1038 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1038 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SMP initialisation and IPI support
 | |
|  * Based on arch/arm/kernel/smp.c
 | |
|  *
 | |
|  * Copyright (C) 2012 ARM Ltd.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/arm_sdei.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/hotplug.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/irq_work.h>
 | |
| #include <linux/kexec.h>
 | |
| 
 | |
| #include <asm/alternative.h>
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/cpu_ops.h>
 | |
| #include <asm/daifflags.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/smp_plat.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/virt.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/ipi.h>
 | |
| 
 | |
| DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
 | |
| EXPORT_PER_CPU_SYMBOL(cpu_number);
 | |
| 
 | |
| /*
 | |
|  * as from 2.5, kernels no longer have an init_tasks structure
 | |
|  * so we need some other way of telling a new secondary core
 | |
|  * where to place its SVC stack
 | |
|  */
 | |
| struct secondary_data secondary_data;
 | |
| /* Number of CPUs which aren't online, but looping in kernel text. */
 | |
| int cpus_stuck_in_kernel;
 | |
| 
 | |
| enum ipi_msg_type {
 | |
| 	IPI_RESCHEDULE,
 | |
| 	IPI_CALL_FUNC,
 | |
| 	IPI_CPU_STOP,
 | |
| 	IPI_CPU_CRASH_STOP,
 | |
| 	IPI_TIMER,
 | |
| 	IPI_IRQ_WORK,
 | |
| 	IPI_WAKEUP
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static int op_cpu_kill(unsigned int cpu);
 | |
| #else
 | |
| static inline int op_cpu_kill(unsigned int cpu)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Boot a secondary CPU, and assign it the specified idle task.
 | |
|  * This also gives us the initial stack to use for this CPU.
 | |
|  */
 | |
| static int boot_secondary(unsigned int cpu, struct task_struct *idle)
 | |
| {
 | |
| 	if (cpu_ops[cpu]->cpu_boot)
 | |
| 		return cpu_ops[cpu]->cpu_boot(cpu);
 | |
| 
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static DECLARE_COMPLETION(cpu_running);
 | |
| bool va52mismatch __ro_after_init;
 | |
| 
 | |
| int __cpu_up(unsigned int cpu, struct task_struct *idle)
 | |
| {
 | |
| 	int ret;
 | |
| 	long status;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to tell the secondary core where to find its stack and the
 | |
| 	 * page tables.
 | |
| 	 */
 | |
| 	secondary_data.task = idle;
 | |
| 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
 | |
| 	update_cpu_boot_status(CPU_MMU_OFF);
 | |
| 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
 | |
| 
 | |
| 	/*
 | |
| 	 * Now bring the CPU into our world.
 | |
| 	 */
 | |
| 	ret = boot_secondary(cpu, idle);
 | |
| 	if (ret == 0) {
 | |
| 		/*
 | |
| 		 * CPU was successfully started, wait for it to come online or
 | |
| 		 * time out.
 | |
| 		 */
 | |
| 		wait_for_completion_timeout(&cpu_running,
 | |
| 					    msecs_to_jiffies(1000));
 | |
| 
 | |
| 		if (!cpu_online(cpu)) {
 | |
| 			pr_crit("CPU%u: failed to come online\n", cpu);
 | |
| 
 | |
| 			if (IS_ENABLED(CONFIG_ARM64_52BIT_VA) && va52mismatch)
 | |
| 				pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
 | |
| 
 | |
| 			ret = -EIO;
 | |
| 		}
 | |
| 	} else {
 | |
| 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	secondary_data.task = NULL;
 | |
| 	secondary_data.stack = NULL;
 | |
| 	status = READ_ONCE(secondary_data.status);
 | |
| 	if (ret && status) {
 | |
| 
 | |
| 		if (status == CPU_MMU_OFF)
 | |
| 			status = READ_ONCE(__early_cpu_boot_status);
 | |
| 
 | |
| 		switch (status) {
 | |
| 		default:
 | |
| 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
 | |
| 					cpu, status);
 | |
| 			break;
 | |
| 		case CPU_KILL_ME:
 | |
| 			if (!op_cpu_kill(cpu)) {
 | |
| 				pr_crit("CPU%u: died during early boot\n", cpu);
 | |
| 				break;
 | |
| 			}
 | |
| 			/* Fall through */
 | |
| 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
 | |
| 		case CPU_STUCK_IN_KERNEL:
 | |
| 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
 | |
| 			cpus_stuck_in_kernel++;
 | |
| 			break;
 | |
| 		case CPU_PANIC_KERNEL:
 | |
| 			panic("CPU%u detected unsupported configuration\n", cpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the secondary CPU boot entry.  We're using this CPUs
 | |
|  * idle thread stack, but a set of temporary page tables.
