nt9856x/code/driver/source/net/rtl8189fs/hal/rtl8188f/rtl8188f_phycfg.c
2023-03-28 15:07:53 +08:00

1337 lines
39 KiB
C
Executable File

/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _RTL8188F_PHYCFG_C_
#include <rtl8188f_hal.h>
/*---------------------------Define Local Constant---------------------------*/
/* Channel switch:The size of command tables for switch channel*/
#define MAX_PRECMD_CNT 16
#define MAX_RFDEPENDCMD_CNT 16
#define MAX_POSTCMD_CNT 16
#define MAX_DOZE_WAITING_TIMES_9x 64
/*---------------------------Define Local Constant---------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define local variable------------------------------*/
/*--------------------Define export function prototype-----------------------*/
/* Please refer to header file */
/*--------------------Define export function prototype-----------------------*/
/*----------------------------Function Body----------------------------------*/
/* */
/* 1. BB register R/W API */
/* */
/**
* Function: phy_CalculateBitShift
*
* OverView: Get shifted position of the BitMask
*
* Input:
* u32 BitMask,
*
* Output: none
* Return: u32 Return the shift bit bit position of the mask
*/
static u32
phy_CalculateBitShift(
u32 BitMask
)
{
u32 i;
for (i = 0; i <= 31; i++) {
if (((BitMask >> i) & 0x1) == 1)
break;
}
return i;
}
/**
* Function: PHY_QueryBBReg
*
* OverView: Read "sepcific bits" from BB register
*
* Input:
* PADAPTER Adapter,
* u32 RegAddr, The target address to be readback
* u32 BitMask The target bit position in the target address
* to be readback
* Output: None
* Return: u32 Data The readback register value
* Note: This function is equal to "GetRegSetting" in PHY programming guide
*/
u32
PHY_QueryBBReg_8188F(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask
)
{
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
return ReturnValue;
}
/**
* Function: PHY_SetBBReg
*
* OverView: Write "Specific bits" to BB register (page 8~)
*
* Input:
* PADAPTER Adapter,
* u32 RegAddr, The target address to be modified
* u32 BitMask The target bit position in the target address
* to be modified
* u32 Data The new register value in the target bit position
* of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRegSetting" in PHY programming guide
*/
void
PHY_SetBBReg_8188F(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/*u16 BBWaitCounter = 0; */
u32 OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
if (BitMask != bMaskDWord) { /*if not "double word" write */
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((OriginalValue & (~BitMask)) | ((Data << BitShift) & BitMask));
}
rtw_write32(Adapter, RegAddr, Data);
}
/* */
/* 2. RF register R/W API */
/* */
static u32
phy_RFSerialRead_8188F(
PADAPTER Adapter,
enum rf_path eRFPath,
u32 Offset
)
{
u32 retValue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
u32 tmplong, tmplong2;
u8 RfPiEnable = 0;
u32 MaskforPhySet = 0;
int i = 0;
_enter_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL);
/* */
/* Make sure RF register offset is correct */
/* */
Offset &= 0xff;
NewOffset = Offset;
if (eRFPath == RF_PATH_A) {
tmplong2 = phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset << 23) | bLSSIReadEdge; /*T65 RF */
phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord, tmplong2 & (~bLSSIReadEdge));
} else {
tmplong2 = phy_query_bb_reg(Adapter, rFPGA0_XB_HSSIParameter2 | MaskforPhySet, bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset << 23) | bLSSIReadEdge; /*T65 RF */
phy_set_bb_reg(Adapter, rFPGA0_XB_HSSIParameter2 | MaskforPhySet, bMaskDWord, tmplong2 & (~bLSSIReadEdge));
}
tmplong2 = phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord);
phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord, tmplong2 & (~bLSSIReadEdge));
phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord, tmplong2 | bLSSIReadEdge);
rtw_udelay_os(10);
for (i = 0; i < 2; i++)
rtw_udelay_os(MAX_STALL_TIME);
rtw_udelay_os(10);
if (eRFPath == RF_PATH_A)
RfPiEnable = (u8)phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter1 | MaskforPhySet, BIT8);
else if (eRFPath == RF_PATH_B)
RfPiEnable = (u8)phy_query_bb_reg(Adapter, rFPGA0_XB_HSSIParameter1 | MaskforPhySet, BIT8);
if (RfPiEnable) {
/* Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF */
retValue = phy_query_bb_reg(Adapter, pPhyReg->rfLSSIReadBackPi | MaskforPhySet, bLSSIReadBackData);
/*RT_DISP(FINIT, INIT_RF, ("Readback from RF-PI : 0x%x\n", retValue)); */
} else {
/*Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF */
retValue = phy_query_bb_reg(Adapter, pPhyReg->rfLSSIReadBack | MaskforPhySet, bLSSIReadBackData);
/*RT_DISP(FINIT, INIT_RF,("Readback from RF-SI : 0x%x\n", retValue)); */
}
_exit_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL);
return retValue;
}
/**
* Function: phy_RFSerialWrite_8188F
*
* OverView: Write data to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
enum rf_path RFPath, Radio path of A/B/C/D
* u32 Offset, The target address to be read
* u32 Data The new register Data in the target bit position
* of the target to be read
*
* Output: None
* Return: None
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*
* Note: For RF8256 only
* The total count of RTL8256(Zebra4) register is around 36 bit it only employs
* 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10])
* to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration
* programming guide" for more details.
