513 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			513 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/arch/unicore32/mm/mmu.c
 | |
|  *
 | |
|  * Code specific to PKUnity SoC and UniCore ISA
 | |
|  *
 | |
|  * Copyright (C) 2001-2010 GUAN Xue-tao
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/sizes.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/memblock.h>
 | |
| 
 | |
| #include <mach/map.h>
 | |
| 
 | |
| #include "mm.h"
 | |
| 
 | |
| /*
 | |
|  * empty_zero_page is a special page that is used for
 | |
|  * zero-initialized data and COW.
 | |
|  */
 | |
| struct page *empty_zero_page;
 | |
| EXPORT_SYMBOL(empty_zero_page);
 | |
| 
 | |
| /*
 | |
|  * The pmd table for the upper-most set of pages.
 | |
|  */
 | |
| pmd_t *top_pmd;
 | |
| 
 | |
| pgprot_t pgprot_user;
 | |
| EXPORT_SYMBOL(pgprot_user);
 | |
| 
 | |
| pgprot_t pgprot_kernel;
 | |
| EXPORT_SYMBOL(pgprot_kernel);
 | |
| 
 | |
| static int __init noalign_setup(char *__unused)
 | |
| {
 | |
| 	cr_alignment &= ~CR_A;
 | |
| 	cr_no_alignment &= ~CR_A;
 | |
| 	set_cr(cr_alignment);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noalign", noalign_setup);
 | |
| 
 | |
| void adjust_cr(unsigned long mask, unsigned long set)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	mask &= ~CR_A;
 | |
| 
 | |
| 	set &= mask;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
 | |
| 	cr_alignment = (cr_alignment & ~mask) | set;
 | |
| 
 | |
| 	set_cr((get_cr() & ~mask) | set);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| struct map_desc {
 | |
| 	unsigned long virtual;
 | |
| 	unsigned long pfn;
 | |
| 	unsigned long length;
 | |
| 	unsigned int type;
 | |
| };
 | |
| 
 | |
| #define PROT_PTE_DEVICE		(PTE_PRESENT | PTE_YOUNG |	\
 | |
| 				PTE_DIRTY | PTE_READ | PTE_WRITE)
 | |
| #define PROT_SECT_DEVICE	(PMD_TYPE_SECT | PMD_PRESENT |	\
 | |
| 				PMD_SECT_READ | PMD_SECT_WRITE)
 | |
| 
 | |
| static struct mem_type mem_types[] = {
 | |
| 	[MT_DEVICE] = {		  /* Strongly ordered */
 | |
| 		.prot_pte	= PROT_PTE_DEVICE,
 | |
| 		.prot_l1	= PMD_TYPE_TABLE | PMD_PRESENT,
 | |
| 		.prot_sect	= PROT_SECT_DEVICE,
 | |
| 	},
 | |
| 	/*
 | |
| 	 * MT_KUSER: pte for vecpage -- cacheable,
 | |
| 	 *       and sect for unigfx mmap -- noncacheable
 | |
| 	 */
 | |
| 	[MT_KUSER] = {
 | |
| 		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
 | |
| 				PTE_CACHEABLE | PTE_READ | PTE_EXEC,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
 | |
| 		.prot_sect = PROT_SECT_DEVICE,
 | |
| 	},
 | |
| 	[MT_HIGH_VECTORS] = {
 | |
| 		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
 | |
| 				PTE_CACHEABLE | PTE_READ | PTE_WRITE |
 | |
| 				PTE_EXEC,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
 | |
| 	},
 | |
| 	[MT_MEMORY] = {
 | |
| 		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
 | |
| 				PTE_WRITE | PTE_EXEC,
 | |
| 		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
 | |
| 		.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
 | |
| 				PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
 | |
| 	},
 | |
| 	[MT_ROM] = {
 | |
| 		.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
 | |
| 				PMD_SECT_READ,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| const struct mem_type *get_mem_type(unsigned int type)
 | |
| {
 | |
| 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(get_mem_type);
 | |
| 
 | |
| /*
 | |
|  * Adjust the PMD section entries according to the CPU in use.