 | |
|  */
 | |
| asmlinkage notrace void secondary_start_kernel(void)
 | |
| {
 | |
| 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
 | |
| 	struct mm_struct *mm = &init_mm;
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = task_cpu(current);
 | |
| 	set_my_cpu_offset(per_cpu_offset(cpu));
 | |
| 
 | |
| 	/*
 | |
| 	 * All kernel threads share the same mm context; grab a
 | |
| 	 * reference and switch to it.
 | |
| 	 */
 | |
| 	mmgrab(mm);
 | |
| 	current->active_mm = mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * TTBR0 is only used for the identity mapping at this stage. Make it
 | |
| 	 * point to zero page to avoid speculatively fetching new entries.
 | |
| 	 */
 | |
| 	cpu_uninstall_idmap();
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	trace_hardirqs_off();
 | |
| 
 | |
| 	/*
 | |
| 	 * If the system has established the capabilities, make sure
 | |
| 	 * this CPU ticks all of those. If it doesn't, the CPU will
 | |
| 	 * fail to come online.
 | |
| 	 */
 | |
| 	check_local_cpu_capabilities();
 | |
| 
 | |
| 	if (cpu_ops[cpu]->cpu_postboot)
 | |
| 		cpu_ops[cpu]->cpu_postboot();
 | |
| 
 | |
| 	/*
 | |
| 	 * Log the CPU info before it is marked online and might get read.
 | |
| 	 */
 | |
| 	cpuinfo_store_cpu();
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable GIC and timers.
 | |
| 	 */
 | |
| 	notify_cpu_starting(cpu);
 | |
| 
 | |
| 	store_cpu_topology(cpu);
 | |
| 	numa_add_cpu(cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, now it's safe to let the boot CPU continue.  Wait for
 | |
| 	 * the CPU migration code to notice that the CPU is online
 | |
| 	 * before we continue.
 | |
| 	 */
 | |
| 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
 | |
| 					 cpu, (unsigned long)mpidr,
 | |
| 					 read_cpuid_id());
 | |
| 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
 | |
| 	set_cpu_online(cpu, true);
 | |
| 	complete(&cpu_running);
 | |
| 
 | |
| 	local_daif_restore(DAIF_PROCCTX);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, it's off to the idle thread for us
 | |
| 	 */
 | |
| 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static int op_cpu_disable(unsigned int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we don't have a cpu_die method, abort before we reach the point
 | |
| 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
 | |
| 	 */
 | |
| 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may need to abort a hot unplug for some other mechanism-specific
 | |
| 	 * reason.
 | |
| 	 */
 | |
| 	if (cpu_ops[cpu]->cpu_disable)
 | |
| 		return cpu_ops[cpu]->cpu_disable(cpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __cpu_disable runs on the processor to be shutdown.
 | |
|  */
 | |
| int __cpu_disable(void)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = op_cpu_disable(cpu);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	remove_cpu_topology(cpu);
 | |
| 	numa_remove_cpu(cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take this CPU offline.  Once we clear this, we can't return,
 | |
| 	 * and we must not schedule until we're ready to give up the cpu.
 | |
| 	 */
 | |
| 	set_cpu_online(cpu, false);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK - migrate IRQs away from this CPU
 | |
| 	 */
 | |
| 	irq_migrate_all_off_this_cpu();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int op_cpu_kill(unsigned int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we have no means of synchronising with the dying CPU, then assume
 | |
| 	 * that it is really dead. We can only wait for an arbitrary length of
 | |
| 	 * time and hope that it's dead, so let's skip the wait and just hope.
 | |
| 	 */
 | |
| 	if (!cpu_ops[cpu]->cpu_kill)
 | |
| 		return 0;
 | |
| 
 | |
| 	return cpu_ops[cpu]->cpu_kill(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called on the thread which is asking for a CPU to be shutdown -
 | |
|  * waits until shutdown has completed, or it is timed out.