* Thus, we define a sub-finction for RTL8526 register address conversion
* ===========================================================
* Register Mode RegCTL[1] RegCTL[0] Note
* (Reg00[12]) (Reg00[10])
* ===========================================================
* Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf)
* ------------------------------------------------------------------
*
* 2008/09/02 MH Add 92S RF definition
*
*
*
*/
static void
phy_RFSerialWrite_8188F(
PADAPTER Adapter,
enum rf_path eRFPath,
u32 Offset,
u32 Data
)
{
u32 DataAndAddr = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
Offset &= 0xff;
/* */
/* Shadow Update */
/* */
/*PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data); */
/* */
/* Switch page for 8256 RF IC */
/* */
NewOffset = Offset;
/* */
/* Put write addr in [5:0] and write data in [31:16] */
/* */
/*DataAndAddr = (Data<<16) | (NewOffset&0x3f); */
DataAndAddr = ((NewOffset << 20) | (Data & 0x000fffff)) & 0x0fffffff; /* T65 RF */
/* */
/* Write Operation */
/* */
phy_set_bb_reg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
/*RTPRINT(FPHY, PHY_RFW, ("RFW-%d Addr[0x%lx]=0x%lx\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr)); */
}
/**
* Function: PHY_QueryRFReg
*
* OverView: Query "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
enum rf_path eRFPath, Radio path of A/B/C/D
* u32 RegAddr, The target address to be read
* u32 BitMask The target bit position in the target address
* to be read
*
* Output: None
* Return: u32 Readback value
* Note: This function is equal to "GetRFRegSetting" in PHY programming guide
*/
u32
PHY_QueryRFReg_8188F(
PADAPTER Adapter,
enum rf_path eRFPath,
u32 RegAddr,
u32 BitMask
)
{
u32 Original_Value, Readback_Value, BitShift;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
Original_Value = phy_RFSerialRead_8188F(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
return Readback_Value;
}
/**
* Function: PHY_SetRFReg
*
* OverView: Write "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
enum rf_path eRFPath, Radio path of A/B/C/D
* u32 RegAddr, The target address to be modified
* u32 BitMask The target bit position in the target address
* to be modified
* u32 Data The new register Data in the target bit position
* of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRFRegSetting" in PHY programming guide
*/
void
PHY_SetRFReg_8188F(
PADAPTER Adapter,
enum rf_path eRFPath,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
u32 Original_Value, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
/* RF data is 12 bits only */
if (BitMask != bRFRegOffsetMask) {
Original_Value = phy_RFSerialRead_8188F(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((Original_Value & (~BitMask)) | (Data << BitShift));
}
phy_RFSerialWrite_8188F(Adapter, eRFPath, RegAddr, Data);
}
/* */
/* 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt. */
/* */
/*-----------------------------------------------------------------------------
* Function: PHY_MACConfig8192C
*
* Overview: Condig MAC by header file or parameter file.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 08/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
s32 PHY_MACConfig8188F(PADAPTER Adapter)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* */
/* Config MAC */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
rtStatus = phy_ConfigMACWithParaFile(Adapter, PHY_FILE_MAC_REG);
if (rtStatus == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
odm_config_mac_with_header_file(&pHalData->odmpriv);
rtStatus = _SUCCESS;
#endif/*CONFIG_EMBEDDED_FWIMG */
}
return rtStatus;
}
/**
* Function: phy_InitBBRFRegisterDefinition
*
* OverView: Initialize Register definition offset for Radio Path A/B/C/D
*
* Input:
* PADAPTER Adapter,
*
* Output: None
* Return: None
* Note: The initialization value is constant and it should never be changes
*/
static void
phy_InitBBRFRegisterDefinition(
PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* RF Interface Sowrtware Control */
pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 LSBs if read 32-bit from 0x870 */
pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
/* RF Interface Output (and Enable) */
pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x860 */
pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x864 */
/* RF Interface (Output and) Enable */
pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; /*LSSI Parameter */
pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; /*wire control parameter2 */
pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; /*wire control parameter2 */
