2341 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2341 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  *
 | |
|  * ZFS filesystem ported to u-boot by
 | |
|  * Jorgen Lundman <lundman at lundman.net>
 | |
|  *
 | |
|  *	GRUB  --  GRand Unified Bootloader
 | |
|  *	Copyright (C) 1999,2000,2001,2002,2003,2004
 | |
|  *	Free Software Foundation, Inc.
 | |
|  *	Copyright 2004	Sun Microsystems, Inc.
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <malloc.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include "zfs_common.h"
 | |
| #include "div64.h"
 | |
| 
 | |
| struct blk_desc *zfs_dev_desc;
 | |
| 
 | |
| /*
 | |
|  * The zfs plug-in routines for GRUB are:
 | |
|  *
 | |
|  * zfs_mount() - locates a valid uberblock of the root pool and reads
 | |
|  *		in its MOS at the memory address MOS.
 | |
|  *
 | |
|  * zfs_open() - locates a plain file object by following the MOS
 | |
|  *		and places its dnode at the memory address DNODE.
 | |
|  *
 | |
|  * zfs_read() - read in the data blocks pointed by the DNODE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <zfs/zfs.h>
 | |
| #include <zfs/zio.h>
 | |
| #include <zfs/dnode.h>
 | |
| #include <zfs/uberblock_impl.h>
 | |
| #include <zfs/vdev_impl.h>
 | |
| #include <zfs/zio_checksum.h>
 | |
| #include <zfs/zap_impl.h>
 | |
| #include <zfs/zap_leaf.h>
 | |
| #include <zfs/zfs_znode.h>
 | |
| #include <zfs/dmu.h>
 | |
| #include <zfs/dmu_objset.h>
 | |
| #include <zfs/sa_impl.h>
 | |
| #include <zfs/dsl_dir.h>
 | |
| #include <zfs/dsl_dataset.h>
 | |
| 
 | |
| 
 | |
| #define	ZPOOL_PROP_BOOTFS		"bootfs"
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * For nvlist manipulation. (from nvpair.h)
 | |
|  */
 | |
| #define	NV_ENCODE_NATIVE	0
 | |
| #define	NV_ENCODE_XDR		1
 | |
| #define	NV_BIG_ENDIAN			0
 | |
| #define	NV_LITTLE_ENDIAN	1
 | |
| #define	DATA_TYPE_UINT64	8
 | |
| #define	DATA_TYPE_STRING	9
 | |
| #define	DATA_TYPE_NVLIST	19
 | |
| #define	DATA_TYPE_NVLIST_ARRAY	20
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Macros to get fields in a bp or DVA.
 | |
|  */
 | |
| #define	P2PHASE(x, align)		((x) & ((align) - 1))
 | |
| #define	DVA_OFFSET_TO_PHYS_SECTOR(offset)					\
 | |
| 	((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
 | |
| 
 | |
| /*
 | |
|  * return x rounded down to an align boundary
 | |
|  * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
 | |
|  * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
 | |
|  * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
 | |
|  * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
 | |
|  */
 | |
| #define	P2ALIGN(x, align)		((x) & -(align))
 | |
| 
 | |
| /*
 | |
|  * FAT ZAP data structures
 | |
|  */
 | |
| #define	ZFS_CRC64_POLY 0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
 | |
| #define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
 | |
| #define	CHAIN_END	0xffff	/* end of the chunk chain */
 | |
| 
 | |
| /*
 | |
|  * The amount of space within the chunk available for the array is:
 | |
|  * chunk size - space for type (1) - space for next pointer (2)
 | |
|  */
 | |
| #define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
 | |
| 
 | |
| #define	ZAP_LEAF_HASH_SHIFT(bs)	(bs - 5)
 | |
| #define	ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
 | |
| #define	LEAF_HASH(bs, h)												\
 | |
| 	((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) &									\
 | |
| 	 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
 | |
| 
 | |
| /*
 | |
|  * The amount of space available for chunks is:
 | |
|  * block size shift - hash entry size (2) * number of hash
 | |
|  * entries - header space (2*chunksize)
 | |
|  */
 | |
| #define	ZAP_LEAF_NUMCHUNKS(bs)						\
 | |
| 	(((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) /	\
 | |
| 	 ZAP_LEAF_CHUNKSIZE - 2)
 | |
| 
 | |
| /*
 | |
|  * The chunks start immediately after the hash table.  The end of the
 | |
|  * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
 | |
|  * chunk_t.
 | |
|  */
 | |
| #define	ZAP_LEAF_CHUNK(l, bs, idx)										\
 | |
| 	((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
 | |
| #define	ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Decompression Entry - lzjb
 | |
|  */
 | |
| #ifndef	NBBY
 | |
| #define	NBBY	8
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| typedef int zfs_decomp_func_t(void *s_start, void *d_start,
 | |
| 							  uint32_t s_len, uint32_t d_len);
 | |
| typedef struct decomp_entry {
 | |
| 	char *name;
 | |
| 	zfs_decomp_func_t *decomp_func;
 | |
| } decomp_entry_t;
 | |
| 
 | |
| typedef struct dnode_end {
 | |
| 	dnode_phys_t dn;
 | |
| 	zfs_endian_t endian;
 | |
| } dnode_end_t;
 | |
| 
 | |
| struct zfs_data {
 | |
| 	/* cache for a file block of the currently zfs_open()-ed file */
 | |
| 	char *file_buf;
 | |
| 	uint64_t file_start;
 | |
| 	uint64_t file_end;
 | |
| 
 | |
| 	/* XXX: ashift is per vdev, not per pool.  We currently only ever touch
 | |
| 	 * a single vdev, but when/if raid-z or stripes are supported, this
 | |
| 	 * may need revision.
 | |
| 	 */
 | |
| 	uint64_t vdev_ashift;
 | |
| 	uint64_t label_txg;
 | |
| 	uint64_t pool_guid;
 | |
| 
 | |
| 	/* cache for a dnode block */
 | |
| 	dnode_phys_t *dnode_buf;
 | |
| 	dnode_phys_t *dnode_mdn;
 | |
| 	uint64_t dnode_start;
 | |
| 	uint64_t dnode_end;
 | |
| 	zfs_endian_t dnode_endian;
 | |
| 
 | |
| 	uberblock_t current_uberblock;
 | |
| 
 | |
| 	dnode_end_t mos;
 | |
| 	dnode_end_t mdn;
 | |
| 	dnode_end_t dnode;
 | |
| 
 | |
| 	uint64_t vdev_phys_sector;
 | |
| 
 | |
| 	int (*userhook)(const char *, const struct zfs_dirhook_info *);
 | |
| 	struct zfs_dirhook_info *dirinfo;
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| static int
 | |
| zlib_decompress(void *s, void *d,
 | |
| 				uint32_t slen, uint32_t dlen)
 | |
| {
 | |
| 	if (zlib_decompress(s, d, slen, dlen) < 0)
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
 | |
| 	{"inherit", NULL},		/* ZIO_COMPRESS_INHERIT */
 | |
| 	{"on", lzjb_decompress},	/* ZIO_COMPRESS_ON */
 | |
| 	{"off", NULL},		/* ZIO_COMPRESS_OFF */
 | |
| 	{"lzjb", lzjb_decompress},	/* ZIO_COMPRESS_LZJB */
 | |
| 	{"empty", NULL},		/* ZIO_COMPRESS_EMPTY */
 | |
| 	{"gzip-1", zlib_decompress},  /* ZIO_COMPRESS_GZIP1 */
 | |
| 	{"gzip-2", zlib_decompress},  /* ZIO_COMPRESS_GZIP2 */
 | |
| 	{"gzip-3", zlib_decompress},  /* ZIO_COMPRESS_GZIP3 */
 | |
| 	{"gzip-4", zlib_decompress},  /* ZIO_COMPRESS_GZIP4 */
 | |
| 	{"gzip-5", zlib_decompress},  /* ZIO_COMPRESS_GZIP5 */
 | |
| 	{"gzip-6", zlib_decompress},  /* ZIO_COMPRESS_GZIP6 */
 | |
| 	{"gzip-7", zlib_decompress},  /* ZIO_COMPRESS_GZIP7 */
 | |
| 	{"gzip-8", zlib_decompress},  /* ZIO_COMPRESS_GZIP8 */
 | |
| 	{"gzip-9", zlib_decompress},  /* ZIO_COMPRESS_GZIP9 */
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
 | |
| 						 void *buf, struct zfs_data *data);
 | |
| 
 | |
| static int
 | |
| zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
 | |
| 		 size_t *size, struct zfs_data *data);
 | |
| 
 | |
| /*
 | |
|  * Our own version of log2().  Same thing as highbit()-1.
