1802 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1802 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Remote Processor Framework
 | |
|  *
 | |
|  * Copyright (C) 2011 Texas Instruments, Inc.
 | |
|  * Copyright (C) 2011 Google, Inc.
 | |
|  *
 | |
|  * Ohad Ben-Cohen <ohad@wizery.com>
 | |
|  * Brian Swetland <swetland@google.com>
 | |
|  * Mark Grosen <mgrosen@ti.com>
 | |
|  * Fernando Guzman Lugo <fernando.lugo@ti.com>
 | |
|  * Suman Anna <s-anna@ti.com>
 | |
|  * Robert Tivy <rtivy@ti.com>
 | |
|  * Armando Uribe De Leon <x0095078@ti.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * version 2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt)    "%s: " fmt, __func__
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/firmware.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/devcoredump.h>
 | |
| #include <linux/remoteproc.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/virtio_ids.h>
 | |
| #include <linux/virtio_ring.h>
 | |
| #include <asm/byteorder.h>
 | |
| 
 | |
| #include "remoteproc_internal.h"
 | |
| 
 | |
| static DEFINE_MUTEX(rproc_list_mutex);
 | |
| static LIST_HEAD(rproc_list);
 | |
| 
 | |
| typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
 | |
| 				struct resource_table *table, int len);
 | |
| typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
 | |
| 				 void *, int offset, int avail);
 | |
| 
 | |
| /* Unique indices for remoteproc devices */
 | |
| static DEFINE_IDA(rproc_dev_index);
 | |
| 
 | |
| static const char * const rproc_crash_names[] = {
 | |
| 	[RPROC_MMUFAULT]	= "mmufault",
 | |
| 	[RPROC_WATCHDOG]	= "watchdog",
 | |
| 	[RPROC_FATAL_ERROR]	= "fatal error",
 | |
| };
 | |
| 
 | |
| /* translate rproc_crash_type to string */
 | |
| static const char *rproc_crash_to_string(enum rproc_crash_type type)
 | |
| {
 | |
| 	if (type < ARRAY_SIZE(rproc_crash_names))
 | |
| 		return rproc_crash_names[type];
 | |
| 	return "unknown";
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the IOMMU fault handler we register with the IOMMU API
 | |
|  * (when relevant; not all remote processors access memory through
 | |
|  * an IOMMU).
 | |
|  *
 | |
|  * IOMMU core will invoke this handler whenever the remote processor
 | |
|  * will try to access an unmapped device address.
 | |
|  */
 | |
| static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
 | |
| 			     unsigned long iova, int flags, void *token)
 | |
| {
 | |
| 	struct rproc *rproc = token;
 | |
| 
 | |
| 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
 | |
| 
 | |
| 	rproc_report_crash(rproc, RPROC_MMUFAULT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let the iommu core know we're not really handling this fault;
 | |
| 	 * we just used it as a recovery trigger.
 | |
| 	 */
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static int rproc_enable_iommu(struct rproc *rproc)
 | |
| {
 | |
| 	struct iommu_domain *domain;
 | |
| 	struct device *dev = rproc->dev.parent;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!rproc->has_iommu) {
 | |
| 		dev_dbg(dev, "iommu not present\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	domain = iommu_domain_alloc(dev->bus);
 | |
| 	if (!domain) {
 | |
| 		dev_err(dev, "can't alloc iommu domain\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 | |
| 
 | |
| 	ret = iommu_attach_device(domain, dev);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't attach iommu device: %d\n", ret);
 | |
| 		goto free_domain;
 | |
| 	}
 | |
| 
 | |
| 	rproc->domain = domain;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_domain:
 | |
| 	iommu_domain_free(domain);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void rproc_disable_iommu(struct rproc *rproc)
 | |
| {
 | |
| 	struct iommu_domain *domain = rproc->domain;
 | |
| 	struct device *dev = rproc->dev.parent;
 | |
| 
 | |
| 	if (!domain)
 | |
| 		return;
 | |
| 
 | |
| 	iommu_detach_device(domain, dev);
 | |
| 	iommu_domain_free(domain);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 | |
|  * @rproc: handle of a remote processor
 | |
|  * @da: remoteproc device address to translate
 | |
|  * @len: length of the memory region @da is pointing to
 | |
|  *
 | |
|  * Some remote processors will ask us to allocate them physically contiguous
 | |
|  * memory regions (which we call "carveouts"), and map them to specific
 | |
|  * device addresses (which are hardcoded in the firmware). They may also have
 | |
|  * dedicated memory regions internal to the processors, and use them either
 | |
|  * exclusively or alongside carveouts.