 | |
|  */
 | |
| void __cpu_die(unsigned int cpu)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!cpu_wait_death(cpu, 5)) {
 | |
| 		pr_crit("CPU%u: cpu didn't die\n", cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 	pr_notice("CPU%u: shutdown\n", cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that the dying CPU is beyond the point of no return w.r.t.
 | |
| 	 * in-kernel synchronisation, try to get the firwmare to help us to
 | |
| 	 * verify that it has really left the kernel before we consider
 | |
| 	 * clobbering anything it might still be using.
 | |
| 	 */
 | |
| 	err = op_cpu_kill(cpu);
 | |
| 	if (err)
 | |
| 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
 | |
| 			cpu, err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from the idle thread for the CPU which has been shutdown.
 | |
|  *
 | |
|  */
 | |
| void cpu_die(void)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 
 | |
| 	idle_task_exit();
 | |
| 
 | |
| 	local_daif_mask();
 | |
| 
 | |
| 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
 | |
| 	(void)cpu_report_death();
 | |
| 
 | |
| 	/*
 | |
| 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
 | |
| 	 * mechanism must perform all required cache maintenance to ensure that
 | |
| 	 * no dirty lines are lost in the process of shutting down the CPU.
 | |
| 	 */
 | |
| 	cpu_ops[cpu]->cpu_die(cpu);
 | |
| 
 | |
| 	BUG();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Kill the calling secondary CPU, early in bringup before it is turned
 | |
|  * online.
 | |
|  */
 | |
| void cpu_die_early(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	pr_crit("CPU%d: will not boot\n", cpu);
 | |
| 
 | |
| 	/* Mark this CPU absent */
 | |
| 	set_cpu_present(cpu, 0);
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	update_cpu_boot_status(CPU_KILL_ME);
 | |
| 	/* Check if we can park ourselves */
 | |
| 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
 | |
| 		cpu_ops[cpu]->cpu_die(cpu);
 | |
| #endif
 | |
| 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
 | |
| 
 | |
| 	cpu_park_loop();
 | |
| }
 | |
| 
 | |
| static void __init hyp_mode_check(void)
 | |
| {
 | |
| 	if (is_hyp_mode_available())
 | |
| 		pr_info("CPU: All CPU(s) started at EL2\n");
 | |
| 	else if (is_hyp_mode_mismatched())
 | |
| 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
 | |
| 			   "CPU: CPUs started in inconsistent modes");
 | |
| 	else
 | |
| 		pr_info("CPU: All CPU(s) started at EL1\n");
 | |
| }
 | |
| 
 | |
| void __init smp_cpus_done(unsigned int max_cpus)
 | |
| {
 | |
| 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
 | |
| 	setup_cpu_features();
 | |
| 	hyp_mode_check();
 | |
| 	apply_alternatives_all();
 | |
| 	mark_linear_text_alias_ro();
 | |
| }
 | |
| 
 | |
| void __init smp_prepare_boot_cpu(void)
 | |
| {
 | |
| 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 | |
| 	/*
 | |
| 	 * Initialise the static keys early as they may be enabled by the
 | |
| 	 * cpufeature code.
 | |
| 	 */
 | |
| 	jump_label_init();
 | |
| 	cpuinfo_store_boot_cpu();
 | |
| }
 | |
| 
 | |
| static u64 __init of_get_cpu_mpidr(struct device_node *dn)
 | |
| {
 | |
| 	const __be32 *cell;
 | |
| 	u64 hwid;
 | |
| 
 | |
| 	/*
 | |
| 	 * A cpu node with missing "reg" property is
 | |
| 	 * considered invalid to build a cpu_logical_map
 | |
| 	 * entry.
 | |
| 	 */
 | |
| 	cell = of_get_property(dn, "reg", NULL);
 | |
| 	if (!cell) {
 | |
| 		pr_err("%pOF: missing reg property\n", dn);
 | |
| 		return INVALID_HWID;
 | |
| 	}
 | |
| 
 | |
| 	hwid = of_read_number(cell, of_n_addr_cells(dn));
 | |
| 	/*
 | |
| 	 * Non affinity bits must be set to 0 in the DT
 | |
| 	 */
 | |
| 	if (hwid & ~MPIDR_HWID_BITMASK) {
 | |
| 		pr_err("%pOF: invalid reg property\n", dn);
 | |
| 		return INVALID_HWID;
 | |
| 	}
 | |
| 	return hwid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
 | |
|  * entries and check for duplicates. If any is found just ignore the
 | |
|  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
 | |
|  * matching valid MPIDR values.