/* Tranceiver Readback LSSI/HSPI mode */
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
}
static int
phy_BB8188f_Config_ParaFile(
PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
/* */
/* 1. Read PHY_REG.TXT BB INIT!! */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_PHY_REG, CONFIG_BB_PHY_REG) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
RTW_INFO("%s():Write BB Reg Fail!!", __func__);
goto phy_BB8190_Config_ParaFile_Fail;
}
#if MP_DRIVER == 1
if (Adapter->registrypriv.mp_mode == 1) {
/* */
/* 1.1 Read PHY_REG_MP.TXT BB INIT!! */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithMpParaFile(Adapter, PHY_FILE_PHY_REG_MP) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_PHY_REG_MP))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
RTW_INFO("%s():Write BB Reg MP Fail!!", __func__);
goto phy_BB8190_Config_ParaFile_Fail;
}
}
#endif /* #if (MP_DRIVER == 1) */
/* */
/* 2. Read BB AGC table Initialization */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_AGC_TAB, CONFIG_BB_AGC_TAB) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_AGC_TAB))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
RTW_INFO("%s():AGC Table Fail\n", __func__);
goto phy_BB8190_Config_ParaFile_Fail;
}
phy_BB8190_Config_ParaFile_Fail:
return rtStatus;
}
int
PHY_BBConfig8188F(
PADAPTER Adapter
)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 RegVal;
u8 TmpU1B = 0;
u8 value8;
phy_InitBBRFRegisterDefinition(Adapter);
/* Enable BB and RF */
RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN);
RegVal |= BIT13 | FEN_BB_GLB_RSTn | FEN_BBRSTB;
rtw_write16(Adapter, REG_SYS_FUNC_EN, RegVal);
#if 0 /* TODO: [BB]. reg 948 is only use for bt_coex */
#ifdef CONFIG_USB_HCI
rtw_write32(Adapter, 0x948, 0x0); /* USB use Antenna S0 */
#else
if (pHalData->ant_path == RF_PATH_A)
rtw_write32(Adapter, 0x948, 0x280);
else
rtw_write32(Adapter, 0x948, 0x0);
#endif
#endif
rtw_write8(Adapter, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
rtw_usleep_os(10);
phy_set_rf_reg(Adapter, RF_PATH_A, 0x1, 0xfffff, 0x780);
#if 0
/* 20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF. */
rtw_write8(Adapter, REG_AFE_PLL_CTRL, 0x83);
rtw_write8(Adapter, REG_AFE_PLL_CTRL + 1, 0xdb);
#endif
/* Config BB and AGC */
rtStatus = phy_BB8188f_Config_ParaFile(Adapter);
if (rtw_phydm_set_crystal_cap(Adapter, pHalData->crystal_cap) == _FALSE) {
RTW_ERR("Init crystal_cap failed\n");
rtw_warn_on(1);
rtStatus = _FAIL;
}
return rtStatus;
}
#if 0
/* Block & Path enable */
#define rOFDMCCKEN_Jaguar 0x808 /* OFDM/CCK block enable */
#define bOFDMEN_Jaguar 0x20000000
#define bCCKEN_Jaguar 0x10000000
#define rRxPath_Jaguar 0x808 /* Rx antenna */
#define bRxPath_Jaguar 0xff
#define rTxPath_Jaguar 0x80c /* Tx antenna */
#define bTxPath_Jaguar 0x0fffffff
#define rCCK_RX_Jaguar 0xa04 /* for cck rx path selection */
#define bCCK_RX_Jaguar 0x0c000000
#define rVhtlen_Use_Lsig_Jaguar 0x8c3 /* Use LSIG for VHT length */
void
PHY_BB8188F_Config_1T(
PADAPTER Adapter
)
{
/* BB OFDM RX Path_A */
phy_set_bb_reg(Adapter, rRxPath_Jaguar, bRxPath_Jaguar, 0x11);
/* BB OFDM TX Path_A */
phy_set_bb_reg(Adapter, rTxPath_Jaguar, bMaskLWord, 0x1111);
/* BB CCK R/Rx Path_A */
phy_set_bb_reg(Adapter, rCCK_RX_Jaguar, bCCK_RX_Jaguar, 0x0);
/* MCS support */
phy_set_bb_reg(Adapter, 0x8bc, 0xc0000060, 0x4);
/* RF Path_B HSSI OFF */
phy_set_bb_reg(Adapter, 0xe00, 0xf, 0x4);
/* RF Path_B Power Down */
phy_set_bb_reg(Adapter, 0xe90, bMaskDWord, 0);
/* ADDA Path_B OFF */
phy_set_bb_reg(Adapter, 0xe60, bMaskDWord, 0);
phy_set_bb_reg(Adapter, 0xe64, bMaskDWord, 0);
}
#endif
int
PHY_RFConfig8188F(
PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
/* */
/* RF config */
/* */
rtStatus = PHY_RF6052_Config8188F(Adapter);
/*PHY_BB8188F_Config_1T(Adapter); */
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: PHY_ConfigRFWithParaFile()
*
* Overview: This function read RF parameters from general file format, and do RF 3-wire
*
* Input: PADAPTER Adapter
* ps1Byte pFileName
* enum rf_path eRFPath
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: Delay may be required for RF configuration
*---------------------------------------------------------------------------*/
int
PHY_ConfigRFWithParaFile_8188F(
PADAPTER Adapter,
u8 *pFileName,
enum rf_path eRFPath
)
{
return _SUCCESS;
}
/**************************************************************************************************************
* Description:
* The low-level interface to set TxAGC , called by both MP and Normal Driver.