 | |
|  *
 | |
|  * They may then ask us to copy objects into specific device addresses (e.g.
 | |
|  * code/data sections) or expose us certain symbols in other device address
 | |
|  * (e.g. their trace buffer).
 | |
|  *
 | |
|  * This function is a helper function with which we can go over the allocated
 | |
|  * carveouts and translate specific device addresses to kernel virtual addresses
 | |
|  * so we can access the referenced memory. This function also allows to perform
 | |
|  * translations on the internal remoteproc memory regions through a platform
 | |
|  * implementation specific da_to_va ops, if present.
 | |
|  *
 | |
|  * The function returns a valid kernel address on success or NULL on failure.
 | |
|  *
 | |
|  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 | |
|  * but only on kernel direct mapped RAM memory. Instead, we're just using
 | |
|  * here the output of the DMA API for the carveouts, which should be more
 | |
|  * correct.
 | |
|  */
 | |
| void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
 | |
| {
 | |
| 	struct rproc_mem_entry *carveout;
 | |
| 	void *ptr = NULL;
 | |
| 
 | |
| 	if (rproc->ops->da_to_va) {
 | |
| 		ptr = rproc->ops->da_to_va(rproc, da, len);
 | |
| 		if (ptr)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(carveout, &rproc->carveouts, node) {
 | |
| 		int offset = da - carveout->da;
 | |
| 
 | |
| 		/* try next carveout if da is too small */
 | |
| 		if (offset < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* try next carveout if da is too large */
 | |
| 		if (offset + len > carveout->len)
 | |
| 			continue;
 | |
| 
 | |
| 		ptr = carveout->va + offset;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ptr;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_da_to_va);
 | |
| 
 | |
| int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 | |
| {
 | |
| 	struct rproc *rproc = rvdev->rproc;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	struct rproc_vring *rvring = &rvdev->vring[i];
 | |
| 	struct fw_rsc_vdev *rsc;
 | |
| 	dma_addr_t dma;
 | |
| 	void *va;
 | |
| 	int ret, size, notifyid;
 | |
| 
 | |
| 	/* actual size of vring (in bytes) */
 | |
| 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate non-cacheable memory for the vring. In the future
 | |
| 	 * this call will also configure the IOMMU for us
 | |
| 	 */
 | |
| 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
 | |
| 	if (!va) {
 | |
| 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Assign an rproc-wide unique index for this vring
 | |
| 	 * TODO: assign a notifyid for rvdev updates as well
 | |
| 	 * TODO: support predefined notifyids (via resource table)
 | |
| 	 */
 | |
| 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "idr_alloc failed: %d\n", ret);
 | |
| 		dma_free_coherent(dev->parent, size, va, dma);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	notifyid = ret;
 | |
| 
 | |
| 	/* Potentially bump max_notifyid */
 | |
| 	if (notifyid > rproc->max_notifyid)
 | |
| 		rproc->max_notifyid = notifyid;
 | |
| 
 | |
| 	dev_dbg(dev, "vring%d: va %pK dma %pad size 0x%x idr %d\n",
 | |
| 		i, va, &dma, size, notifyid);
 | |
| 
 | |
| 	rvring->va = va;
 | |
| 	rvring->dma = dma;
 | |
| 	rvring->notifyid = notifyid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let the rproc know the notifyid and da of this vring.
 | |
| 	 * Not all platforms use dma_alloc_coherent to automatically
 | |
| 	 * set up the iommu. In this case the device address (da) will
 | |
| 	 * hold the physical address and not the device address.