 | |
|  */
 | |
| static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
 | |
| 		if (cpu_logical_map(i) == hwid)
 | |
| 			return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize cpu operations for a logical cpu and
 | |
|  * set it in the possible mask on success
 | |
|  */
 | |
| static int __init smp_cpu_setup(int cpu)
 | |
| {
 | |
| 	if (cpu_read_ops(cpu))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (cpu_ops[cpu]->cpu_init(cpu))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	set_cpu_possible(cpu, true);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool bootcpu_valid __initdata;
 | |
| static unsigned int cpu_count = 1;
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
 | |
| 
 | |
| struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
 | |
| {
 | |
| 	return &cpu_madt_gicc[cpu];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * acpi_map_gic_cpu_interface - parse processor MADT entry
 | |
|  *
 | |
|  * Carry out sanity checks on MADT processor entry and initialize
 | |
|  * cpu_logical_map on success
 | |
|  */
 | |
| static void __init
 | |
| acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
 | |
| {
 | |
| 	u64 hwid = processor->arm_mpidr;
 | |
| 
 | |
| 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
 | |
| 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
 | |
| 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (is_mpidr_duplicate(cpu_count, hwid)) {
 | |
| 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if GICC structure of boot CPU is available in the MADT */
 | |
| 	if (cpu_logical_map(0) == hwid) {
 | |
| 		if (bootcpu_valid) {
 | |
| 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
 | |
| 			       hwid);
 | |
| 			return;
 | |
| 		}
 | |
| 		bootcpu_valid = true;
 | |
| 		cpu_madt_gicc[0] = *processor;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_count >= NR_CPUS)
 | |
| 		return;
 | |
| 
 | |
| 	/* map the logical cpu id to cpu MPIDR */
 | |
| 	cpu_logical_map(cpu_count) = hwid;
 | |
| 
 | |
| 	cpu_madt_gicc[cpu_count] = *processor;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set-up the ACPI parking protocol cpu entries
 | |
| 	 * while initializing the cpu_logical_map to
 | |
| 	 * avoid parsing MADT entries multiple times for
 | |
| 	 * nothing (ie a valid cpu_logical_map entry should
 | |
| 	 * contain a valid parking protocol data set to
 | |
| 	 * initialize the cpu if the parking protocol is
 | |
| 	 * the only available enable method).
 | |
| 	 */
 | |
| 	acpi_set_mailbox_entry(cpu_count, processor);
 | |
| 
 | |
| 	cpu_count++;
 | |
| }
 | |
| 
 | |
| static int __init
 | |
| acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
 | |
| 			     const unsigned long end)
 | |
| {
 | |
| 	struct acpi_madt_generic_interrupt *processor;
 | |
| 
 | |
| 	processor = (struct acpi_madt_generic_interrupt *)header;
 | |
| 	if (BAD_MADT_GICC_ENTRY(processor, end))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	acpi_table_print_madt_entry(header);
 | |
| 
 | |
| 	acpi_map_gic_cpu_interface(processor);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init acpi_parse_and_init_cpus(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * do a walk of MADT to determine how many CPUs
 | |
| 	 * we have including disabled CPUs, and get information
 | |
| 	 * we need for SMP init.
 | |
| 	 */
 | |
| 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
 | |
| 				      acpi_parse_gic_cpu_interface, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * In ACPI, SMP and CPU NUMA information is provided in separate
 | |
| 	 * static tables, namely the MADT and the SRAT.
 | |
| 	 *
 | |
| 	 * Thus, it is simpler to first create the cpu logical map through
 | |
| 	 * an MADT walk and then map the logical cpus to their node ids
 | |
| 	 * as separate steps.