 | |
|  */
 | |
| static int
 | |
| zfs_log2(uint64_t num)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	while (num > 1) {
 | |
| 		i++;
 | |
| 		num = num >> 1;
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Checksum Functions */
 | |
| static void
 | |
| zio_checksum_off(const void *buf __attribute__ ((unused)),
 | |
| 				 uint64_t size __attribute__ ((unused)),
 | |
| 				 zfs_endian_t endian __attribute__ ((unused)),
 | |
| 				 zio_cksum_t *zcp)
 | |
| {
 | |
| 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
 | |
| }
 | |
| 
 | |
| /* Checksum Table and Values */
 | |
| static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
 | |
| 	{NULL, 0, 0, "inherit"},
 | |
| 	{NULL, 0, 0, "on"},
 | |
| 	{zio_checksum_off, 0, 0, "off"},
 | |
| 	{zio_checksum_SHA256, 1, 1, "label"},
 | |
| 	{zio_checksum_SHA256, 1, 1, "gang_header"},
 | |
| 	{NULL, 0, 0, "zilog"},
 | |
| 	{fletcher_2_endian, 0, 0, "fletcher2"},
 | |
| 	{fletcher_4_endian, 1, 0, "fletcher4"},
 | |
| 	{zio_checksum_SHA256, 1, 0, "SHA256"},
 | |
| 	{NULL, 0, 0, "zilog2"},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * zio_checksum_verify: Provides support for checksum verification.
 | |
|  *
 | |
|  * Fletcher2, Fletcher4, and SHA256 are supported.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
 | |
| 					zfs_endian_t endian, char *buf, int size)
 | |
| {
 | |
| 	zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
 | |
| 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
 | |
| 	zio_cksum_t actual_cksum, expected_cksum;
 | |
| 
 | |
| 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
 | |
| 		printf("zfs unknown checksum function %d\n", checksum);
 | |
| 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
 | |
| 	}
 | |
| 
 | |
| 	if (ci->ci_eck) {
 | |
| 		expected_cksum = zec->zec_cksum;
 | |
| 		zec->zec_cksum = zc;
 | |
| 		ci->ci_func(buf, size, endian, &actual_cksum);
 | |
| 		zec->zec_cksum = expected_cksum;
 | |
| 		zc = expected_cksum;
 | |
| 	} else {
 | |
| 		ci->ci_func(buf, size, endian, &actual_cksum);
 | |
| 	}
 | |
| 
 | |
| 	if ((actual_cksum.zc_word[0] != zc.zc_word[0])
 | |
| 		|| (actual_cksum.zc_word[1] != zc.zc_word[1])
 | |
| 		|| (actual_cksum.zc_word[2] != zc.zc_word[2])
 | |
| 		|| (actual_cksum.zc_word[3] != zc.zc_word[3])) {
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vdev_uberblock_compare takes two uberblock structures and returns an integer
 | |
|  * indicating the more recent of the two.
 | |
|  *	Return Value = 1 if ub2 is more recent
 | |
|  *	Return Value = -1 if ub1 is more recent
 | |
|  * The most recent uberblock is determined using its transaction number and
 | |
|  * timestamp.  The uberblock with the highest transaction number is
 | |
|  * considered "newer".	If the transaction numbers of the two blocks match, the
 | |
|  * timestamps are compared to determine the "newer" of the two.
 | |
|  */
 | |
| static int
 | |
| vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
 | |
| {
 | |
| 	zfs_endian_t ub1_endian, ub2_endian;
 | |
| 	if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
 | |
| 		ub1_endian = LITTLE_ENDIAN;
 | |
| 	else
 | |
| 		ub1_endian = BIG_ENDIAN;
 | |
| 	if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
 | |
| 		ub2_endian = LITTLE_ENDIAN;
 | |
| 	else
 | |
| 		ub2_endian = BIG_ENDIAN;
 | |
| 
 | |
| 	if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
 | |
| 		< zfs_to_cpu64(ub2->ub_txg, ub2_endian))
 | |
| 		return -1;
 | |
| 	if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
 | |
| 		> zfs_to_cpu64(ub2->ub_txg, ub2_endian))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
 | |
| 		< zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
 | |
| 		return -1;
 | |
| 	if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
 | |
| 		> zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Three pieces of information are needed to verify an uberblock: the magic
 | |
|  * number, the version number, and the checksum.
 | |
|  *
 | |
|  * Currently Implemented: version number, magic number, label txg
 | |
|  * Need to Implement: checksum
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
 | |
| {
 | |
| 	int err;
 | |
| 	zfs_endian_t endian = UNKNOWN_ENDIAN;
 | |
| 	zio_cksum_t zc;
 | |
| 
 | |
| 	if (uber->ub_txg < data->label_txg) {
 | |
| 		debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
 | |
| 			  uber->ub_txg, data->label_txg);
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
 | |
| 		&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
 | |
| 		&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
 | |
| 		endian = LITTLE_ENDIAN;
 | |
| 
 | |
| 	if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
 | |
| 		&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
 | |
| 		&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
 | |
| 		endian = BIG_ENDIAN;
 | |
| 
 | |
| 	if (endian == UNKNOWN_ENDIAN) {
 | |
| 		printf("invalid uberblock magic\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	memset(&zc, 0, sizeof(zc));
 | |
| 	zc.zc_word[0] = cpu_to_zfs64(offset, endian);
 | |
| 	err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
 | |
| 							  (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
 | |
| 
 | |
| 	if (!err) {
 | |
| 		/* Check that the data pointed by the rootbp is usable. */
 | |
| 		void *osp = NULL;
 | |
| 		size_t ospsize;
 | |
| 		err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
 | |
| 		free(osp);
 | |
| 
 | |
| 		if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
 | |
| 			printf("uberblock rootbp points to invalid data\n");
 | |
| 			return ZFS_ERR_BAD_FS;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the best uberblock.
 | |
|  * Return:
 | |
|  *	  Success - Pointer to the best uberblock.
 | |
|  *	  Failure - NULL
 | |
|  */
 | |
| static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
 | |
| {
 | |
| 	const uint64_t sector = data->vdev_phys_sector;
 | |
| 	uberblock_t *ubbest = NULL;
 | |
| 	uberblock_t *ubnext;
 | |
| 	unsigned int i, offset, pickedub = 0;
 | |
| 	int err = ZFS_ERR_NONE;
 | |
| 
 | |
| 	const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
 | |
| 	const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
 | |
| 
 | |
| 	for (i = 0; i < UBCOUNT; i++) {
 | |
| 		ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
 | |
| 		offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
 | |
| 
 | |
| 		err = uberblock_verify(ubnext, offset, data);
 | |
| 		if (err)
 | |
| 			continue;
 | |
| 
 | |
| 		if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
 | |
| 			ubbest = ubnext;
 | |
| 			pickedub = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ubbest)
 | |
| 		debug("zfs Found best uberblock at idx %d, txg %llu\n",
 | |
| 			  pickedub, (unsigned long long) ubbest->ub_txg);
 | |
| 
 | |
| 	return ubbest;
 | |
| }
 | |
| 
 | |
| static inline size_t
 | |
| get_psize(blkptr_t *bp, zfs_endian_t endian)
 | |
| {
 | |
| 	return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
 | |
| 			<< SPA_MINBLOCKSHIFT;
 | |
| }
 | |
| 
 | |
| static uint64_t
 | |
| dva_get_offset(dva_t *dva, zfs_endian_t endian)
 | |
| {
 | |
| 	return zfs_to_cpu64((dva)->dva_word[1],
 | |
| 							 endian) << SPA_MINBLOCKSHIFT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a block of data based on the gang block address dva,
 | |
|  * and put its data in buf.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
 | |
| 			  struct zfs_data *data)
 | |
| {
 | |
| 	zio_gbh_phys_t *zio_gb;
 | |
| 	uint64_t offset, sector;
 | |
| 	unsigned i;
 | |
| 	int err;
 | |
| 	zio_cksum_t zc;
 | |
| 
 | |
| 	memset(&zc, 0, sizeof(zc));
 | |
| 
 | |
| 	zio_gb = malloc(SPA_GANGBLOCKSIZE);
 | |
| 	if (!zio_gb)
 | |
| 		return ZFS_ERR_OUT_OF_MEMORY;
 | |
| 
 | |
| 	offset = dva_get_offset(dva, endian);
 | |
| 	sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
 | |
| 
 | |
| 	/* read in the gang block header */
 | |
| 	err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
 | |
| 
 | |
| 	if (err) {
 | |
| 		free(zio_gb);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/* XXX */
 | |
| 	/* self checksuming the gang block header */
 | |
| 	ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
 | |
| 					 dva_get_offset(dva, endian), bp->blk_birth, 0);
 | |
| 	err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
 | |
| 							  (char *) zio_gb, SPA_GANGBLOCKSIZE);
 | |
| 	if (err) {
 | |
| 		free(zio_gb);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
 | |
| 
 | |
| 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
 | |
| 		if (zio_gb->zg_blkptr[i].blk_birth == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
 | |
| 		if (err) {
 | |
| 			free(zio_gb);
 | |
| 			return err;
 | |
| 		}
 | |
| 		buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
 | |
| 	}
 | |
| 	free(zio_gb);
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read in a block of raw data to buf.