*
* <20120830, Kordan>
**************************************************************************************************************/
void
PHY_SetTxPowerIndex_8188F(
PADAPTER Adapter,
u32 PowerIndex,
enum rf_path RFPath,
u8 Rate
)
{
if (RFPath == RF_PATH_A || RFPath == RF_PATH_B) {
switch (Rate) {
case MGN_1M:
phy_set_bb_reg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, PowerIndex);
break;
case MGN_2M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte1, PowerIndex);
break;
case MGN_5_5M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte2, PowerIndex);
break;
case MGN_11M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte3, PowerIndex);
break;
case MGN_6M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte0, PowerIndex);
break;
case MGN_9M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte1, PowerIndex);
break;
case MGN_12M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte2, PowerIndex);
break;
case MGN_18M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte3, PowerIndex);
break;
case MGN_24M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte0, PowerIndex);
break;
case MGN_36M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte1, PowerIndex);
break;
case MGN_48M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte2, PowerIndex);
break;
case MGN_54M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte3, PowerIndex);
break;
case MGN_MCS0:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte0, PowerIndex);
break;
case MGN_MCS1:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte1, PowerIndex);
break;
case MGN_MCS2:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte2, PowerIndex);
break;
case MGN_MCS3:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte3, PowerIndex);
break;
case MGN_MCS4:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte0, PowerIndex);
break;
case MGN_MCS5:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte1, PowerIndex);
break;
case MGN_MCS6:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte2, PowerIndex);
break;
case MGN_MCS7:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte3, PowerIndex);
break;
default:
RTW_INFO("Invalid Rate!!\n");
break;
}
}
}
u8
PHY_GetTxPowerIndex_8188F(
PADAPTER pAdapter,
enum rf_path RFPath,
u8 Rate,
u8 BandWidth,
u8 Channel,
struct txpwr_idx_comp *tic
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
struct hal_spec_t *hal_spec = GET_HAL_SPEC(pAdapter);
s16 power_idx;
u8 pg = 0;
s8 by_rate_diff = 0, limit = 0, tpt_offset = 0;
BOOLEAN bIn24G = _FALSE;
pg = phy_get_pg_txpwr_idx(pAdapter, RFPath, Rate, RF_1TX, BandWidth, Channel, &bIn24G);
by_rate_diff = PHY_GetTxPowerByRate(pAdapter, BAND_ON_2_4G, RFPath, Rate);
limit = PHY_GetTxPowerLimit(pAdapter, NULL, (u8)(!bIn24G), pHalData->current_channel_bw, RFPath, Rate, RF_1TX, pHalData->current_channel);
tpt_offset = PHY_GetTxPowerTrackingOffset(pAdapter, RFPath, Rate);
if (tic)
txpwr_idx_comp_set(tic, RF_1TX, pg, by_rate_diff, limit, tpt_offset, 0, 0, 0);
by_rate_diff = by_rate_diff > limit ? limit : by_rate_diff;
power_idx = pg + by_rate_diff + tpt_offset;
if (power_idx < 0)
power_idx = 0;
else if (power_idx > hal_spec->txgi_max)
power_idx = hal_spec->txgi_max;
return power_idx;
}
void
PHY_SetTxPowerLevel8188F(
PADAPTER Adapter,
u8 Channel
)
{
phy_set_tx_power_level_by_path(Adapter, Channel, RF_PATH_A);
}
/* A workaround to eliminate the 2400MHz, 2440MHz, 2480MHz spur of 8188F. (Asked by David.) */
void
phy_SpurCalibration_8188F(
PADAPTER pAdapter,
u8 ToChannel,
u8 threshold
)
{
u32 freq[7] = {0xFCCD, 0xFC4D, 0xFFCD, 0xFF4D, 0xFCCD, 0xFF9A, 0xFDCD}; /* {chnl 5, 6, 7, 8, 13, 14 , 11} */
u8 idx = 0;
u8 b_doNotch = FALSE;
u8 initial_gain;
BOOLEAN bHW_Ctrl = FALSE, bSW_Ctrl = FALSE, bHW_Ctrl_S1 = FALSE, bSW_Ctrl_S1 = FALSE;
u32 reg948;