 | |
| 	 */
 | |
| 	acpi_map_cpus_to_nodes();
 | |
| 
 | |
| 	for (i = 0; i < nr_cpu_ids; i++)
 | |
| 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
 | |
| }
 | |
| #else
 | |
| #define acpi_parse_and_init_cpus(...)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Enumerate the possible CPU set from the device tree and build the
 | |
|  * cpu logical map array containing MPIDR values related to logical
 | |
|  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
 | |
|  */
 | |
| static void __init of_parse_and_init_cpus(void)
 | |
| {
 | |
| 	struct device_node *dn;
 | |
| 
 | |
| 	for_each_node_by_type(dn, "cpu") {
 | |
| 		u64 hwid = of_get_cpu_mpidr(dn);
 | |
| 
 | |
| 		if (hwid == INVALID_HWID)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (is_mpidr_duplicate(cpu_count, hwid)) {
 | |
| 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
 | |
| 				dn);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The numbering scheme requires that the boot CPU
 | |
| 		 * must be assigned logical id 0. Record it so that
 | |
| 		 * the logical map built from DT is validated and can
 | |
| 		 * be used.
 | |
| 		 */
 | |
| 		if (hwid == cpu_logical_map(0)) {
 | |
| 			if (bootcpu_valid) {
 | |
| 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
 | |
| 					dn);
 | |
| 				goto next;
 | |
| 			}
 | |
| 
 | |
| 			bootcpu_valid = true;
 | |
| 			early_map_cpu_to_node(0, of_node_to_nid(dn));
 | |
| 
 | |
| 			/*
 | |
| 			 * cpu_logical_map has already been
 | |
| 			 * initialized and the boot cpu doesn't need
 | |
| 			 * the enable-method so continue without
 | |
| 			 * incrementing cpu.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (cpu_count >= NR_CPUS)
 | |
| 			goto next;
 | |
| 
 | |
| 		pr_debug("cpu logical map 0x%llx\n", hwid);
 | |
| 		cpu_logical_map(cpu_count) = hwid;
 | |
| 
 | |
| 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
 | |
| next:
 | |
| 		cpu_count++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enumerate the possible CPU set from the device tree or ACPI and build the
 | |
|  * cpu logical map array containing MPIDR values related to logical
 | |
|  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
 | |
|  */
 | |
| void __init smp_init_cpus(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (acpi_disabled)
 | |
| 		of_parse_and_init_cpus();
 | |
| 	else
 | |
| 		acpi_parse_and_init_cpus();
 | |
| 
 | |
| 	if (cpu_count > nr_cpu_ids)
 | |
| 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
 | |
| 			cpu_count, nr_cpu_ids);
 | |
| 
 | |
| 	if (!bootcpu_valid) {
 | |
| 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to set the cpu_logical_map entries before enabling
 | |
| 	 * the cpus so that cpu processor description entries (DT cpu nodes
 | |
| 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
 | |
| 	 * with entries in cpu_logical_map while initializing the cpus.
 | |
| 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
 | |
| 	 */
 | |
| 	for (i = 1; i < nr_cpu_ids; i++) {
 | |
| 		if (cpu_logical_map(i) != INVALID_HWID) {
 | |
| 			if (smp_cpu_setup(i))
 | |
| 				cpu_logical_map(i) = INVALID_HWID;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init smp_prepare_cpus(unsigned int max_cpus)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned int cpu;
 | |
| 	unsigned int this_cpu;
 | |
| 
 | |
| 	init_cpu_topology();
 | |
| 
 | |
| 	this_cpu = smp_processor_id();
 | |
| 	store_cpu_topology(this_cpu);
 | |
| 	numa_store_cpu_info(this_cpu);
 | |
| 	numa_add_cpu(this_cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
 | |
| 	 * secondary CPUs present.