 | |
| 	 */
 | |
| 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 | |
| 	rsc->vring[i].da = dma;
 | |
| 	rsc->vring[i].notifyid = notifyid;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 | |
| {
 | |
| 	struct rproc *rproc = rvdev->rproc;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 | |
| 	struct rproc_vring *rvring = &rvdev->vring[i];
 | |
| 
 | |
| 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 | |
| 		i, vring->da, vring->num, vring->align);
 | |
| 
 | |
| 	/* verify queue size and vring alignment are sane */
 | |
| 	if (!vring->num || !vring->align) {
 | |
| 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 | |
| 			vring->num, vring->align);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	rvring->len = vring->num;
 | |
| 	rvring->align = vring->align;
 | |
| 	rvring->rvdev = rvdev;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void rproc_free_vring(struct rproc_vring *rvring)
 | |
| {
 | |
| 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 | |
| 	struct rproc *rproc = rvring->rvdev->rproc;
 | |
| 	int idx = rvring->rvdev->vring - rvring;
 | |
| 	struct fw_rsc_vdev *rsc;
 | |
| 
 | |
| 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
 | |
| 	idr_remove(&rproc->notifyids, rvring->notifyid);
 | |
| 
 | |
| 	/* reset resource entry info */
 | |
| 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 | |
| 	rsc->vring[idx].da = 0;
 | |
| 	rsc->vring[idx].notifyid = -1;
 | |
| }
 | |
| 
 | |
| static int rproc_vdev_do_start(struct rproc_subdev *subdev)
 | |
| {
 | |
| 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 | |
| 
 | |
| 	return rproc_add_virtio_dev(rvdev, rvdev->id);
 | |
| }
 | |
| 
 | |
| static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
 | |
| {
 | |
| 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 | |
| 
 | |
| 	rproc_remove_virtio_dev(rvdev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_handle_vdev() - handle a vdev fw resource
 | |
|  * @rproc: the remote processor
 | |
|  * @rsc: the vring resource descriptor
 | |
|  * @avail: size of available data (for sanity checking the image)
 | |
|  *
 | |
|  * This resource entry requests the host to statically register a virtio
 | |
|  * device (vdev), and setup everything needed to support it. It contains
 | |
|  * everything needed to make it possible: the virtio device id, virtio
 | |
|  * device features, vrings information, virtio config space, etc...
 | |
|  *
 | |
|  * Before registering the vdev, the vrings are allocated from non-cacheable
 | |
|  * physically contiguous memory. Currently we only support two vrings per
 | |
|  * remote processor (temporary limitation). We might also want to consider
 | |
|  * doing the vring allocation only later when ->find_vqs() is invoked, and
 | |
|  * then release them upon ->del_vqs().
 | |
|  *
 | |
|  * Note: @da is currently not really handled correctly: we dynamically
 | |
|  * allocate it using the DMA API, ignoring requested hard coded addresses,
 | |
|  * and we don't take care of any required IOMMU programming. This is all
 | |
|  * going to be taken care of when the generic iommu-based DMA API will be
 | |
|  * merged. Meanwhile, statically-addressed iommu-based firmware images should
 | |
|  * use RSC_DEVMEM resource entries to map their required @da to the physical
 | |
|  * address of their base CMA region (ouch, hacky!).
 | |
|  *
 | |
|  * Returns 0 on success, or an appropriate error code otherwise
 | |
|  */
 | |
| static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 | |
| 			     int offset, int avail)
 | |
| {
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	struct rproc_vdev *rvdev;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/* make sure resource isn't truncated */
 | |
| 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
 | |
| 			+ rsc->config_len > avail) {
 | |
| 		dev_err(dev, "vdev rsc is truncated\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure reserved bytes are zeroes */
 | |
| 	if (rsc->reserved[0] || rsc->reserved[1]) {
 | |
| 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 | |
| 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 | |
| 
 | |
| 	/* we currently support only two vrings per rvdev */
 | |
| 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 | |
| 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
 | |
| 	if (!rvdev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	kref_init(&rvdev->refcount);
 | |
| 
 | |
| 	rvdev->id = rsc->id;
 | |
| 	rvdev->rproc = rproc;
 | |
| 
 | |
| 	/* parse the vrings */
 | |
| 	for (i = 0; i < rsc->num_of_vrings; i++) {
 | |
| 		ret = rproc_parse_vring(rvdev, rsc, i);
 | |
| 		if (ret)
 | |
| 			goto free_rvdev;
 | |
| 	}
 | |
| 
 | |
| 	/* remember the resource offset*/
 | |
| 	rvdev->rsc_offset = offset;
 | |
| 
 | |