/* add for notch */
u32 wlan_channel, CurrentChannel, Is40MHz;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
struct dm_struct *pDM_Odm = &(pHalData->odmpriv);
#ifdef CONFIG_AUTO_NOTCH_FILTER
odm_set_bb_reg(pDM_Odm, 0xC40, BIT28 | BIT27 | BIT26 | BIT25 | BIT24, 0x1F);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT9, 0x1); /*enable notch filter */
#endif
/* check threshold */
if (threshold <= 0x0)
threshold = 0x16;
/* RTW_INFO("===> phy_SpurCalibration_8188F: Channel = %d\n", ToChannel); */
if (ToChannel == 5)
idx = 0;
else if (ToChannel == 6)
idx = 1;
else if (ToChannel == 7)
idx = 2;
else if (ToChannel == 8)
idx = 3;
else if (ToChannel == 13)
idx = 4;
else if (ToChannel == 14)
idx = 5;
else if (ToChannel == 11)
idx = 6;
else
idx = 10;
reg948 = phy_query_bb_reg(pAdapter, rS0S1_PathSwitch, bMaskDWord);
if ((reg948 & BIT6) == 0x0)
bSW_Ctrl = TRUE;
else
bHW_Ctrl = TRUE;
if (bHW_Ctrl)
bHW_Ctrl_S1 = (phy_query_bb_reg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT5 | BIT4 | BIT3) == 0x1) ? TRUE : FALSE;
else if (bSW_Ctrl)
bSW_Ctrl_S1 = ((reg948 & BIT9) == 0x0) ? TRUE : FALSE;
/* If wlan at S1 (both HW control & SW control) and current channel=5,6,7,8,13,14 */
if ((bHW_Ctrl_S1 || bSW_Ctrl_S1) && (idx <= 6)) {
initial_gain = (u8)(odm_get_bb_reg(pDM_Odm, rOFDM0_XAAGCCore1, bMaskByte0) & 0x7f);
phy_set_bb_reg(pAdapter, rFPGA0_RFMOD, BIT24, 0); /* Disable CCK block */
odm_write_dig(pDM_Odm, 0x30);
phy_set_bb_reg(pAdapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xccf000c0); /* disable 3-wire */
phy_set_bb_reg(pAdapter, rFPGA0_PSDFunction, bMaskDWord, freq[idx]); /* Setup PSD */
phy_set_bb_reg(pAdapter, rFPGA0_PSDFunction, bMaskDWord, 0x400000 | freq[idx]); /* Start PSD */
rtw_msleep_os(30);
if (phy_query_bb_reg(pAdapter, rFPGA0_PSDReport, bMaskDWord) >= threshold)
b_doNotch = TRUE;
phy_set_bb_reg(pAdapter, rFPGA0_PSDFunction, bMaskDWord, freq[idx]); /* turn off PSD */
phy_set_bb_reg(pAdapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xccc000c0); /* enable 3-wire */
phy_set_bb_reg(pAdapter, rFPGA0_RFMOD, BIT24, 1); /* Enable CCK block */
odm_write_dig(pDM_Odm, initial_gain);
}
/* --- Notch Filter --- Asked by Rock */
if (b_doNotch) {
CurrentChannel = odm_get_rf_reg(pDM_Odm, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask);
wlan_channel = CurrentChannel & 0x0f; /*Get center frequency */
switch (wlan_channel) { /*Set notch filter */
case 5:
case 13:
#ifndef CONFIG_AUTO_NOTCH_FILTER
odm_set_bb_reg(pDM_Odm, 0xC40, BIT28 | BIT27 | BIT26 | BIT25 | BIT24, 0xB);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT9, 0x1); /*enable notch filter */
#endif
odm_set_bb_reg(pDM_Odm, 0xD40, bMaskDWord, 0x06000000);
odm_set_bb_reg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD4C, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT28, 0x1); /*enable CSI mask */
break;
case 6:
#ifndef CONFIG_AUTO_NOTCH_FILTER
odm_set_bb_reg(pDM_Odm, 0xC40, BIT28 | BIT27 | BIT26 | BIT25 | BIT24, 0x4);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT9, 0x1); /*enable notch filter */
#endif
odm_set_bb_reg(pDM_Odm, 0xD40, bMaskDWord, 0x00000600);
odm_set_bb_reg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD4C, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT28, 0x1); /*enable CSI mask */
break;
case 7:
#ifndef CONFIG_AUTO_NOTCH_FILTER
odm_set_bb_reg(pDM_Odm, 0xC40, BIT28 | BIT27 | BIT26 | BIT25 | BIT24, 0x3);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT9, 0x1); /*enable notch filter */
#endif
odm_set_bb_reg(pDM_Odm, 0xD40, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD4C, bMaskDWord, 0x06000000);
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT28, 0x1); /*enable CSI mask */
break;
case 8:
#ifndef CONFIG_AUTO_NOTCH_FILTER