 | |
| 	 */
 | |
| 	if (max_cpus == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise the present map (which describes the set of CPUs
 | |
| 	 * actually populated at the present time) and release the
 | |
| 	 * secondaries from the bootloader.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 
 | |
| 		per_cpu(cpu_number, cpu) = cpu;
 | |
| 
 | |
| 		if (cpu == smp_processor_id())
 | |
| 			continue;
 | |
| 
 | |
| 		if (!cpu_ops[cpu])
 | |
| 			continue;
 | |
| 
 | |
| 		err = cpu_ops[cpu]->cpu_prepare(cpu);
 | |
| 		if (err)
 | |
| 			continue;
 | |
| 
 | |
| 		set_cpu_present(cpu, true);
 | |
| 		numa_store_cpu_info(cpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void (*__smp_cross_call)(const struct cpumask *, unsigned int);
 | |
| 
 | |
| void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 | |
| {
 | |
| 	__smp_cross_call = fn;
 | |
| }
 | |
| 
 | |
| static const char *ipi_types[NR_IPI] __tracepoint_string = {
 | |
| #define S(x,s)	[x] = s
 | |
| 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
 | |
| 	S(IPI_CALL_FUNC, "Function call interrupts"),
 | |
| 	S(IPI_CPU_STOP, "CPU stop interrupts"),
 | |
| 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
 | |
| 	S(IPI_TIMER, "Timer broadcast interrupts"),
 | |
| 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
 | |
| 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
 | |
| };
 | |
| 
 | |
| static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
 | |
| {
 | |
| 	trace_ipi_raise(target, ipi_types[ipinr]);
 | |
| 	__smp_cross_call(target, ipinr);
 | |
| }
 | |
| 
 | |
| void show_ipi_list(struct seq_file *p, int prec)
 | |
| {
 | |
| 	unsigned int cpu, i;
 | |
| 
 | |
| 	for (i = 0; i < NR_IPI; i++) {
 | |
| 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
 | |
| 			   prec >= 4 ? " " : "");
 | |
| 		for_each_online_cpu(cpu)
 | |
| 			seq_printf(p, "%10u ",
 | |
| 				   __get_irq_stat(cpu, ipi_irqs[i]));
 | |
| 		seq_printf(p, "      %s\n", ipi_types[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| u64 smp_irq_stat_cpu(unsigned int cpu)
 | |
| {
 | |
| 	u64 sum = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_IPI; i++)
 | |
| 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 | |
| {
 | |
| 	smp_cross_call(mask, IPI_CALL_FUNC);
 | |
| }
 | |
| 
 | |
| void arch_send_call_function_single_ipi(int cpu)
 | |
| {
 | |
| 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
 | |
| void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 | |
| {
 | |
| 	smp_cross_call(mask, IPI_WAKEUP);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IRQ_WORK
 | |
| void arch_irq_work_raise(void)
 | |
| {
 | |
| 	if (__smp_cross_call)
 | |
| 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * ipi_cpu_stop - handle IPI from smp_send_stop()
 | |
|  */
 | |
| static void ipi_cpu_stop(unsigned int cpu)
 | |
| {
 | |
| 	set_cpu_online(cpu, false);
 | |
| 
 | |
| 	local_daif_mask();
 | |
| 	sdei_mask_local_cpu();
 | |
| 
 | |
| 	while (1)
 | |
| 		cpu_relax();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_CORE
 | |
| static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
 | |
| #endif
 | |
| 
 | |
| static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
 | |
| {
 | |
| #ifdef CONFIG_KEXEC_CORE
 | |
| 	crash_save_cpu(regs, cpu);
 | |
| 
 | |
| 	atomic_dec(&waiting_for_crash_ipi);
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	sdei_mask_local_cpu();
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	if (cpu_ops[cpu]->cpu_die)
 | |
| 		cpu_ops[cpu]->cpu_die(cpu);
 | |
| #endif
 | |
| 
 | |
| 	/* just in case */
 | |
| 	cpu_park_loop();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Main handler for inter-processor interrupts
 | |
|  */
 | |
| void handle_IPI(int ipinr, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	struct pt_regs *old_regs = set_irq_regs(regs);
 | |
| 
 | |
| 	if ((unsigned)ipinr < NR_IPI) {
 | |
| 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
 | |
| 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
 | |
| 	}
 | |
| 
 | |
| 	switch (ipinr) {
 | |
| 	case IPI_RESCHEDULE:
 | |
| 		scheduler_ipi();
 | |
| 		break;
 | |
| 
 | |
| 	case IPI_CALL_FUNC:
 | |