 | |
|  */
 | |
| static int
 | |
| zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
 | |
| 			  struct zfs_data *data)
 | |
| {
 | |
| 	int i, psize;
 | |
| 	int err = ZFS_ERR_NONE;
 | |
| 
 | |
| 	psize = get_psize(bp, endian);
 | |
| 
 | |
| 	/* pick a good dva from the block pointer */
 | |
| 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
 | |
| 		uint64_t offset, sector;
 | |
| 
 | |
| 		if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
 | |
| 			err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
 | |
| 		} else {
 | |
| 			/* read in a data block */
 | |
| 			offset = dva_get_offset(&bp->blk_dva[i], endian);
 | |
| 			sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
 | |
| 
 | |
| 			err = zfs_devread(sector, 0, psize, buf);
 | |
| 		}
 | |
| 
 | |
| 		if (!err) {
 | |
| 			/*Check the underlying checksum before we rule this DVA as "good"*/
 | |
| 			uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
 | |
| 
 | |
| 			err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
 | |
| 			if (!err)
 | |
| 				return ZFS_ERR_NONE;
 | |
| 		}
 | |
| 
 | |
| 		/* If read failed or checksum bad, reset the error.	 Hopefully we've got some more DVA's to try.*/
 | |
| 	}
 | |
| 
 | |
| 	if (!err) {
 | |
| 		printf("couldn't find a valid DVA\n");
 | |
| 		err = ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read in a block of data, verify its checksum, decompress if needed,
 | |
|  * and put the uncompressed data in buf.
 | |
|  */
 | |
| static int
 | |
| zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
 | |
| 		 size_t *size, struct zfs_data *data)
 | |
| {
 | |
| 	size_t lsize, psize;
 | |
| 	unsigned int comp;
 | |
| 	char *compbuf = NULL;
 | |
| 	int err;
 | |
| 
 | |
| 	*buf = NULL;
 | |
| 
 | |
| 	comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
 | |
| 	lsize = (BP_IS_HOLE(bp) ? 0 :
 | |
| 			 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
 | |
| 			  << SPA_MINBLOCKSHIFT));
 | |
| 	psize = get_psize(bp, endian);
 | |
| 
 | |
| 	if (size)
 | |
| 		*size = lsize;
 | |
| 
 | |
| 	if (comp >= ZIO_COMPRESS_FUNCTIONS) {
 | |
| 		printf("compression algorithm %u not supported\n", (unsigned int) comp);
 | |
| 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
 | |
| 	}
 | |
| 
 | |
| 	if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
 | |
| 		printf("compression algorithm %s not supported\n", decomp_table[comp].name);
 | |
| 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
 | |
| 	}
 | |
| 
 | |
| 	if (comp != ZIO_COMPRESS_OFF) {
 | |
| 		compbuf = malloc(psize);
 | |
| 		if (!compbuf)
 | |
| 			return ZFS_ERR_OUT_OF_MEMORY;
 | |
| 	} else {
 | |
| 		compbuf = *buf = malloc(lsize);
 | |
| 	}
 | |
| 
 | |
| 	err = zio_read_data(bp, endian, compbuf, data);
 | |
| 	if (err) {
 | |
| 		free(compbuf);
 | |
| 		*buf = NULL;
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (comp != ZIO_COMPRESS_OFF) {
 | |
| 		*buf = malloc(lsize);
 | |
| 		if (!*buf) {
 | |
| 			free(compbuf);
 | |
| 			return ZFS_ERR_OUT_OF_MEMORY;
 | |
| 		}
 | |
| 
 | |
| 		err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
 | |
| 		free(compbuf);
 | |
| 		if (err) {
 | |
| 			free(*buf);
 | |
| 			*buf = NULL;
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the block from a block id.
 | |
|  * push the block onto the stack.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
 | |
| 		 zfs_endian_t *endian_out, struct zfs_data *data)
 | |
| {
 | |
| 	int idx, level;
 | |
| 	blkptr_t *bp_array = dn->dn.dn_blkptr;
 | |
| 	int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
 | |
| 	blkptr_t *bp;
 | |
| 	void *tmpbuf = 0;
 | |
| 	zfs_endian_t endian;
 | |
| 	int err = ZFS_ERR_NONE;
 | |
| 
 | |
| 	bp = malloc(sizeof(blkptr_t));
 | |
| 	if (!bp)
 | |
| 		return ZFS_ERR_OUT_OF_MEMORY;
 | |
| 
 | |
| 	endian = dn->endian;
 | |
| 	for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
 | |
| 		idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
 | |
| 		*bp = bp_array[idx];
 | |
| 		if (bp_array != dn->dn.dn_blkptr) {
 | |
| 			free(bp_array);
 | |
| 			bp_array = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (BP_IS_HOLE(bp)) {
 | |
| 			size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
 | |
| 											dn->endian)
 | |
| 				<< SPA_MINBLOCKSHIFT;
 | |
| 			*buf = malloc(size);
 | |
| 			if (*buf) {
 | |
| 				err = ZFS_ERR_OUT_OF_MEMORY;
 | |
| 				break;
 | |
| 			}
 | |
| 			memset(*buf, 0, size);
 | |
| 			endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (level == 0) {
 | |
| 			err = zio_read(bp, endian, buf, 0, data);
 | |
| 			endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		err = zio_read(bp, endian, &tmpbuf, 0, data);
 | |
| 		endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
 | |
| 		if (err)
 | |
| 			break;
 | |
| 		bp_array = tmpbuf;
 | |
| 	}
 | |
| 	if (bp_array != dn->dn.dn_blkptr)
 | |
| 		free(bp_array);
 | |
| 	if (endian_out)
 | |
| 		*endian_out = endian;
 | |
| 
 | |
| 	free(bp);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mzap_lookup: Looks up property described by "name" and returns the value
 | |
|  * in "value".
 | |
|  */
 | |
| static int
 | |
| mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
 | |
| 			int objsize, char *name, uint64_t * value)
 | |
| {
 | |
| 	int i, chunks;
 | |
| 	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
 | |
| 
 | |
| 	chunks = objsize / MZAP_ENT_LEN - 1;
 | |
| 	for (i = 0; i < chunks; i++) {
 | |
| 		if (strcmp(mzap_ent[i].mze_name, name) == 0) {
 | |
| 			*value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
 | |
| 			return ZFS_ERR_NONE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printf("couldn't find '%s'\n", name);
 | |
| 	return ZFS_ERR_FILE_NOT_FOUND;
 | |
| }
 | |
| 
 | |
| static int
 | |
| mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
 | |
| 			 int (*hook)(const char *name,
 | |
| 						 uint64_t val,
 | |
| 						 struct zfs_data *data),
 | |
| 			 struct zfs_data *data)
 | |
| {
 | |
| 	int i, chunks;
 | |
| 	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
 | |
| 
 | |
| 	chunks = objsize / MZAP_ENT_LEN - 1;
 | |
| 	for (i = 0; i < chunks; i++) {
 | |
| 		if (hook(mzap_ent[i].mze_name,
 | |
| 				 zfs_to_cpu64(mzap_ent[i].mze_value, endian),
 | |
| 				 data))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static uint64_t
 | |
| zap_hash(uint64_t salt, const char *name)
 | |
| {
 | |
| 	static uint64_t table[256];
 | |
| 	const uint8_t *cp;
 | |
| 	uint8_t c;
 | |
| 	uint64_t crc = salt;
 | |
| 
 | |
| 	if (table[128] == 0) {
 | |
| 		uint64_t *ct = NULL;
 | |
| 		int i, j;
 | |
| 		for (i = 0; i < 256; i++) {
 | |
| 			for (ct = table + i, *ct = i, j = 8; j > 0; j--)
 | |
| 				*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
 | |
| 		crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
 | |
| 
 | |
| 	/*
 | |
| 	 * Only use 28 bits, since we need 4 bits in the cookie for the
 | |
| 	 * collision differentiator.  We MUST use the high bits, since
 | |
| 	 * those are the onces that we first pay attention to when
 | |
| 	 * chosing the bucket.
 | |
| 	 */
 | |
| 	crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
 | |
| 
 | |
| 	return crc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only to be used on 8-bit arrays.
 | |
|  * array_len is actual len in bytes (not encoded le_value_length).
 | |
|  * buf is null-terminated.
 | |
|  */
 | |
| /* XXX */
 | |
| static int
 | |
| zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
 | |
| 					 int blksft, int chunk, int array_len, const char *buf)
 | |
| {
 | |
| 	int bseen = 0;
 | |
| 
 | |
| 	while (bseen < array_len) {
 | |
| 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
 | |
| 		int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
 | |
| 
 | |
| 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (memcmp(la->la_array, buf + bseen, toread) != 0)
 | |
| 			break;
 | |
| 		chunk = zfs_to_cpu16(la->la_next, endian);
 | |
| 		bseen += toread;
 | |
| 	}
 | |
| 	return (bseen == array_len);
 | |
| }
 | |
| 
 | |
| /* XXX */
 | |
| static int
 | |
| zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
 | |
| 				   int chunk, int array_len, char *buf)
 | |
| {
 | |
| 	int bseen = 0;
 | |
| 
 | |
| 	while (bseen < array_len) {
 | |
| 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
 | |
| 		int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
 | |
| 
 | |
| 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
 | |
| 			/* Don't use errno because this error is to be ignored.  */
 | |
| 			return ZFS_ERR_BAD_FS;
 | |
| 
 | |
| 		memcpy(buf + bseen, la->la_array,  toread);
 | |
| 		chunk = zfs_to_cpu16(la->la_next, endian);
 | |
| 		bseen += toread;
 | |
| 	}
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
 | |
|  * value for the property "name".