 | |
|  */
 | |
| static void __init build_mem_type_table(void)
 | |
| {
 | |
| 	pgprot_user   = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
 | |
| 	pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
 | |
| 				 PTE_DIRTY | PTE_READ | PTE_WRITE |
 | |
| 				 PTE_EXEC | PTE_CACHEABLE);
 | |
| }
 | |
| 
 | |
| #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 | |
| 
 | |
| static void __init *early_alloc(unsigned long sz)
 | |
| {
 | |
| 	void *ptr = __va(memblock_alloc(sz, sz));
 | |
| 	memset(ptr, 0, sz);
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 | |
| 		unsigned long prot)
 | |
| {
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
 | |
| 		__pmd_populate(pmd, __pa(pte) | prot);
 | |
| 	}
 | |
| 	BUG_ON(pmd_bad(*pmd));
 | |
| 	return pte_offset_kernel(pmd, addr);
 | |
| }
 | |
| 
 | |
| static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 | |
| 				  unsigned long end, unsigned long pfn,
 | |
| 				  const struct mem_type *type)
 | |
| {
 | |
| 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 | |
| 	do {
 | |
| 		set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
 | |
| 		pfn++;
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| }
 | |
| 
 | |
| static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
 | |
| 				      unsigned long end, unsigned long phys,
 | |
| 				      const struct mem_type *type)
 | |
| {
 | |
| 	pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try a section mapping - end, addr and phys must all be aligned
 | |
| 	 * to a section boundary.
 | |
| 	 */
 | |
| 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
 | |
| 		pmd_t *p = pmd;
 | |
| 
 | |
| 		do {
 | |
| 			set_pmd(pmd, __pmd(phys | type->prot_sect));
 | |
| 			phys += SECTION_SIZE;
 | |
| 		} while (pmd++, addr += SECTION_SIZE, addr != end);
 | |
| 
 | |
| 		flush_pmd_entry(p);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * No need to loop; pte's aren't interested in the
 | |
| 		 * individual L1 entries.
 | |
| 		 */
 | |
| 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the page directory entries and any necessary
 | |
|  * page tables for the mapping specified by `md'.  We
 | |
|  * are able to cope here with varying sizes and address
 | |
|  * offsets, and we take full advantage of sections.
 | |
|  */
 | |
| static void __init create_mapping(struct map_desc *md)
 | |
| {
 | |
| 	unsigned long phys, addr, length, end;
 | |
| 	const struct mem_type *type;
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 | |
| 		printk(KERN_WARNING "BUG: not creating mapping for "
 | |
| 		       "0x%08llx at 0x%08lx in user region\n",
 | |
| 		       __pfn_to_phys((u64)md->pfn), md->virtual);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 | |
| 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
 | |
| 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
 | |
| 		       "overlaps vmalloc space\n",
 | |
| 		       __pfn_to_phys((u64)md->pfn), md->virtual);
 | |
| 	}
 | |
| 
 | |
| 	type = &mem_types[md->type];
 | |
| 
 | |
| 	addr = md->virtual & PAGE_MASK;
 | |
| 	phys = (unsigned long)__pfn_to_phys(md->pfn);
 | |
| 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 | |
| 
 | |
| 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 | |
| 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
 | |
| 		       "be mapped using pages, ignoring.\n",
 | |
| 		       __pfn_to_phys(md->pfn), addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	end = addr + length;
 | |
| 	do {
 | |
| 		unsigned long next = pgd_addr_end(addr, end);
 | |
| 
 | |
| 		alloc_init_section(pgd, addr, next, phys, type);
 | |
| 
 | |
| 		phys += next - addr;
 | |
| 		addr = next;
 | |
| 	} while (pgd++, addr != end);
 | |
| }
 | |
| 
 | |
| static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
 | |
| 
 | |
| /*
 | |
|  * vmalloc=size forces the vmalloc area to be exactly 'size'
 | |
|  * bytes. This can be used to increase (or decrease) the vmalloc
 | |
|  * area - the default is 128m.