| 		irq_enter();
 | |
| 		generic_smp_call_function_interrupt();
 | |
| 		irq_exit();
 | |
| 		break;
 | |
| 
 | |
| 	case IPI_CPU_STOP:
 | |
| 		irq_enter();
 | |
| 		ipi_cpu_stop(cpu);
 | |
| 		irq_exit();
 | |
| 		break;
 | |
| 
 | |
| 	case IPI_CPU_CRASH_STOP:
 | |
| 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
 | |
| 			irq_enter();
 | |
| 			ipi_cpu_crash_stop(cpu, regs);
 | |
| 
 | |
| 			unreachable();
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 | |
| 	case IPI_TIMER:
 | |
| 		irq_enter();
 | |
| 		tick_receive_broadcast();
 | |
| 		irq_exit();
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_IRQ_WORK
 | |
| 	case IPI_IRQ_WORK:
 | |
| 		irq_enter();
 | |
| 		irq_work_run();
 | |
| 		irq_exit();
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
 | |
| 	case IPI_WAKEUP:
 | |
| 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
 | |
| 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
 | |
| 			  cpu);
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	default:
 | |
| 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if ((unsigned)ipinr < NR_IPI)
 | |
| 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
 | |
| 	set_irq_regs(old_regs);
 | |
| }
 | |
| 
 | |
| void smp_send_reschedule(int cpu)
 | |
| {
 | |
| 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 | |
| void tick_broadcast(const struct cpumask *mask)
 | |
| {
 | |
| 	smp_cross_call(mask, IPI_TIMER);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void smp_send_stop(void)
 | |
| {
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	if (num_online_cpus() > 1) {
 | |
| 		cpumask_t mask;
 | |
| 
 | |
| 		cpumask_copy(&mask, cpu_online_mask);
 | |
| 		cpumask_clear_cpu(smp_processor_id(), &mask);
 | |
| 
 | |
| 		if (system_state <= SYSTEM_RUNNING)
 | |
| 			pr_crit("SMP: stopping secondary CPUs\n");
 | |
| 		smp_cross_call(&mask, IPI_CPU_STOP);
 | |
| 	}
 | |
| 
 | |
| 	/* Wait up to one second for other CPUs to stop */
 | |
| 	timeout = USEC_PER_SEC;
 | |
| 	while (num_online_cpus() > 1 && timeout--)
 | |
| 		udelay(1);
 | |
| 
 | |
| 	if (num_online_cpus() > 1)
 | |
| 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
 | |
| 			   cpumask_pr_args(cpu_online_mask));
 | |
| 
 | |
| 	sdei_mask_local_cpu();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_CORE
 | |
| void crash_smp_send_stop(void)
 | |
| {
 | |
| 	static int cpus_stopped;
 | |
| 	cpumask_t mask;
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function can be called twice in panic path, but obviously
 | |
| 	 * we execute this only once.
 | |
| 	 */
 | |
| 	if (cpus_stopped)
 | |
| 		return;
 | |
| 
 | |
| 	cpus_stopped = 1;
 | |
| 
 | |
| 	if (num_online_cpus() == 1) {
 | |
| 		sdei_mask_local_cpu();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cpumask_copy(&mask, cpu_online_mask);
 | |
| 	cpumask_clear_cpu(smp_processor_id(), &mask);
 | |
| 
 | |
| 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
 | |
| 
 | |
| 	pr_crit("SMP: stopping secondary CPUs\n");
 | |
| 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
 | |
| 
 | |
| 	/* Wait up to one second for other CPUs to stop */
 | |
| 	timeout = USEC_PER_SEC;
 | |
| 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
 | |
| 		udelay(1);
 | |
| 
 | |
| 	if (atomic_read(&waiting_for_crash_ipi) > 0)
 | |
| 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
 | |
| 			   cpumask_pr_args(&mask));
 | |
| 
 | |
| 	sdei_mask_local_cpu();
 | |
| }
 | |
| 
 | |
| bool smp_crash_stop_failed(void)
 | |
| {
 | |
| 	return (atomic_read(&waiting_for_crash_ipi) > 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * not supported here
 | |
|  */
 | |
| int setup_profiling_timer(unsigned int multiplier)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static bool have_cpu_die(void)
 | |
| {
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	int any_cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
 | |
| 		return true;
 | |
| #endif
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool cpus_are_stuck_in_kernel(void)
 | |
| {
 | |
| 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
 | |
| 
 | |
| 	return !!cpus_stuck_in_kernel || smp_spin_tables;
 | |
| }
 | 