odm_set_bb_reg(pDM_Odm, 0xC40, BIT28 | BIT27 | BIT26 | BIT25 | BIT24, 0xA);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT9, 0x1); /*enable notch filter */
#endif
odm_set_bb_reg(pDM_Odm, 0xD40, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD4C, bMaskDWord, 0x00000380);
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT28, 0x1); /*enable CSI mask */
break;
case 11:
#ifndef CONFIG_AUTO_NOTCH_FILTER
odm_set_bb_reg(pDM_Odm, 0xC40, BIT28|BIT27|BIT26|BIT25|BIT24, 0x19);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT9, 0x1); /*enable notch filter*/
#endif
odm_set_bb_reg(pDM_Odm, 0xD40, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD44, bMaskDWord, 0x04000000);
odm_set_bb_reg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD4C, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT28, 0x1); /*enable CSI mask*/
break;
case 14:
#ifndef CONFIG_AUTO_NOTCH_FILTER
odm_set_bb_reg(pDM_Odm, 0xC40, BIT28 | BIT27 | BIT26 | BIT25 | BIT24, 0x5);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT9, 0x1); /*enable notch filter */
#endif
odm_set_bb_reg(pDM_Odm, 0xD40, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD4C, bMaskDWord, 0x00180000);
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT28, 0x1); /*enable CSI mask */
break;
default:
#ifndef CONFIG_AUTO_NOTCH_FILTER
odm_set_bb_reg(pDM_Odm, 0xC40, BIT9, 0x0); /*disable notch filter */
#endif
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT28, 0x0); /*disable CSI mask function */
break;
} /*switch(wlan_channel) */
return;
}
#ifndef CONFIG_AUTO_NOTCH_FILTER
odm_set_bb_reg(pDM_Odm, 0xC40, BIT9, 0x0); /*disable notch filter */
#endif
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT28, 0x0); /*disable CSI mask */
}
void
phy_SetRegBW_8188F(
PADAPTER Adapter,
enum channel_width CurrentBW
)
{
u16 RegRfMod_BW, u2tmp = 0;
RegRfMod_BW = rtw_read16(Adapter, REG_TRXPTCL_CTL_8188F);
switch (CurrentBW) {
case CHANNEL_WIDTH_20:
rtw_write16(Adapter, REG_TRXPTCL_CTL_8188F, (RegRfMod_BW & 0xFE7F)); /* BIT 7 = 0, BIT 8 = 0 */
break;
case CHANNEL_WIDTH_40:
u2tmp = RegRfMod_BW | BIT7;
rtw_write16(Adapter, REG_TRXPTCL_CTL_8188F, (u2tmp & 0xFEFF)); /* BIT 7 = 1, BIT 8 = 0 */
break;
case CHANNEL_WIDTH_80:
u2tmp = RegRfMod_BW | BIT8;
rtw_write16(Adapter, REG_TRXPTCL_CTL_8188F, (u2tmp & 0xFF7F)); /* BIT 7 = 0, BIT 8 = 1 */
break;
default:
RTW_INFO("phy_PostSetBWMode8188F(): unknown Bandwidth: %#X\n", CurrentBW);
break;
}
}
u8
phy_GetSecondaryChnl_8188F(
PADAPTER Adapter
)
{
u8 SCSettingOf40 = 0, SCSettingOf20 = 0;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
if (pHalData->current_channel_bw == CHANNEL_WIDTH_80) {
if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOf40 = VHT_DATA_SC_40_LOWER_OF_80MHZ;
else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOf40 = VHT_DATA_SC_40_UPPER_OF_80MHZ;
if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOf20 = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOf20 = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
} else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40) {
if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ;
}
return (SCSettingOf40 << 4) | SCSettingOf20;
}
void
phy_PostSetBwMode8188F(
PADAPTER Adapter
)
{
u8 SubChnlNum = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* RTW_INFO("===>%s: current_channel_bw = %s Mhz\n", __func__, pHalData->current_channel_bw?"40":"20"); */
switch (pHalData->current_channel_bw) {
case CHANNEL_WIDTH_20:
/*
0x800[0]=1'b0
0x900[0]=1'b0
0x800[10:8]=3'b111(80M)
0x800[14:12]=3'b101(80M)
0xCE4[31:30]=2'b00
0xCE4[29:28]=2'b01
0xc10[29:28]=1
0x954[19]=1'b0
0x954[23:20]=3
*/
phy_set_bb_reg(Adapter, rFPGA0_RFMOD, BIT0, 0x0);
phy_set_bb_reg(Adapter, rFPGA1_RFMOD, BIT0, 0x0);
phy_set_bb_reg(Adapter, rFPGA0_RFMOD, BIT10 | BIT9 | BIT8, 0x7); /* RXADC CLK */