 | |
|  *
 | |
|  */
 | |
| /* XXX */
 | |
| static int
 | |
| zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
 | |
| 				int blksft, uint64_t h,
 | |
| 				const char *name, uint64_t *value)
 | |
| {
 | |
| 	uint16_t chunk;
 | |
| 	struct zap_leaf_entry *le;
 | |
| 
 | |
| 	/* Verify if this is a valid leaf block */
 | |
| 	if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
 | |
| 		printf("invalid leaf type\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 	if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
 | |
| 		printf("invalid leaf magic\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
 | |
| 		 chunk != CHAIN_END; chunk = le->le_next) {
 | |
| 
 | |
| 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
 | |
| 			printf("invalid chunk number\n");
 | |
| 			return ZFS_ERR_BAD_FS;
 | |
| 		}
 | |
| 
 | |
| 		le = ZAP_LEAF_ENTRY(l, blksft, chunk);
 | |
| 
 | |
| 		/* Verify the chunk entry */
 | |
| 		if (le->le_type != ZAP_CHUNK_ENTRY) {
 | |
| 			printf("invalid chunk entry\n");
 | |
| 			return ZFS_ERR_BAD_FS;
 | |
| 		}
 | |
| 
 | |
| 		if (zfs_to_cpu64(le->le_hash, endian) != h)
 | |
| 			continue;
 | |
| 
 | |
| 		if (zap_leaf_array_equal(l, endian, blksft,
 | |
| 								 zfs_to_cpu16(le->le_name_chunk, endian),
 | |
| 								 zfs_to_cpu16(le->le_name_length, endian),
 | |
| 								 name)) {
 | |
| 			struct zap_leaf_array *la;
 | |
| 
 | |
| 			if (le->le_int_size != 8 || le->le_value_length != 1) {
 | |
| 				printf("invalid leaf chunk entry\n");
 | |
| 				return ZFS_ERR_BAD_FS;
 | |
| 			}
 | |
| 			/* get the uint64_t property value */
 | |
| 			la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
 | |
| 
 | |
| 			*value = be64_to_cpu(la->la_array64);
 | |
| 
 | |
| 			return ZFS_ERR_NONE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printf("couldn't find '%s'\n", name);
 | |
| 	return ZFS_ERR_FILE_NOT_FOUND;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Verify if this is a fat zap header block */
 | |
| static int
 | |
| zap_verify(zap_phys_t *zap)
 | |
| {
 | |
| 	if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
 | |
| 		printf("bad ZAP magic\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	if (zap->zap_flags != 0) {
 | |
| 		printf("bad ZAP flags\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	if (zap->zap_salt == 0) {
 | |
| 		printf("bad ZAP salt\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fat ZAP lookup
 | |
|  *
 | |
|  */
 | |
| /* XXX */
 | |
| static int
 | |
| fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
 | |
| 			char *name, uint64_t *value, struct zfs_data *data)
 | |
| {
 | |
| 	void *l;
 | |
| 	uint64_t hash, idx, blkid;
 | |
| 	int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
 | |
| 											zap_dnode->endian) << DNODE_SHIFT);
 | |
| 	int err;
 | |
| 	zfs_endian_t leafendian;
 | |
| 
 | |
| 	err = zap_verify(zap);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	hash = zap_hash(zap->zap_salt, name);
 | |
| 
 | |
| 	/* get block id from index */
 | |
| 	if (zap->zap_ptrtbl.zt_numblks != 0) {
 | |
| 		printf("external pointer tables not supported\n");
 | |
| 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
 | |
| 	}
 | |
| 	idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
 | |
| 	blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
 | |
| 
 | |
| 	/* Get the leaf block */
 | |
| 	if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
 | |
| 		printf("ZAP leaf is too small\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 	err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
 | |
| 	free(l);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* XXX */
 | |
| static int
 | |
| fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
 | |
| 			 int (*hook)(const char *name,
 | |
| 						 uint64_t val,
 | |
| 						 struct zfs_data *data),
 | |
| 			 struct zfs_data *data)
 | |
| {
 | |
| 	zap_leaf_phys_t *l;
 | |
| 	void *l_in;
 | |
| 	uint64_t idx, blkid;
 | |
| 	uint16_t chunk;
 | |
| 	int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
 | |
| 											zap_dnode->endian) << DNODE_SHIFT);
 | |
| 	int err;
 | |
| 	zfs_endian_t endian;
 | |
| 
 | |
| 	if (zap_verify(zap))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* get block id from index */
 | |
| 	if (zap->zap_ptrtbl.zt_numblks != 0) {
 | |
| 		printf("external pointer tables not supported\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Get the leaf block */
 | |
| 	if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
 | |
| 		printf("ZAP leaf is too small\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
 | |
| 		blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
 | |
| 
 | |
| 		err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
 | |
| 		l = l_in;
 | |
| 		if (err)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Verify if this is a valid leaf block */
 | |
| 		if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
 | |
| 			free(l);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
 | |
| 			free(l);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
 | |
| 			char *buf;
 | |
| 			struct zap_leaf_array *la;
 | |
| 			struct zap_leaf_entry *le;
 | |
| 			uint64_t val;
 | |
| 			le = ZAP_LEAF_ENTRY(l, blksft, chunk);
 | |
| 
 | |
| 			/* Verify the chunk entry */
 | |
| 			if (le->le_type != ZAP_CHUNK_ENTRY)
 | |
| 				continue;
 | |
| 
 | |
| 			buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
 | |
| 						 + 1);
 | |
| 			if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
 | |
| 								   le->le_name_length, buf)) {
 | |
| 				free(buf);
 | |
| 				continue;
 | |
| 			}
 | |
| 			buf[le->le_name_length] = 0;
 | |
| 
 | |
| 			if (le->le_int_size != 8
 | |
| 				|| zfs_to_cpu16(le->le_value_length, endian) != 1)
 | |
| 				continue;
 | |
| 
 | |
| 			/* get the uint64_t property value */
 | |
| 			la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
 | |
| 			val = be64_to_cpu(la->la_array64);
 | |
| 			if (hook(buf, val, data))
 | |
| 				return 1;
 | |
| 			free(buf);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Read in the data of a zap object and find the value for a matching
 | |
|  * property name.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
 | |
| 		   struct zfs_data *data)
 | |
| {
 | |
| 	uint64_t block_type;
 | |
| 	int size;
 | |
| 	void *zapbuf;
 | |
| 	int err;
 | |
| 	zfs_endian_t endian;
 | |
| 
 | |
| 	/* Read in the first block of the zap object data. */
 | |
| 	size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
 | |
| 							 zap_dnode->endian) << SPA_MINBLOCKSHIFT;
 | |
| 	err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
 | |
| 
 | |
| 	if (block_type == ZBT_MICRO) {
 | |
| 		err = (mzap_lookup(zapbuf, endian, size, name, val));
 | |
| 		free(zapbuf);
 | |
| 		return err;
 | |
| 	} else if (block_type == ZBT_HEADER) {
 | |
| 		/* this is a fat zap */
 | |
| 		err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
 | |
| 		free(zapbuf);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	printf("unknown ZAP type\n");
 | |
| 	free(zapbuf);
 | |
| 	return ZFS_ERR_BAD_FS;
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_iterate(dnode_end_t *zap_dnode,
 | |
| 			int (*hook)(const char *name, uint64_t val,
 | |
| 						struct zfs_data *data),
 | |
| 			struct zfs_data *data)
 | |
| {
 | |
| 	uint64_t block_type;
 | |
| 	int size;
 | |
| 	void *zapbuf;
 | |
| 	int err;
 | |
| 	int ret;
 | |
| 	zfs_endian_t endian;
 | |
| 
 | |
| 	/* Read in the first block of the zap object data. */
 | |
| 	size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
 | |
| 	err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
 | |
| 	if (err)
 | |
| 		return 0;
 | |
| 	block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
 | |
| 
 | |
| 	if (block_type == ZBT_MICRO) {
 | |
| 		ret = mzap_iterate(zapbuf, endian, size, hook, data);
 | |
| 		free(zapbuf);
 | |
| 		return ret;
 | |
| 	} else if (block_type == ZBT_HEADER) {
 | |
| 		/* this is a fat zap */
 | |
| 		ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
 | |
| 		free(zapbuf);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	printf("unknown ZAP type\n");
 | |
| 	free(zapbuf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Get the dnode of an object number from the metadnode of an object set.