| 	/* allocate the vring resources */
 | |
| 	for (i = 0; i < rsc->num_of_vrings; i++) {
 | |
| 		ret = rproc_alloc_vring(rvdev, i);
 | |
| 		if (ret)
 | |
| 			goto unwind_vring_allocations;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&rvdev->node, &rproc->rvdevs);
 | |
| 
 | |
| 	rvdev->subdev.start = rproc_vdev_do_start;
 | |
| 	rvdev->subdev.stop = rproc_vdev_do_stop;
 | |
| 
 | |
| 	rproc_add_subdev(rproc, &rvdev->subdev);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| unwind_vring_allocations:
 | |
| 	for (i--; i >= 0; i--)
 | |
| 		rproc_free_vring(&rvdev->vring[i]);
 | |
| free_rvdev:
 | |
| 	kfree(rvdev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void rproc_vdev_release(struct kref *ref)
 | |
| {
 | |
| 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
 | |
| 	struct rproc_vring *rvring;
 | |
| 	struct rproc *rproc = rvdev->rproc;
 | |
| 	int id;
 | |
| 
 | |
| 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
 | |
| 		rvring = &rvdev->vring[id];
 | |
| 		if (!rvring->va)
 | |
| 			continue;
 | |
| 
 | |
| 		rproc_free_vring(rvring);
 | |
| 	}
 | |
| 
 | |
| 	rproc_remove_subdev(rproc, &rvdev->subdev);
 | |
| 	list_del(&rvdev->node);
 | |
| 	kfree(rvdev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_handle_trace() - handle a shared trace buffer resource
 | |
|  * @rproc: the remote processor
 | |
|  * @rsc: the trace resource descriptor
 | |
|  * @avail: size of available data (for sanity checking the image)
 | |
|  *
 | |
|  * In case the remote processor dumps trace logs into memory,
 | |
|  * export it via debugfs.
 | |
|  *
 | |
|  * Currently, the 'da' member of @rsc should contain the device address
 | |
|  * where the remote processor is dumping the traces. Later we could also
 | |
|  * support dynamically allocating this address using the generic
 | |
|  * DMA API (but currently there isn't a use case for that).
 | |
|  *
 | |
|  * Returns 0 on success, or an appropriate error code otherwise
 | |
|  */
 | |
| static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
 | |
| 			      int offset, int avail)
 | |
| {
 | |
| 	struct rproc_mem_entry *trace;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	void *ptr;
 | |
| 	char name[15];
 | |
| 
 | |
| 	if (sizeof(*rsc) > avail) {
 | |
| 		dev_err(dev, "trace rsc is truncated\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure reserved bytes are zeroes */
 | |
| 	if (rsc->reserved) {
 | |
| 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* what's the kernel address of this resource ? */
 | |
| 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
 | |
| 	if (!ptr) {
 | |
| 		dev_err(dev, "erroneous trace resource entry\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 | |
| 	if (!trace)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* set the trace buffer dma properties */
 | |
| 	trace->len = rsc->len;
 | |
| 	trace->va = ptr;
 | |
| 
 | |
| 	/* make sure snprintf always null terminates, even if truncating */
 | |
| 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 | |
| 
 | |
| 	/* create the debugfs entry */
 | |
| 	trace->priv = rproc_create_trace_file(name, rproc, trace);
 | |
| 	if (!trace->priv) {
 | |
| 		trace->va = NULL;
 | |
| 		kfree(trace);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&trace->node, &rproc->traces);
 | |
| 
 | |
| 	rproc->num_traces++;
 | |
| 
 | |
| 	dev_dbg(dev, "%s added: va %pK, da 0x%x, len 0x%x\n",
 | |
| 		name, ptr, rsc->da, rsc->len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_handle_devmem() - handle devmem resource entry
 | |
|  * @rproc: remote processor handle
 | |
|  * @rsc: the devmem resource entry
 | |
|  * @avail: size of available data (for sanity checking the image)
 | |
|  *
 | |
|  * Remote processors commonly need to access certain on-chip peripherals.
 | |
|  *
 | |
|  * Some of these remote processors access memory via an iommu device,
 | |
|  * and might require us to configure their iommu before they can access
 | |
|  * the on-chip peripherals they need.
 | |
|  *
 | |
|  * This resource entry is a request to map such a peripheral device.
 | |
|  *
 | |
|  * These devmem entries will contain the physical address of the device in
 | |
|  * the 'pa' member. If a specific device address is expected, then 'da' will
 | |
|  * contain it (currently this is the only use case supported). 'len' will
 | |
|  * contain the size of the physical region we need to map.
 | |
|  *
 | |
|  * Currently we just "trust" those devmem entries to contain valid physical
 | |
|  * addresses, but this is going to change: we want the implementations to
 | |
|  * tell us ranges of physical addresses the firmware is allowed to request,
 | |
|  * and not allow firmwares to request access to physical addresses that
 | |
|  * are outside those ranges.