 | |
|  */
 | |
| static int __init early_vmalloc(char *arg)
 | |
| {
 | |
| 	unsigned long vmalloc_reserve = memparse(arg, NULL);
 | |
| 
 | |
| 	if (vmalloc_reserve < SZ_16M) {
 | |
| 		vmalloc_reserve = SZ_16M;
 | |
| 		printk(KERN_WARNING
 | |
| 			"vmalloc area too small, limiting to %luMB\n",
 | |
| 			vmalloc_reserve >> 20);
 | |
| 	}
 | |
| 
 | |
| 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
 | |
| 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
 | |
| 		printk(KERN_WARNING
 | |
| 			"vmalloc area is too big, limiting to %luMB\n",
 | |
| 			vmalloc_reserve >> 20);
 | |
| 	}
 | |
| 
 | |
| 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("vmalloc", early_vmalloc);
 | |
| 
 | |
| static phys_addr_t lowmem_limit __initdata = SZ_1G;
 | |
| 
 | |
| static void __init sanity_check_meminfo(void)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	lowmem_limit = __pa(vmalloc_min - 1) + 1;
 | |
| 	memblock_set_current_limit(lowmem_limit);
 | |
| 
 | |
| 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
 | |
| 		struct membank *bank = &meminfo.bank[j];
 | |
| 		*bank = meminfo.bank[i];
 | |
| 		j++;
 | |
| 	}
 | |
| 	meminfo.nr_banks = j;
 | |
| }
 | |
| 
 | |
| static inline void prepare_page_table(void)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	phys_addr_t end;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear out all the mappings below the kernel image.
 | |
| 	 */
 | |
| 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
 | |
| 		pmd_clear(pmd_off_k(addr));
 | |
| 
 | |
| 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
 | |
| 		pmd_clear(pmd_off_k(addr));
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the end of the first block of lowmem.
 | |
| 	 */
 | |
| 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
 | |
| 	if (end >= lowmem_limit)
 | |
| 		end = lowmem_limit;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear out all the kernel space mappings, except for the first
 | |
| 	 * memory bank, up to the end of the vmalloc region.
 | |
| 	 */
 | |
| 	for (addr = __phys_to_virt(end);
 | |
| 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
 | |
| 		pmd_clear(pmd_off_k(addr));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve the special regions of memory
 | |
|  */
 | |
| void __init uc32_mm_memblock_reserve(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Reserve the page tables.  These are already in use,
 | |
| 	 * and can only be in node 0.
 | |
| 	 */
 | |
| 	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up device the mappings.  Since we clear out the page tables for all
 | |
|  * mappings above VMALLOC_END, we will remove any debug device mappings.
 | |
|  * This means you have to be careful how you debug this function, or any
 | |
|  * called function.  This means you can't use any function or debugging
 | |
|  * method which may touch any device, otherwise the kernel _will_ crash.
 | |
|  */
 | |
| static void __init devicemaps_init(void)
 | |
| {
 | |
| 	struct map_desc map;
 | |
| 	unsigned long addr;
 | |
| 	void *vectors;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the vector page early.
 | |
| 	 */
 | |
| 	vectors = early_alloc(PAGE_SIZE);
 | |
| 
 | |
| 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
 | |
| 		pmd_clear(pmd_off_k(addr));
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a mapping for the machine vectors at the high-vectors
 | |
| 	 * location (0xffff0000).  If we aren't using high-vectors, also
 | |
| 	 * create a mapping at the low-vectors virtual address.
 | |
| 	 */
 | |
| 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
 | |
| 	map.virtual = VECTORS_BASE;
 | |
| 	map.length = PAGE_SIZE;
 | |
| 	map.type = MT_HIGH_VECTORS;
 | |
| 	create_mapping(&map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a mapping for the kuser page at the special
 | |
| 	 * location (0xbfff0000) to the same vectors location.
 | |
| 	 */
 | |
| 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
 | |
| 	map.virtual = KUSER_VECPAGE_BASE;
 | |
| 	map.length = PAGE_SIZE;
 | |
| 	map.type = MT_KUSER;
 | |
| 	create_mapping(&map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally flush the caches and tlb to ensure that we're in a
 | |
| 	 * consistent state wrt the writebuffer.  This also ensures that
 | |
| 	 * any write-allocated cache lines in the vector page are written
 | |
| 	 * back.  After this point, we can start to touch devices again.