 | |
|  *
 | |
|  * Input
 | |
|  *	mdn - metadnode to get the object dnode
 | |
|  *	objnum - object number for the object dnode
 | |
|  *	buf - data buffer that holds the returning dnode
 | |
|  */
 | |
| static int
 | |
| dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
 | |
| 		  dnode_end_t *buf, struct zfs_data *data)
 | |
| {
 | |
| 	uint64_t blkid, blksz;	/* the block id this object dnode is in */
 | |
| 	int epbs;			/* shift of number of dnodes in a block */
 | |
| 	int idx;			/* index within a block */
 | |
| 	void *dnbuf;
 | |
| 	int err;
 | |
| 	zfs_endian_t endian;
 | |
| 
 | |
| 	blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
 | |
| 							  mdn->endian) << SPA_MINBLOCKSHIFT;
 | |
| 
 | |
| 	epbs = zfs_log2(blksz) - DNODE_SHIFT;
 | |
| 	blkid = objnum >> epbs;
 | |
| 	idx = objnum & ((1 << epbs) - 1);
 | |
| 
 | |
| 	if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
 | |
| 										  sizeof(*mdn)) == 0
 | |
| 		&& objnum >= data->dnode_start && objnum < data->dnode_end) {
 | |
| 		memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
 | |
| 		buf->endian = data->dnode_endian;
 | |
| 		if (type && buf->dn.dn_type != type)  {
 | |
| 			printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
 | |
| 			return ZFS_ERR_BAD_FS;
 | |
| 		}
 | |
| 		return ZFS_ERR_NONE;
 | |
| 	}
 | |
| 
 | |
| 	err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	free(data->dnode_buf);
 | |
| 	free(data->dnode_mdn);
 | |
| 	data->dnode_mdn = malloc(sizeof(*mdn));
 | |
| 	if (!data->dnode_mdn) {
 | |
| 		data->dnode_buf = 0;
 | |
| 	} else {
 | |
| 		memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
 | |
| 		data->dnode_buf = dnbuf;
 | |
| 		data->dnode_start = blkid << epbs;
 | |
| 		data->dnode_end = (blkid + 1) << epbs;
 | |
| 		data->dnode_endian = endian;
 | |
| 	}
 | |
| 
 | |
| 	memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
 | |
| 	buf->endian = endian;
 | |
| 	if (type && buf->dn.dn_type != type) {
 | |
| 		printf("incorrect dnode type\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the file dnode for a given file name where mdn is the meta dnode
 | |
|  * for this ZFS object set. When found, place the file dnode in dn.
 | |
|  * The 'path' argument will be mangled.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
 | |
| 			   struct zfs_data *data)
 | |
| {
 | |
| 	uint64_t objnum, version;
 | |
| 	char *cname, ch;
 | |
| 	int err = ZFS_ERR_NONE;
 | |
| 	char *path, *path_buf;
 | |
| 	struct dnode_chain {
 | |
| 		struct dnode_chain *next;
 | |
| 		dnode_end_t dn;
 | |
| 	};
 | |
| 	struct dnode_chain *dnode_path = 0, *dn_new, *root;
 | |
| 
 | |
| 	dn_new = malloc(sizeof(*dn_new));
 | |
| 	if (!dn_new)
 | |
| 		return ZFS_ERR_OUT_OF_MEMORY;
 | |
| 	dn_new->next = 0;
 | |
| 	dnode_path = root = dn_new;
 | |
| 
 | |
| 	err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
 | |
| 					&(dnode_path->dn), data);
 | |
| 	if (err) {
 | |
| 		free(dn_new);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
 | |
| 	if (err) {
 | |
| 		free(dn_new);
 | |
| 		return err;
 | |
| 	}
 | |
| 	if (version > ZPL_VERSION) {
 | |
| 		free(dn_new);
 | |
| 		printf("too new ZPL version\n");
 | |
| 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
 | |
| 	}
 | |
| 
 | |
| 	err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
 | |
| 	if (err) {
 | |
| 		free(dn_new);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
 | |
| 	if (err) {
 | |
| 		free(dn_new);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	path = path_buf = strdup(path_in);
 | |
| 	if (!path_buf) {
 | |
| 		free(dn_new);
 | |
| 		return ZFS_ERR_OUT_OF_MEMORY;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		/* skip leading slashes */
 | |
| 		while (*path == '/')
 | |
| 			path++;
 | |
| 		if (!*path)
 | |
| 			break;
 | |
| 		/* get the next component name */
 | |
| 		cname = path;
 | |
| 		while (*path && *path != '/')
 | |
| 			path++;
 | |
| 		/* Skip dot.  */
 | |
| 		if (cname + 1 == path && cname[0] == '.')
 | |
| 			continue;
 | |
| 		/* Handle double dot.  */
 | |
| 		if (cname + 2 == path && cname[0] == '.' && cname[1] == '.')  {
 | |
| 			if (dn_new->next) {
 | |
| 				dn_new = dnode_path;
 | |
| 				dnode_path = dn_new->next;
 | |
| 				free(dn_new);
 | |
| 			} else {
 | |
| 				printf("can't resolve ..\n");
 | |
| 				err = ZFS_ERR_FILE_NOT_FOUND;
 | |
| 				break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ch = *path;
 | |
| 		*path = 0;		/* ensure null termination */
 | |
| 
 | |
| 		if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
 | |
| 			free(path_buf);
 | |
| 			printf("not a directory\n");
 | |
| 			return ZFS_ERR_BAD_FILE_TYPE;
 | |
| 		}
 | |
| 		err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 
 | |
| 		dn_new = malloc(sizeof(*dn_new));
 | |
| 		if (!dn_new) {
 | |
| 			err = ZFS_ERR_OUT_OF_MEMORY;
 | |
| 			break;
 | |
| 		}
 | |
| 		dn_new->next = dnode_path;
 | |
| 		dnode_path = dn_new;
 | |
| 
 | |
| 		objnum = ZFS_DIRENT_OBJ(objnum);
 | |
| 		err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 
 | |
| 		*path = ch;
 | |
| 	}
 | |
| 
 | |
| 	if (!err)
 | |
| 		memcpy(dn, &(dnode_path->dn), sizeof(*dn));
 | |
| 
 | |
| 	while (dnode_path) {
 | |
| 		dn_new = dnode_path->next;
 | |
| 		free(dnode_path);
 | |
| 		dnode_path = dn_new;
 | |
| 	}
 | |
| 	free(path_buf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
 | |
|  * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
 | |
|  * of pool/rootfs.
 | |
|  *
 | |
|  * If no fsname and no obj are given, return the DSL_DIR metadnode.
 | |
|  * If fsname is given, return its metadnode and its matching object number.
 | |
|  * If only obj is given, return the metadnode for this object number.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
 | |
| 					 dnode_end_t *mdn, struct zfs_data *data)
 | |
| {
 | |
| 	uint64_t objnum;
 | |
| 	int err;
 | |
| 
 | |
| 	err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
 | |
| 					DMU_OT_OBJECT_DIRECTORY, mdn, data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	while (*fsname) {
 | |
| 		uint64_t childobj;
 | |
| 		char *cname, ch;
 | |
| 
 | |
| 		while (*fsname == '/')
 | |
| 			fsname++;
 | |
| 
 | |
| 		if (!*fsname || *fsname == '@')
 | |
| 			break;
 | |
| 
 | |
| 		cname = fsname;
 | |
| 		while (*fsname && !isspace(*fsname) && *fsname != '/')
 | |
| 			fsname++;
 | |
| 		ch = *fsname;
 | |
| 		*fsname = 0;
 | |
| 
 | |
| 		childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
 | |
| 		err = dnode_get(mosmdn, childobj,
 | |
| 						DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		err = zap_lookup(mdn, cname, &objnum, data);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		*fsname = ch;
 | |
| 	}
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| static int
 | |
| make_mdn(dnode_end_t *mdn, struct zfs_data *data)
 | |
| {
 | |
| 	void *osp;
 | |
| 	blkptr_t *bp;
 | |
| 	size_t ospsize;
 | |
| 	int err;
 | |
| 
 | |
| 	bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
 | |
| 	err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (ospsize < OBJSET_PHYS_SIZE_V14) {
 | |
| 		free(osp);
 | |
| 		printf("too small osp\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
 | |
| 	memmove((char *) &(mdn->dn),
 | |
| 			(char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
 | |
| 	free(osp);
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| static int
 | |
| dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
 | |
| 				   uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
 | |
| 				   struct zfs_data *data)
 | |
| {
 | |
| 	char *fsname, *snapname;
 | |
| 	const char *ptr_at, *filename;
 | |
| 	uint64_t headobj;
 | |
| 	int err;
 | |
| 
 | |
| 	ptr_at = strchr(fullpath, '@');
 | |
| 	if (!ptr_at) {
 | |
| 		*isfs = 1;
 | |
| 		filename = 0;
 | |
| 		snapname = 0;
 | |
| 		fsname = strdup(fullpath);
 | |
| 	} else {
 | |
| 		const char *ptr_slash = strchr(ptr_at, '/');
 | |
| 
 | |
| 		*isfs = 0;
 | |
| 		fsname = malloc(ptr_at - fullpath + 1);
 | |
| 		if (!fsname)
 | |
| 			return ZFS_ERR_OUT_OF_MEMORY;
 | |
| 		memcpy(fsname, fullpath, ptr_at - fullpath);
 | |
| 		fsname[ptr_at - fullpath] = 0;
 | |
| 		if (ptr_at[1] && ptr_at[1] != '/') {
 | |
| 			snapname = malloc(ptr_slash - ptr_at);
 | |
| 			if (!snapname) {
 | |
| 				free(fsname);
 | |
| 				return ZFS_ERR_OUT_OF_MEMORY;
 | |
| 			}
 | |
| 			memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
 | |
| 			snapname[ptr_slash - ptr_at - 1] = 0;
 | |
| 		} else {
 | |
| 			snapname = 0;
 | |
| 		}
 | |
| 		if (ptr_slash)
 | |
| 			filename = ptr_slash;
 | |
| 		else
 | |
| 			filename = "/";
 | |
| 		printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
 | |
| 			   fsname, snapname, filename);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
 | |
| 
 | |
| 	if (err) {
 | |
| 		free(fsname);
 | |
| 		free(snapname);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
 | |
| 
 | |
| 	err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
 | |
| 	if (err) {
 | |
| 		free(fsname);
 | |
| 		free(snapname);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (snapname) {
 | |
| 		uint64_t snapobj;
 | |
| 
 | |
| 		snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
 | |
| 
 | |
| 		err = dnode_get(&(data->mos), snapobj,
 | |
| 						DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
 | |
| 		if (!err)
 | |
| 			err = zap_lookup(mdn, snapname, &headobj, data);
 | |
| 		if (!err)
 | |
| 			err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
 | |
| 		if (err) {
 | |
| 			free(fsname);
 | |
| 			free(snapname);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (mdnobj)
 | |
| 		*mdnobj = headobj;
 | |
| 
 | |
| 	make_mdn(mdn, data);
 | |
| 
 | |
| 	if (*isfs) {
 | |
| 		free(fsname);
 | |
| 		free(snapname);
 | |
| 		return ZFS_ERR_NONE;
 | |
| 	}
 | |
| 	err = dnode_get_path(mdn, filename, dn, data);
 | |
| 	free(fsname);
 | |
| 	free(snapname);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For a given XDR packed nvlist, verify the first 4 bytes and move on.