 | |
|  */
 | |
| static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
 | |
| 			       int offset, int avail)
 | |
| {
 | |
| 	struct rproc_mem_entry *mapping;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* no point in handling this resource without a valid iommu domain */
 | |
| 	if (!rproc->domain)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (sizeof(*rsc) > avail) {
 | |
| 		dev_err(dev, "devmem rsc is truncated\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure reserved bytes are zeroes */
 | |
| 	if (rsc->reserved) {
 | |
| 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 | |
| 	if (!mapping)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to map devmem: %d\n", ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We'll need this info later when we'll want to unmap everything
 | |
| 	 * (e.g. on shutdown).
 | |
| 	 *
 | |
| 	 * We can't trust the remote processor not to change the resource
 | |
| 	 * table, so we must maintain this info independently.
 | |
| 	 */
 | |
| 	mapping->da = rsc->da;
 | |
| 	mapping->len = rsc->len;
 | |
| 	list_add_tail(&mapping->node, &rproc->mappings);
 | |
| 
 | |
| 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 | |
| 		rsc->pa, rsc->da, rsc->len);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	kfree(mapping);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_handle_carveout() - handle phys contig memory allocation requests
 | |
|  * @rproc: rproc handle
 | |
|  * @rsc: the resource entry
 | |
|  * @avail: size of available data (for image validation)
 | |
|  *
 | |
|  * This function will handle firmware requests for allocation of physically
 | |
|  * contiguous memory regions.
 | |
|  *
 | |
|  * These request entries should come first in the firmware's resource table,
 | |
|  * as other firmware entries might request placing other data objects inside
 | |
|  * these memory regions (e.g. data/code segments, trace resource entries, ...).
 | |
|  *
 | |
|  * Allocating memory this way helps utilizing the reserved physical memory
 | |
|  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 | |
|  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 | |
|  * pressure is important; it may have a substantial impact on performance.
 | |
|  */
 | |
| static int rproc_handle_carveout(struct rproc *rproc,
 | |
| 				 struct fw_rsc_carveout *rsc,
 | |
| 				 int offset, int avail)
 | |
| {
 | |
| 	struct rproc_mem_entry *carveout, *mapping;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	dma_addr_t dma;
 | |
| 	void *va;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (sizeof(*rsc) > avail) {
 | |
| 		dev_err(dev, "carveout rsc is truncated\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure reserved bytes are zeroes */
 | |
| 	if (rsc->reserved) {
 | |
| 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 | |
| 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 | |
| 
 | |
| 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
 | |
| 	if (!carveout)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
 | |
| 	if (!va) {
 | |
| 		dev_err(dev->parent,
 | |
| 			"failed to allocate dma memory: len 0x%x\n", rsc->len);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto free_carv;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
 | |
| 		va, &dma, rsc->len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, this is non-standard.
 | |
| 	 *
 | |
| 	 * Sometimes we can't rely on the generic iommu-based DMA API
 | |
| 	 * to dynamically allocate the device address and then set the IOMMU
 | |
| 	 * tables accordingly, because some remote processors might
 | |
| 	 * _require_ us to use hard coded device addresses that their
 | |
| 	 * firmware was compiled with.
 | |
| 	 *
 | |
| 	 * In this case, we must use the IOMMU API directly and map
 | |
| 	 * the memory to the device address as expected by the remote
 | |
| 	 * processor.
 | |
| 	 *
 | |
| 	 * Obviously such remote processor devices should not be configured
 | |
| 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
 | |
| 	 * physical address in this case.
 | |
| 	 */
 | |
| 	if (rproc->domain) {
 | |
| 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 | |
| 		if (!mapping) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto dma_free;
 | |
| 		}
 | |
| 
 | |
| 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
 | |
| 				rsc->flags);
 | |
| 		if (ret) {
 | |
| 			dev_err(dev, "iommu_map failed: %d\n", ret);
 | |
| 			goto free_mapping;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We'll need this info later when we'll want to unmap
 | |
| 		 * everything (e.g. on shutdown).
 | |
| 		 *
 | |
| 		 * We can't trust the remote processor not to change the
 | |
| 		 * resource table, so we must maintain this info independently.