 | |
| 	 */
 | |
| 	local_flush_tlb_all();
 | |
| 	flush_cache_all();
 | |
| }
 | |
| 
 | |
| static void __init map_lowmem(void)
 | |
| {
 | |
| 	struct memblock_region *reg;
 | |
| 
 | |
| 	/* Map all the lowmem memory banks. */
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		phys_addr_t start = reg->base;
 | |
| 		phys_addr_t end = start + reg->size;
 | |
| 		struct map_desc map;
 | |
| 
 | |
| 		if (end > lowmem_limit)
 | |
| 			end = lowmem_limit;
 | |
| 		if (start >= end)
 | |
| 			break;
 | |
| 
 | |
| 		map.pfn = __phys_to_pfn(start);
 | |
| 		map.virtual = __phys_to_virt(start);
 | |
| 		map.length = end - start;
 | |
| 		map.type = MT_MEMORY;
 | |
| 
 | |
| 		create_mapping(&map);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * paging_init() sets up the page tables, initialises the zone memory
 | |
|  * maps, and sets up the zero page, bad page and bad page tables.
 | |
|  */
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	void *zero_page;
 | |
| 
 | |
| 	build_mem_type_table();
 | |
| 	sanity_check_meminfo();
 | |
| 	prepare_page_table();
 | |
| 	map_lowmem();
 | |
| 	devicemaps_init();
 | |
| 
 | |
| 	top_pmd = pmd_off_k(0xffff0000);
 | |
| 
 | |
| 	/* allocate the zero page. */
 | |
| 	zero_page = early_alloc(PAGE_SIZE);
 | |
| 
 | |
| 	bootmem_init();
 | |
| 
 | |
| 	empty_zero_page = virt_to_page(zero_page);
 | |
| 	__flush_dcache_page(NULL, empty_zero_page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In order to soft-boot, we need to insert a 1:1 mapping in place of
 | |
|  * the user-mode pages.  This will then ensure that we have predictable
 | |
|  * results when turning the mmu off
 | |
|  */
 | |
| void setup_mm_for_reboot(void)
 | |
| {
 | |
| 	unsigned long base_pmdval;
 | |
| 	pgd_t *pgd;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to access to user-mode page tables here. For kernel threads
 | |
| 	 * we don't have any user-mode mappings so we use the context that we
 | |
| 	 * "borrowed".
 | |
| 	 */
 | |
| 	pgd = current->active_mm->pgd;
 | |
| 
 | |
| 	base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
 | |
| 
 | |
| 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
 | |
| 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
 | |
| 		pmd_t *pmd;
 | |
| 
 | |
| 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
 | |
| 		set_pmd(pmd, __pmd(pmdval));
 | |
| 		flush_pmd_entry(pmd);
 | |
| 	}
 | |
| 
 | |
| 	local_flush_tlb_all();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take care of architecture specific things when placing a new PTE into
 | |
|  * a page table, or changing an existing PTE.  Basically, there are two
 | |
|  * things that we need to take care of:
 | |
|  *
 | |
|  *  1. If PG_dcache_clean is not set for the page, we need to ensure
 | |
|  *     that any cache entries for the kernels virtual memory
 | |
|  *     range are written back to the page.
 | |
|  *  2. If we have multiple shared mappings of the same space in
 | |
|  *     an object, we need to deal with the cache aliasing issues.
 | |
|  *
 | |
|  * Note that the pte lock will be held.
 | |
|  */
 | |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
 | |
| 	pte_t *ptep)
 | |
| {
 | |
| 	unsigned long pfn = pte_pfn(*ptep);
 | |
| 	struct address_space *mapping;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!pfn_valid(pfn))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The zero page is never written to, so never has any dirty
 | |
| 	 * cache lines, and therefore never needs to be flushed.
 | |
| 	 */
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	if (page == ZERO_PAGE(0))
 | |
| 		return;
 | |
| 
 | |
| 	mapping = page_mapping_file(page);
 | |
| 	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
 | |
| 		__flush_dcache_page(mapping, page);
 | |
| 	if (mapping)
 | |
| 		if (vma->vm_flags & VM_EXEC)
 | |
| 			__flush_icache_all();
 | |
| }
 | 