 | |
|  *
 | |
|  * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
 | |
|  *
 | |
|  *		encoding method/host endian		(4 bytes)
 | |
|  *		nvl_version						(4 bytes)
 | |
|  *		nvl_nvflag						(4 bytes)
 | |
|  *	encoded nvpairs:
 | |
|  *		encoded size of the nvpair		(4 bytes)
 | |
|  *		decoded size of the nvpair		(4 bytes)
 | |
|  *		name string size				(4 bytes)
 | |
|  *		name string data				(sizeof(NV_ALIGN4(string))
 | |
|  *		data type						(4 bytes)
 | |
|  *		# of elements in the nvpair		(4 bytes)
 | |
|  *		data
 | |
|  *		2 zero's for the last nvpair
 | |
|  *		(end of the entire list)	(8 bytes)
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static int
 | |
| nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
 | |
| 				  size_t *size_out, size_t *nelm_out)
 | |
| {
 | |
| 	int name_len, type, encode_size;
 | |
| 	char *nvpair, *nvp_name;
 | |
| 
 | |
| 	/* Verify if the 1st and 2nd byte in the nvlist are valid. */
 | |
| 	/* NOTE: independently of what endianness header announces all
 | |
| 	   subsequent values are big-endian.  */
 | |
| 	if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
 | |
| 									   && nvlist[1] != NV_BIG_ENDIAN)) {
 | |
| 		printf("zfs incorrect nvlist header\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	/* skip the header, nvl_version, and nvl_nvflag */
 | |
| 	nvlist = nvlist + 4 * 3;
 | |
| 	/*
 | |
| 	 * Loop thru the nvpair list
 | |
| 	 * The XDR representation of an integer is in big-endian byte order.
 | |
| 	 */
 | |
| 	while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
 | |
| 		int nelm;
 | |
| 
 | |
| 		nvpair = nvlist + 4 * 2;	/* skip the encode/decode size */
 | |
| 
 | |
| 		name_len = be32_to_cpu(*(uint32_t *) nvpair);
 | |
| 		nvpair += 4;
 | |
| 
 | |
| 		nvp_name = nvpair;
 | |
| 		nvpair = nvpair + ((name_len + 3) & ~3);	/* align */
 | |
| 
 | |
| 		type = be32_to_cpu(*(uint32_t *) nvpair);
 | |
| 		nvpair += 4;
 | |
| 
 | |
| 		nelm = be32_to_cpu(*(uint32_t *) nvpair);
 | |
| 		if (nelm < 1) {
 | |
| 			printf("empty nvpair\n");
 | |
| 			return ZFS_ERR_BAD_FS;
 | |
| 		}
 | |
| 
 | |
| 		nvpair += 4;
 | |
| 
 | |
| 		if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
 | |
| 			*val = nvpair;
 | |
| 			*size_out = encode_size;
 | |
| 			if (nelm_out)
 | |
| 				*nelm_out = nelm;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		nvlist += encode_size;	/* goto the next nvpair */
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
 | |
| {
 | |
| 	char *nvpair;
 | |
| 	size_t size;
 | |
| 	int found;
 | |
| 
 | |
| 	found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
 | |
| 	if (!found)
 | |
| 		return 0;
 | |
| 	if (size < sizeof(uint64_t)) {
 | |
| 		printf("invalid uint64\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	*out = be64_to_cpu(*(uint64_t *) nvpair);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| char *
 | |
| zfs_nvlist_lookup_string(char *nvlist, char *name)
 | |
| {
 | |
| 	char *nvpair;
 | |
| 	char *ret;
 | |
| 	size_t slen;
 | |
| 	size_t size;
 | |
| 	int found;
 | |
| 
 | |
| 	found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
 | |
| 	if (!found)
 | |
| 		return 0;
 | |
| 	if (size < 4) {
 | |
| 		printf("invalid string\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	slen = be32_to_cpu(*(uint32_t *) nvpair);
 | |
| 	if (slen > size - 4)
 | |
| 		slen = size - 4;
 | |
| 	ret = malloc(slen + 1);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 	memcpy(ret, nvpair + 4, slen);
 | |
| 	ret[slen] = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| char *
 | |
| zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
 | |
| {
 | |
| 	char *nvpair;
 | |
| 	char *ret;
 | |
| 	size_t size;
 | |
| 	int found;
 | |
| 
 | |
| 	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
 | |
| 							  &size, 0);
 | |
| 	if (!found)
 | |
| 		return 0;
 | |
| 	ret = calloc(1, size + 3 * sizeof(uint32_t));
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 	memcpy(ret, nvlist, sizeof(uint32_t));
 | |
| 
 | |
| 	memcpy(ret + sizeof(uint32_t), nvpair, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
 | |
| {
 | |
| 	char *nvpair;
 | |
| 	size_t nelm, size;
 | |
| 	int found;
 | |
| 
 | |
| 	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
 | |
| 							  &size, &nelm);
 | |
| 	if (!found)
 | |
| 		return -1;
 | |
| 	return nelm;
 | |
| }
 | |
| 
 | |
| char *
 | |
| zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
 | |
| 									size_t index)
 | |
| {
 | |
| 	char *nvpair, *nvpairptr;
 | |
| 	int found;
 | |
| 	char *ret;
 | |
| 	size_t size;
 | |
| 	unsigned i;
 | |
| 	size_t nelm;
 | |
| 
 | |
| 	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
 | |
| 							  &size, &nelm);
 | |
| 	if (!found)
 | |
| 		return 0;
 | |
| 	if (index >= nelm) {
 | |
| 		printf("trying to lookup past nvlist array\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	nvpairptr = nvpair;
 | |
| 
 | |
| 	for (i = 0; i < index; i++) {
 | |
| 		uint32_t encode_size;
 | |
| 
 | |
| 		/* skip the header, nvl_version, and nvl_nvflag */
 | |
| 		nvpairptr = nvpairptr + 4 * 2;
 | |
| 
 | |
| 		while (nvpairptr < nvpair + size
 | |
| 			   && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
 | |
| 			nvlist += encode_size;	/* goto the next nvpair */
 | |
| 
 | |
| 		nvlist = nvlist + 4 * 2;	/* skip the ending 2 zeros - 8 bytes */
 | |
| 	}
 | |
| 
 | |
| 	if (nvpairptr >= nvpair + size
 | |
| 		|| nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
 | |
| 		>= nvpair + size) {
 | |
| 		printf("incorrect nvlist array\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
 | |
| 				 + 3 * sizeof(uint32_t));
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 	memcpy(ret, nvlist, sizeof(uint32_t));
 | |
| 
 | |
| 	memcpy(ret + sizeof(uint32_t), nvpairptr, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	*nvlist = malloc(VDEV_PHYS_SIZE);
 | |
| 	/* Read in the vdev name-value pair list (112K). */
 | |
| 	err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
 | |
| 	if (err) {
 | |
| 		free(*nvlist);
 | |
| 		*nvlist = 0;
 | |
| 		return err;
 | |
| 	}
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the disk label information and retrieve needed vdev name-value pairs.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| check_pool_label(struct zfs_data *data)
 | |
| {
 | |
| 	uint64_t pool_state;
 | |
| 	char *nvlist;			/* for the pool */
 | |
| 	char *vdevnvlist;		/* for the vdev */
 | |
| 	uint64_t diskguid;
 | |
| 	uint64_t version;
 | |
| 	int found;
 | |
| 	int err;
 | |
| 
 | |
| 	err = int_zfs_fetch_nvlist(data, &nvlist);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
 | |
| 										  &pool_state);
 | |
| 	if (!found) {
 | |
| 		free(nvlist);
 | |
| 		printf("zfs pool state not found\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	if (pool_state == POOL_STATE_DESTROYED) {
 | |
| 		free(nvlist);
 | |
| 		printf("zpool is marked as destroyed\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	data->label_txg = 0;
 | |
| 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
 | |
| 										  &data->label_txg);
 | |
| 	if (!found) {
 | |
| 		free(nvlist);
 | |
| 		printf("zfs pool txg not found\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	/* not an active device */
 | |
| 	if (data->label_txg == 0) {
 | |
| 		free(nvlist);
 | |
| 		printf("zpool is not active\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
 | |
| 										  &version);
 | |
| 	if (!found) {
 | |
| 		free(nvlist);
 | |
| 		printf("zpool config version not found\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	if (version > SPA_VERSION) {
 | |
| 		free(nvlist);
 | |
| 		printf("SPA version too new %llu > %llu\n",
 | |
| 			   (unsigned long long) version,
 | |
| 			   (unsigned long long) SPA_VERSION);
 | |
| 		return ZFS_ERR_NOT_IMPLEMENTED_YET;
 | |
| 	}
 | |
| 
 | |
| 	vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
 | |
| 	if (!vdevnvlist) {
 | |
| 		free(nvlist);
 | |
| 		printf("ZFS config vdev tree not found\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
 | |
| 										  &data->vdev_ashift);
 | |
| 	free(vdevnvlist);
 | |
| 	if (!found) {
 | |
| 		free(nvlist);
 | |
| 		printf("ZPOOL config ashift not found\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
 | |
| 	if (!found) {
 | |
| 		free(nvlist);
 | |
| 		printf("ZPOOL config guid not found\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
 | |
| 	if (!found) {
 | |
| 		free(nvlist);
 | |
| 		printf("ZPOOL config pool guid not found\n");
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	}
 | |
| 
 | |
| 	free(nvlist);
 | |
| 
 | |
| 	printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
 | |
| 		   (unsigned long long) data->pool_guid,
 | |
| 		   (unsigned long long) data->pool_guid,
 | |
| 		   (unsigned long long) diskguid,
 | |
| 		   (unsigned long long) diskguid,
 | |
| 		   (unsigned long long) data->label_txg,
 | |
| 		   (unsigned long long) version,
 | |
| 		   (unsigned long long) data->vdev_ashift);
 | |
| 
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vdev_label_start returns the physical disk offset (in bytes) of
 | |
|  * label "l".