 | |
| 		 */
 | |
| 		mapping->da = rsc->da;
 | |
| 		mapping->len = rsc->len;
 | |
| 		list_add_tail(&mapping->node, &rproc->mappings);
 | |
| 
 | |
| 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 | |
| 			rsc->da, &dma);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some remote processors might need to know the pa
 | |
| 	 * even though they are behind an IOMMU. E.g., OMAP4's
 | |
| 	 * remote M3 processor needs this so it can control
 | |
| 	 * on-chip hardware accelerators that are not behind
 | |
| 	 * the IOMMU, and therefor must know the pa.
 | |
| 	 *
 | |
| 	 * Generally we don't want to expose physical addresses
 | |
| 	 * if we don't have to (remote processors are generally
 | |
| 	 * _not_ trusted), so we might want to do this only for
 | |
| 	 * remote processor that _must_ have this (e.g. OMAP4's
 | |
| 	 * dual M3 subsystem).
 | |
| 	 *
 | |
| 	 * Non-IOMMU processors might also want to have this info.
 | |
| 	 * In this case, the device address and the physical address
 | |
| 	 * are the same.
 | |
| 	 */
 | |
| 	rsc->pa = dma;
 | |
| 
 | |
| 	carveout->va = va;
 | |
| 	carveout->len = rsc->len;
 | |
| 	carveout->dma = dma;
 | |
| 	carveout->da = rsc->da;
 | |
| 
 | |
| 	list_add_tail(&carveout->node, &rproc->carveouts);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_mapping:
 | |
| 	kfree(mapping);
 | |
| dma_free:
 | |
| 	dma_free_coherent(dev->parent, rsc->len, va, dma);
 | |
| free_carv:
 | |
| 	kfree(carveout);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A lookup table for resource handlers. The indices are defined in
 | |
|  * enum fw_resource_type.
 | |
|  */
 | |
| static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
 | |
| 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
 | |
| 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
 | |
| 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
 | |
| 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
 | |
| };
 | |
| 
 | |
| /* handle firmware resource entries before booting the remote processor */
 | |
| static int rproc_handle_resources(struct rproc *rproc,
 | |
| 				  rproc_handle_resource_t handlers[RSC_LAST])
 | |
| {
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	rproc_handle_resource_t handler;
 | |
| 	int ret = 0, i;
 | |
| 
 | |
| 	if (!rproc->table_ptr)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < rproc->table_ptr->num; i++) {
 | |
| 		int offset = rproc->table_ptr->offset[i];
 | |
| 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
 | |
| 		int avail = rproc->table_sz - offset - sizeof(*hdr);
 | |
| 		void *rsc = (void *)hdr + sizeof(*hdr);
 | |
| 
 | |
| 		/* make sure table isn't truncated */
 | |
| 		if (avail < 0) {
 | |
| 			dev_err(dev, "rsc table is truncated\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
 | |
| 
 | |
| 		if (hdr->type >= RSC_LAST) {
 | |
| 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		handler = handlers[hdr->type];
 | |
| 		if (!handler)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rproc_prepare_subdevices(struct rproc *rproc)
 | |
| {
 | |
| 	struct rproc_subdev *subdev;
 | |
| 	int ret;
 | |
| 
 | |
| 	list_for_each_entry(subdev, &rproc->subdevs, node) {
 | |
| 		if (subdev->prepare) {
 | |
| 			ret = subdev->prepare(subdev);
 | |
| 			if (ret)
 | |
| 				goto unroll_preparation;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| unroll_preparation:
 | |
| 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
 | |
| 		if (subdev->unprepare)
 | |
| 			subdev->unprepare(subdev);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rproc_start_subdevices(struct rproc *rproc)
 | |
| {
 | |
| 	struct rproc_subdev *subdev;
 | |
| 	int ret;
 | |
| 
 | |
| 	list_for_each_entry(subdev, &rproc->subdevs, node) {
 | |
| 		if (subdev->start) {
 | |
| 			ret = subdev->start(subdev);
 | |
| 			if (ret)
 | |
| 				goto unroll_registration;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| unroll_registration:
 | |
| 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
 | |
| 		if (subdev->stop)
 | |
| 			subdev->stop(subdev, true);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
 | |
| {
 | |
| 	struct rproc_subdev *subdev;
 | |
| 
 | |
| 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
 | |
| 		if (subdev->stop)
 | |
| 			subdev->stop(subdev, crashed);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rproc_unprepare_subdevices(struct rproc *rproc)
 | |
| {
 | |
| 	struct rproc_subdev *subdev;
 | |
| 
 | |
| 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
 | |
| 		if (subdev->unprepare)
 | |
| 			subdev->unprepare(subdev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_coredump_cleanup() - clean up dump_segments list
 | |
|  * @rproc: the remote processor handle
 | |
|  */
 | |
| static void rproc_coredump_cleanup(struct rproc *rproc)
 | |
| {
 | |
| 	struct rproc_dump_segment *entry, *tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
 | |
| 		list_del(&entry->node);
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_resource_cleanup() - clean up and free all acquired resources
 | |
|  * @rproc: rproc handle
 | |
|  *
 | |
|  * This function will free all resources acquired for @rproc, and it
 | |
|  * is called whenever @rproc either shuts down or fails to boot.
