 | 