 | |
|  */
 | |
| static uint64_t vdev_label_start(uint64_t psize, int l)
 | |
| {
 | |
| 	return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
 | |
| 										0 : psize -
 | |
| 										VDEV_LABELS * sizeof(vdev_label_t)));
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_unmount(struct zfs_data *data)
 | |
| {
 | |
| 	free(data->dnode_buf);
 | |
| 	free(data->dnode_mdn);
 | |
| 	free(data->file_buf);
 | |
| 	free(data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
 | |
|  * to the memory address MOS.
 | |
|  *
 | |
|  */
 | |
| struct zfs_data *
 | |
| zfs_mount(device_t dev)
 | |
| {
 | |
| 	struct zfs_data *data = 0;
 | |
| 	int label = 0, bestlabel = -1;
 | |
| 	char *ub_array;
 | |
| 	uberblock_t *ubbest;
 | |
| 	uberblock_t *ubcur = NULL;
 | |
| 	void *osp = 0;
 | |
| 	size_t ospsize;
 | |
| 	int err;
 | |
| 
 | |
| 	data = malloc(sizeof(*data));
 | |
| 	if (!data)
 | |
| 		return 0;
 | |
| 	memset(data, 0, sizeof(*data));
 | |
| 
 | |
| 	ub_array = malloc(VDEV_UBERBLOCK_RING);
 | |
| 	if (!ub_array) {
 | |
| 		zfs_unmount(data);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ubbest = malloc(sizeof(*ubbest));
 | |
| 	if (!ubbest) {
 | |
| 		free(ub_array);
 | |
| 		zfs_unmount(data);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	memset(ubbest, 0, sizeof(*ubbest));
 | |
| 
 | |
| 	/*
 | |
| 	 * some eltorito stacks don't give us a size and
 | |
| 	 * we end up setting the size to MAXUINT, further
 | |
| 	 * some of these devices stop working once a single
 | |
| 	 * read past the end has been issued. Checking
 | |
| 	 * for a maximum part_length and skipping the backup
 | |
| 	 * labels at the end of the slice/partition/device
 | |
| 	 * avoids breaking down on such devices.
 | |
| 	 */
 | |
| 	const int vdevnum =
 | |
| 		dev->part_length == 0 ?
 | |
| 		VDEV_LABELS / 2 : VDEV_LABELS;
 | |
| 
 | |
| 	/* Size in bytes of the device (disk or partition) aligned to label size*/
 | |
| 	uint64_t device_size =
 | |
| 		dev->part_length << SECTOR_BITS;
 | |
| 
 | |
| 	const uint64_t alignedbytes =
 | |
| 		P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
 | |
| 
 | |
| 	for (label = 0; label < vdevnum; label++) {
 | |
| 		uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
 | |
| 		uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
 | |
| 
 | |
| 		debug("zfs reading label %d at sector %llu (byte %llu)\n",
 | |
| 			  label, (unsigned long long) labelstart,
 | |
| 			  (unsigned long long) labelstartbytes);
 | |
| 
 | |
| 		data->vdev_phys_sector = labelstart +
 | |
| 			((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
 | |
| 
 | |
| 		err = check_pool_label(data);
 | |
| 		if (err) {
 | |
| 			printf("zfs error checking label %d\n", label);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Read in the uberblock ring (128K). */
 | |
| 		err = zfs_devread(data->vdev_phys_sector  +
 | |
| 						  (VDEV_PHYS_SIZE >> SECTOR_BITS),
 | |
| 						  0, VDEV_UBERBLOCK_RING, ub_array);
 | |
| 		if (err) {
 | |
| 			printf("zfs error reading uberblock ring for label %d\n", label);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ubcur = find_bestub(ub_array, data);
 | |
| 		if (!ubcur) {
 | |
| 			printf("zfs No good uberblocks found in label %d\n", label);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
 | |
| 			/* Looks like the block is good, so use it.*/
 | |
| 			memcpy(ubbest, ubcur, sizeof(*ubbest));
 | |
| 			bestlabel = label;
 | |
| 			debug("zfs Current best uberblock found in label %d\n", label);
 | |
| 		}
 | |
| 	}
 | |
| 	free(ub_array);
 | |
| 
 | |
| 	/* We zero'd the structure to begin with.  If we never assigned to it,
 | |
| 	   magic will still be zero. */
 | |
| 	if (!ubbest->ub_magic) {
 | |
| 		printf("couldn't find a valid ZFS label\n");
 | |
| 		zfs_unmount(data);
 | |
| 		free(ubbest);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
 | |
| 
 | |
| 	zfs_endian_t ub_endian =
 | |
| 		zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
 | |
| 		? LITTLE_ENDIAN : BIG_ENDIAN;
 | |
| 
 | |
| 	debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
 | |
| 
 | |
| 	err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
 | |
| 
 | |
| 	if (err) {
 | |
| 		printf("couldn't zio_read object directory\n");
 | |
| 		zfs_unmount(data);
 | |
| 		free(osp);
 | |
| 		free(ubbest);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ospsize < OBJSET_PHYS_SIZE_V14) {
 | |
| 		printf("osp too small\n");
 | |
| 		zfs_unmount(data);
 | |
| 		free(osp);
 | |
| 		free(ubbest);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Got the MOS. Save it at the memory addr MOS. */
 | |
| 	memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
 | |
| 	data->mos.endian =
 | |
| 		(zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
 | |
| 	memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
 | |
| 
 | |
| 	free(osp);
 | |
| 	free(ubbest);
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_fetch_nvlist(device_t dev, char **nvlist)
 | |
| {
 | |
| 	struct zfs_data *zfs;
 | |
| 	int err;
 | |
| 
 | |
| 	zfs = zfs_mount(dev);
 | |
| 	if (!zfs)
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 	err = int_zfs_fetch_nvlist(zfs, nvlist);
 | |
| 	zfs_unmount(zfs);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * zfs_open() locates a file in the rootpool by following the
 | |
|  * MOS and places the dnode of the file in the memory address DNODE.
 | |
|  */
 | |
| int
 | |
| zfs_open(struct zfs_file *file, const char *fsfilename)
 | |
| {
 | |
| 	struct zfs_data *data;
 | |
| 	int err;
 | |
| 	int isfs;
 | |
| 
 | |
| 	data = zfs_mount(file->device);
 | |
| 	if (!data)
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 
 | |
| 	err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
 | |
| 							 &(data->dnode), &isfs, data);
 | |
| 	if (err) {
 | |
| 		zfs_unmount(data);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	if (isfs) {
 | |
| 		zfs_unmount(data);
 | |
| 		printf("Missing @ or / separator\n");
 | |
| 		return ZFS_ERR_FILE_NOT_FOUND;
 | |
| 	}
 | |
| 
 | |
| 	/* We found the dnode for this file. Verify if it is a plain file. */
 | |
| 	if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
 | |
| 		zfs_unmount(data);
 | |
| 		printf("not a file\n");
 | |
| 		return ZFS_ERR_BAD_FILE_TYPE;
 | |
| 	}
 | |
| 
 | |
| 	/* get the file size and set the file position to 0 */
 | |
| 
 | |
| 	/*
 | |
| 	 * For DMU_OT_SA we will need to locate the SIZE attribute
 | |
| 	 * attribute, which could be either in the bonus buffer
 | |
| 	 * or the "spill" block.