 | |
|  */
 | |
| static void rproc_resource_cleanup(struct rproc *rproc)
 | |
| {
 | |
| 	struct rproc_mem_entry *entry, *tmp;
 | |
| 	struct rproc_vdev *rvdev, *rvtmp;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 
 | |
| 	/* clean up debugfs trace entries */
 | |
| 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
 | |
| 		rproc_remove_trace_file(entry->priv);
 | |
| 		rproc->num_traces--;
 | |
| 		list_del(&entry->node);
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| 
 | |
| 	/* clean up iommu mapping entries */
 | |
| 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
 | |
| 		size_t unmapped;
 | |
| 
 | |
| 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
 | |
| 		if (unmapped != entry->len) {
 | |
| 			/* nothing much to do besides complaining */
 | |
| 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
 | |
| 				unmapped);
 | |
| 		}
 | |
| 
 | |
| 		list_del(&entry->node);
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| 
 | |
| 	/* clean up carveout allocations */
 | |
| 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
 | |
| 		dma_free_coherent(dev->parent, entry->len, entry->va,
 | |
| 				  entry->dma);
 | |
| 		list_del(&entry->node);
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| 
 | |
| 	/* clean up remote vdev entries */
 | |
| 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
 | |
| 		kref_put(&rvdev->refcount, rproc_vdev_release);
 | |
| 
 | |
| 	rproc_coredump_cleanup(rproc);
 | |
| }
 | |
| 
 | |
| static int rproc_start(struct rproc *rproc, const struct firmware *fw)
 | |
| {
 | |
| 	struct resource_table *loaded_table;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* load the ELF segments to memory */
 | |
| 	ret = rproc_load_segments(rproc, fw);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Failed to load program segments: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The starting device has been given the rproc->cached_table as the
 | |
| 	 * resource table. The address of the vring along with the other
 | |
| 	 * allocated resources (carveouts etc) is stored in cached_table.
 | |
| 	 * In order to pass this information to the remote device we must copy
 | |
| 	 * this information to device memory. We also update the table_ptr so
 | |
| 	 * that any subsequent changes will be applied to the loaded version.
 | |
| 	 */
 | |
| 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
 | |
| 	if (loaded_table) {
 | |
| 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
 | |
| 		rproc->table_ptr = loaded_table;
 | |
| 	}
 | |
| 
 | |
| 	ret = rproc_prepare_subdevices(rproc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
 | |
| 			rproc->name, ret);
 | |
| 		goto reset_table_ptr;
 | |
| 	}
 | |
| 
 | |
| 	/* power up the remote processor */
 | |
| 	ret = rproc->ops->start(rproc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
 | |
| 		goto unprepare_subdevices;
 | |
| 	}
 | |
| 
 | |
| 	/* Start any subdevices for the remote processor */
 | |
| 	ret = rproc_start_subdevices(rproc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
 | |
| 			rproc->name, ret);
 | |
| 		goto stop_rproc;
 | |
| 	}
 | |
| 
 | |
| 	rproc->state = RPROC_RUNNING;
 | |
| 
 | |
| 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| stop_rproc:
 | |
| 	rproc->ops->stop(rproc);
 | |
| unprepare_subdevices:
 | |
| 	rproc_unprepare_subdevices(rproc);
 | |
| reset_table_ptr:
 | |
| 	rproc->table_ptr = rproc->cached_table;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * take a firmware and boot a remote processor with it.