phy_set_bb_reg(Adapter, rFPGA0_RFMOD, BIT14 | BIT13 | BIT12, 0x5); /* TXDAC CLK */
phy_set_bb_reg(Adapter, rOFDM0_TxPseudoNoiseWgt, BIT31 | BIT30, 0x0); /* small BW */
phy_set_bb_reg(Adapter, rOFDM0_TxPseudoNoiseWgt, BIT29 | BIT28, 0x1); /* adc buffer clk(TBD) */
phy_set_bb_reg(Adapter, rOFDM0_XARxAFE, BIT29 | BIT28, 0x1); /* adc buffer clk(TBD) */
phy_set_bb_reg(Adapter, BBrx_DFIR, BIT19, 0x0); /* OFDM RX DFIR */
phy_set_bb_reg(Adapter, BBrx_DFIR, BIT23 | BIT22 | BIT21 | BIT20, 0x3); /* OFDM RX DFIR */
break;
case CHANNEL_WIDTH_40:
/*
0x800[0]=1'b1
0x900[0]=1'b1
0x800[10:8]=3'b111(80M)
0x800[14:12]=3'b101(80M)
0xCE4[31:30]=2'b00
0xCE4[29:28]=2'b01
0xc10[29:28]: 1
0x954[19]=1'b0
0x954[23:20]=0x6(For ACPR)
0xa00[4]=1/0
0x483[3:0]=1/2
0x440[22:21]=2'b00
*/
phy_set_bb_reg(Adapter, rFPGA0_RFMOD, BIT0, 0x1);
phy_set_bb_reg(Adapter, rFPGA1_RFMOD, BIT0, 0x1);
phy_set_bb_reg(Adapter, rFPGA0_RFMOD, BIT10 | BIT9 | BIT8, 0x7); /* RXADC CLK */
phy_set_bb_reg(Adapter, rFPGA0_RFMOD, BIT14 | BIT13 | BIT12, 0x5); /* TXDAC CLK */
phy_set_bb_reg(Adapter, rOFDM0_TxPseudoNoiseWgt, BIT31 | BIT30, 0x0); /* small BW */
phy_set_bb_reg(Adapter, rOFDM0_TxPseudoNoiseWgt, BIT29 | BIT28, 0x1); /* adc buffer clk(TBD) */
phy_set_bb_reg(Adapter, rOFDM0_XARxAFE, BIT29 | BIT28, 0x1); /* adc buffer clk(TBD) */
phy_set_bb_reg(Adapter, BBrx_DFIR, BIT19, 0x0); /* OFDM RX DFIR */
phy_set_bb_reg(Adapter, BBrx_DFIR, BIT23 | BIT22 | BIT21 | BIT20, 0x6); /* OFDM RX DFIR */
phy_set_bb_reg(Adapter, rCCK0_System, BIT4, (pHalData->nCur40MhzPrimeSC >> 1)); /* primary channel (CCK RXSC) */
SubChnlNum = phy_GetSecondaryChnl_8188F(Adapter);
phy_set_mac_reg(Adapter, REG_DATA_SC_8188F, BIT3 | BIT2 | BIT1 | BIT0, SubChnlNum); /* txsc_20 */
phy_set_mac_reg(Adapter, REG_RRSR_8188F, BIT22 | BIT21, 0x0); /* RRSR_RSC */
if (0)
RTW_INFO("%s: REG_DATA_SC_8188F(%d) nCur40MhzPrimeSC(%d)\n", __func__, SubChnlNum, pHalData->nCur40MhzPrimeSC);
break;
default:
break;
}
/*3<3>Set RF related register */
PHY_RF6052SetBandwidth8188F(Adapter, pHalData->current_channel_bw);
}
void
phy_SwChnl8188F(
PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 channelToSW = pHalData->current_channel;
#if (DM_ODM_SUPPORT_TYPE == ODM_WIN)
struct dm_struct *pDM_Odm = &pHalData->DM_OutSrc;
#else /* (DM_ODM_SUPPORT_TYPE == ODM_CE) */
struct dm_struct *pDM_Odm = &pHalData->odmpriv;
#endif
if (pHalData->rf_chip == RF_PSEUDO_11N) {
return;
}
pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff00) | channelToSW);
phy_set_rf_reg(pAdapter, RF_PATH_A, RF_CHNLBW, 0x3FF, pHalData->RfRegChnlVal[0]);
/* phy_set_rf_reg(pAdapter, RF_PATH_B, RF_CHNLBW, 0x3FF, pHalData->RfRegChnlVal[0] ); */
/* RTW_INFO("===>phy_SwChnl8188F: Channel = %d\n", channelToSW); */
phy_SpurCalibration_8188F(pAdapter, channelToSW, 0x16);
}
void
phy_SwChnlAndSetBwMode8188F(
PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (Adapter->bNotifyChannelChange) {
RTW_INFO("[%s] bSwChnl=%d, ch=%d, bSetChnlBW=%d, bw=%d\n",
__func__,
pHalData->bSwChnl,
pHalData->current_channel,
pHalData->bSetChnlBW,
pHalData->current_channel_bw);
}
if (RTW_CANNOT_RUN(Adapter))
return;
if (pHalData->bSwChnl) {
phy_SwChnl8188F(Adapter);
pHalData->bSwChnl = _FALSE;
}
if (pHalData->bSetChnlBW) {
phy_PostSetBwMode8188F(Adapter);
pHalData->bSetChnlBW = _FALSE;
}
if (pHalData->bNeedIQK == _TRUE) {
if (pHalData->neediqk_24g == _TRUE) {
halrf_iqk_trigger(&pHalData->odmpriv, _FALSE);
pHalData->bIQKInitialized = _TRUE;
pHalData->neediqk_24g = _FALSE;
}
pHalData->bNeedIQK = _FALSE;
}
rtw_hal_set_tx_power_level(Adapter, pHalData->current_channel);
}
void
PHY_HandleSwChnlAndSetBW8188F(
PADAPTER Adapter,
BOOLEAN bSwitchChannel,
BOOLEAN bSetBandWidth,
u8 ChannelNum,
enum channel_width ChnlWidth,
EXTCHNL_OFFSET ExtChnlOffsetOf40MHz,
EXTCHNL_OFFSET ExtChnlOffsetOf80MHz,
u8 CenterFrequencyIndex1
)