 | |
| 	 */
 | |
| 	if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
 | |
| 		void *sahdrp;
 | |
| 		int hdrsize;
 | |
| 
 | |
| 		if (data->dnode.dn.dn_bonuslen != 0) {
 | |
| 			sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
 | |
| 		} else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 | |
| 			blkptr_t *bp = &data->dnode.dn.dn_spill;
 | |
| 
 | |
| 			err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		} else {
 | |
| 			printf("filesystem is corrupt :(\n");
 | |
| 			return ZFS_ERR_BAD_FS;
 | |
| 		}
 | |
| 
 | |
| 		hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
 | |
| 		file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
 | |
| 		if ((data->dnode.dn.dn_bonuslen == 0) &&
 | |
| 			(data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR))
 | |
| 			free(sahdrp);
 | |
| 	} else {
 | |
| 		file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
 | |
| 	}
 | |
| 
 | |
| 	file->data = data;
 | |
| 	file->offset = 0;
 | |
| 
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| zfs_read(zfs_file_t file, char *buf, uint64_t len)
 | |
| {
 | |
| 	struct zfs_data *data = (struct zfs_data *) file->data;
 | |
| 	int blksz, movesize;
 | |
| 	uint64_t length;
 | |
| 	int64_t red;
 | |
| 	int err;
 | |
| 
 | |
| 	if (data->file_buf == NULL) {
 | |
| 		data->file_buf = malloc(SPA_MAXBLOCKSIZE);
 | |
| 		if (!data->file_buf)
 | |
| 			return -1;
 | |
| 		data->file_start = data->file_end = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If offset is in memory, move it into the buffer provided and return.
 | |
| 	 */
 | |
| 	if (file->offset >= data->file_start
 | |
| 		&& file->offset + len <= data->file_end) {
 | |
| 		memmove(buf, data->file_buf + file->offset - data->file_start,
 | |
| 				len);
 | |
| 		return len;
 | |
| 	}
 | |
| 
 | |
| 	blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
 | |
| 							  data->dnode.endian) << SPA_MINBLOCKSHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Entire Dnode is too big to fit into the space available.	 We
 | |
| 	 * will need to read it in chunks.	This could be optimized to
 | |
| 	 * read in as large a chunk as there is space available, but for
 | |
| 	 * now, this only reads in one data block at a time.
 | |
| 	 */
 | |
| 	length = len;
 | |
| 	red = 0;
 | |
| 	while (length) {
 | |
| 		void *t;
 | |
| 		/*
 | |
| 		 * Find requested blkid and the offset within that block.
 | |
| 		 */
 | |
| 		uint64_t blkid = file->offset + red;
 | |
| 		blkid = do_div(blkid, blksz);
 | |
| 		free(data->file_buf);
 | |
| 		data->file_buf = 0;
 | |
| 
 | |
| 		err = dmu_read(&(data->dnode), blkid, &t,
 | |
| 					   0, data);
 | |
| 		data->file_buf = t;
 | |
| 		if (err)
 | |
| 			return -1;
 | |
| 
 | |
| 		data->file_start = blkid * blksz;
 | |
| 		data->file_end = data->file_start + blksz;
 | |
| 
 | |
| 		movesize = min(length, data->file_end - (int)file->offset - red);
 | |
| 
 | |
| 		memmove(buf, data->file_buf + file->offset + red
 | |
| 				- data->file_start, movesize);
 | |
| 		buf += movesize;
 | |
| 		length -= movesize;
 | |
| 		red += movesize;
 | |
| 	}
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_close(zfs_file_t file)
 | |
| {
 | |
| 	zfs_unmount((struct zfs_data *) file->data);
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_getmdnobj(device_t dev, const char *fsfilename,
 | |
| 				   uint64_t *mdnobj)
 | |
| {
 | |
| 	struct zfs_data *data;
 | |
| 	int err;
 | |
| 	int isfs;
 | |
| 
 | |
| 	data = zfs_mount(dev);
 | |
| 	if (!data)
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 
 | |
| 	err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
 | |
| 							 &(data->dnode), &isfs, data);
 | |
| 	zfs_unmount(data);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void
 | |
| fill_fs_info(struct zfs_dirhook_info *info,
 | |
| 			 dnode_end_t mdn, struct zfs_data *data)
 | |
| {
 | |
| 	int err;
 | |
| 	dnode_end_t dn;
 | |
| 	uint64_t objnum;
 | |
| 	uint64_t headobj;
 | |
| 
 | |
| 	memset(info, 0, sizeof(*info));
 | |
| 
 | |
| 	info->dir = 1;
 | |
| 
 | |
| 	if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
 | |
| 		headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
 | |
| 
 | |
| 		err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
 | |
| 		if (err) {
 | |
| 			printf("zfs failed here 1\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	make_mdn(&mdn, data);
 | |
| 	err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
 | |
| 					&dn, data);
 | |
| 	if (err) {
 | |
| 		printf("zfs failed here 2\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
 | |
| 	if (err) {
 | |
| 		printf("zfs failed here 3\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	err = dnode_get(&mdn, objnum, 0, &dn, data);
 | |
| 	if (err) {
 | |
| 		printf("zfs failed here 4\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	info->mtimeset = 1;
 | |
| 	info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
 | |
| {
 | |
| 	struct zfs_dirhook_info info;
 | |
| 	dnode_end_t dn;
 | |
| 
 | |
| 	memset(&info, 0, sizeof(info));
 | |
| 
 | |
| 	dnode_get(&(data->mdn), val, 0, &dn, data);
 | |
| 	info.mtimeset = 1;
 | |
| 	info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
 | |
| 	info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
 | |
| 	debug("zfs type=%d, name=%s\n",
 | |
| 		  (int)dn.dn.dn_type, (char *)name);
 | |
| 	if (!data->userhook)
 | |
| 		return 0;
 | |
| 	return data->userhook(name, &info);
 | |
| }
 | |
| 
 | |
| static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
 | |
| {
 | |
| 	struct zfs_dirhook_info info;
 | |
| 	dnode_end_t mdn;
 | |
| 	int err;
 | |
| 	err = dnode_get(&(data->mos), val, 0, &mdn, data);
 | |
| 	if (err)
 | |
| 		return 0;
 | |
| 	if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
 | |
| 		return 0;
 | |
| 
 | |
| 	fill_fs_info(&info, mdn, data);
 | |
| 
 | |
| 	if (!data->userhook)
 | |
| 		return 0;
 | |
| 	return data->userhook(name, &info);
 | |
| }
 | |
| 
 | |
| static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
 | |
| {
 | |
| 	struct zfs_dirhook_info info;
 | |
| 	char *name2;
 | |
| 	int ret = 0;
 | |
| 	dnode_end_t mdn;
 | |
| 	int err;
 | |
| 
 | |
| 	err = dnode_get(&(data->mos), val, 0, &mdn, data);
 | |
| 	if (err)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
 | |
| 		return 0;
 | |
| 
 | |
| 	fill_fs_info(&info, mdn, data);
 | |
| 
 | |
| 	name2 = malloc(strlen(name) + 2);
 | |
| 	name2[0] = '@';
 | |
| 	memcpy(name2 + 1, name, strlen(name) + 1);
 | |
| 	if (data->userhook)
 | |
| 		ret = data->userhook(name2, &info);
 | |
| 	free(name2);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_ls(device_t device, const char *path,
 | |
| 	   int (*hook)(const char *, const struct zfs_dirhook_info *))
 | |
| {
 | |
| 	struct zfs_data *data;
 | |
| 	int err;
 | |
| 	int isfs;
 | |
| 
 | |
| 	data = zfs_mount(device);
 | |
| 	if (!data)
 | |
| 		return ZFS_ERR_BAD_FS;
 | |
| 
 | |
| 	data->userhook = hook;
 | |
| 
 | |
| 	err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
 | |
| 	if (err) {
 | |
| 		zfs_unmount(data);
 | |
| 		return err;
 | |
| 	}
 | |
| 	if (isfs) {
 | |
| 		uint64_t childobj, headobj;
 | |
| 		uint64_t snapobj;
 | |
| 		dnode_end_t dn;
 | |
| 		struct zfs_dirhook_info info;
 | |
| 
 | |
| 		fill_fs_info(&info, data->dnode, data);
 | |
| 		hook("@", &info);
 | |
| 
 | |
| 		childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
 | |
| 		headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
 | |
| 		err = dnode_get(&(data->mos), childobj,
 | |
| 						DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
 | |
| 		if (err) {
 | |
| 			zfs_unmount(data);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		zap_iterate(&dn, iterate_zap_fs, data);
 | |
| 
 | |
| 		err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
 | |
| 		if (err) {
 | |
| 			zfs_unmount(data);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
 | |
| 
 | |
| 		err = dnode_get(&(data->mos), snapobj,
 | |
| 						DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
 | |
| 		if (err) {
 | |
| 			zfs_unmount(data);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		zap_iterate(&dn, iterate_zap_snap, data);
 | |
| 	} else {
 | |
| 		if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
 | |
| 			zfs_unmount(data);
 | |
| 			printf("not a directory\n");
 | |
| 			return ZFS_ERR_BAD_FILE_TYPE;
 | |
| 		}
 | |
| 		zap_iterate(&(data->dnode), iterate_zap, data);
 | |
| 	}
 | |
| 	zfs_unmount(data);
 | |
| 	return ZFS_ERR_NONE;
 | |
| }
 | 