{
/*static BOOLEAN bInitialzed = _FALSE; */
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
u8 tmpChannel = pHalData->current_channel;
enum channel_width tmpBW = pHalData->current_channel_bw;
u8 tmpnCur40MhzPrimeSC = pHalData->nCur40MhzPrimeSC;
u8 tmpnCur80MhzPrimeSC = pHalData->nCur80MhzPrimeSC;
u8 tmpCenterFrequencyIndex1 = pHalData->CurrentCenterFrequencyIndex1;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
/* RTW_INFO("=> PHY_HandleSwChnlAndSetBW8188F: bSwitchChannel %d, bSetBandWidth %d\n", bSwitchChannel, bSetBandWidth); */
/* RTW_INFO("=> %s: ChnlWidth %d\n", __func__, ChnlWidth); */
/*check is swchnl or setbw */
if (!bSwitchChannel && !bSetBandWidth) {
RTW_INFO("PHY_HandleSwChnlAndSetBW8188F: not switch channel and not set bandwidth\n");
return;
}
/*skip change for channel or bandwidth is the same */
if (bSwitchChannel) {
/*if(pHalData->current_channel != ChannelNum) */
{
if (HAL_IsLegalChannel(Adapter, ChannelNum))
pHalData->bSwChnl = _TRUE;
}
}
if (bSetBandWidth) {
#if 0
if (bInitialzed == _FALSE) {
bInitialzed = _TRUE;
pHalData->bSetChnlBW = _TRUE;
} else if ((pHalData->current_channel_bw != ChnlWidth) || (pHalData->nCur40MhzPrimeSC != ExtChnlOffsetOf40MHz) || (pHalData->CurrentCenterFrequencyIndex1 != CenterFrequencyIndex1))
pHalData->bSetChnlBW = _TRUE;
#else
pHalData->bSetChnlBW = _TRUE;
#endif
}
if (!pHalData->bSetChnlBW && !pHalData->bSwChnl) {
/* RTW_INFO("<= PHY_HandleSwChnlAndSetBW8188F: bSwChnl %d, bSetChnlBW %d\n", pHalData->bSwChnl, pHalData->bSetChnlBW); */
return;
}
if (pHalData->bSwChnl) {
pHalData->current_channel = ChannelNum;
pHalData->CurrentCenterFrequencyIndex1 = ChannelNum;
}
if (pHalData->bSetChnlBW) {
pHalData->current_channel_bw = ChnlWidth;
#if 0
if (ExtChnlOffsetOf40MHz == EXTCHNL_OFFSET_LOWER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (ExtChnlOffsetOf40MHz == EXTCHNL_OFFSET_UPPER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
if (ExtChnlOffsetOf80MHz == EXTCHNL_OFFSET_LOWER)
pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (ExtChnlOffsetOf80MHz == EXTCHNL_OFFSET_UPPER)
pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
#else
pHalData->nCur40MhzPrimeSC = ExtChnlOffsetOf40MHz;
pHalData->nCur80MhzPrimeSC = ExtChnlOffsetOf80MHz;
#endif
pHalData->CurrentCenterFrequencyIndex1 = CenterFrequencyIndex1;
}
/*Switch workitem or set timer to do switch channel or setbandwidth operation */
if (!RTW_CANNOT_RUN(Adapter))
phy_SwChnlAndSetBwMode8188F(Adapter);
else {
if (pHalData->bSwChnl) {
pHalData->current_channel = tmpChannel;
pHalData->CurrentCenterFrequencyIndex1 = tmpChannel;
}
if (pHalData->bSetChnlBW) {
pHalData->current_channel_bw = tmpBW;
pHalData->nCur40MhzPrimeSC = tmpnCur40MhzPrimeSC;
pHalData->nCur80MhzPrimeSC = tmpnCur80MhzPrimeSC;
pHalData->CurrentCenterFrequencyIndex1 = tmpCenterFrequencyIndex1;
}
}
/*RTW_INFO("Channel %d ChannelBW %d ",pHalData->current_channel, pHalData->current_channel_bw); */
/*RTW_INFO("40MhzPrimeSC %d 80MhzPrimeSC %d ",pHalData->nCur40MhzPrimeSC, pHalData->nCur80MhzPrimeSC); */
/*RTW_INFO("CenterFrequencyIndex1 %d\n",pHalData->CurrentCenterFrequencyIndex1); */
/*RTW_INFO("<= PHY_HandleSwChnlAndSetBW8188F: bSwChnl %d, bSetChnlBW %d\n",pHalData->bSwChnl,pHalData->bSetChnlBW); */
}
void
PHY_SetSwChnlBWMode8188F(
PADAPTER Adapter,
u8 channel,
enum channel_width Bandwidth,
u8 Offset40,
u8 Offset80
)
{
/*RTW_INFO("%s()===>\n",__func__); */
PHY_HandleSwChnlAndSetBW8188F(Adapter, _TRUE, _TRUE, channel, Bandwidth, Offset40, Offset80, channel);
/*RTW_INFO("<==%s()\n",__func__); */
}
/* Set CCK and OFDM Block "ON" */
void BBTurnOnBlock_8188F(_adapter *adapter)
{
#if (DISABLE_BB_RF)
return;
#endif
phy_set_bb_reg(adapter, rFPGA0_RFMOD, bCCKEn, 0x1);
phy_set_bb_reg(adapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
}