 | |
|  */
 | |
| static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
 | |
| {
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	const char *name = rproc->firmware;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = rproc_fw_sanity_check(rproc, fw);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
 | |
| 
 | |
| 	/*
 | |
| 	 * if enabling an IOMMU isn't relevant for this rproc, this is
 | |
| 	 * just a nop
 | |
| 	 */
 | |
| 	ret = rproc_enable_iommu(rproc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't enable iommu: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
 | |
| 
 | |
| 	/* Load resource table, core dump segment list etc from the firmware */
 | |
| 	ret = rproc_parse_fw(rproc, fw);
 | |
| 	if (ret)
 | |
| 		goto disable_iommu;
 | |
| 
 | |
| 	/* reset max_notifyid */
 | |
| 	rproc->max_notifyid = -1;
 | |
| 
 | |
| 	/* handle fw resources which are required to boot rproc */
 | |
| 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Failed to process resources: %d\n", ret);
 | |
| 		goto clean_up_resources;
 | |
| 	}
 | |
| 
 | |
| 	ret = rproc_start(rproc, fw);
 | |
| 	if (ret)
 | |
| 		goto clean_up_resources;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| clean_up_resources:
 | |
| 	rproc_resource_cleanup(rproc);
 | |
| 	kfree(rproc->cached_table);
 | |
| 	rproc->cached_table = NULL;
 | |
| 	rproc->table_ptr = NULL;
 | |
| disable_iommu:
 | |
| 	rproc_disable_iommu(rproc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * take a firmware and boot it up.
 | |
|  *
 | |
|  * Note: this function is called asynchronously upon registration of the
 | |
|  * remote processor (so we must wait until it completes before we try
 | |
|  * to unregister the device. one other option is just to use kref here,
 | |
|  * that might be cleaner).
 | |
|  */
 | |
| static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
 | |
| {
 | |
| 	struct rproc *rproc = context;
 | |
| 
 | |
| 	rproc_boot(rproc);
 | |
| 
 | |
| 	release_firmware(fw);
 | |
| }
 | |
| 
 | |
| static int rproc_trigger_auto_boot(struct rproc *rproc)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're initiating an asynchronous firmware loading, so we can
 | |
| 	 * be built-in kernel code, without hanging the boot process.
 | |
| 	 */
 | |
| 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
 | |
| 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
 | |
| 				      rproc, rproc_auto_boot_callback);
 | |
| 	if (ret < 0)
 | |
| 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int rproc_stop(struct rproc *rproc, bool crashed)
 | |
| {
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Stop any subdevices for the remote processor */
 | |
| 	rproc_stop_subdevices(rproc, crashed);
 | |
| 
 | |
| 	/* the installed resource table is no longer accessible */
 | |
| 	rproc->table_ptr = rproc->cached_table;
 | |
| 
 | |
| 	/* power off the remote processor */
 | |
| 	ret = rproc->ops->stop(rproc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't stop rproc: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	rproc_unprepare_subdevices(rproc);
 | |
| 
 | |
| 	rproc->state = RPROC_OFFLINE;
 | |
| 
 | |
| 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_coredump_add_segment() - add segment of device memory to coredump
 | |
|  * @rproc:	handle of a remote processor
 | |
|  * @da:		device address
 | |
|  * @size:	size of segment
 | |
|  *
 | |
|  * Add device memory to the list of segments to be included in a coredump for
 | |
|  * the remoteproc.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on error.
 | |
|  */
 | |
| int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
 | |
| {
 | |
| 	struct rproc_dump_segment *segment;
 | |
| 
 | |
| 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
 | |
| 	if (!segment)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	segment->da = da;
 | |
| 	segment->size = size;
 | |
| 
 | |
| 	list_add_tail(&segment->node, &rproc->dump_segments);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_coredump_add_segment);
 | |
| 
 | |
| /**
 | |
|  * rproc_coredump() - perform coredump
 | |
|  * @rproc:	rproc handle
 | |
|  *
 | |
|  * This function will generate an ELF header for the registered segments
 | |
|  * and create a devcoredump device associated with rproc.
 | |
|  */
 | |
| static void rproc_coredump(struct rproc *rproc)
 | |
| {
 | |
| 	struct rproc_dump_segment *segment;
 | |
| 	struct elf32_phdr *phdr;
 | |
| 	struct elf32_hdr *ehdr;
 | |
| 	size_t data_size;
 | |
| 	size_t offset;
 | |
| 	void *data;
 | |
| 	void *ptr;
 | |
| 	int phnum = 0;
 | |
| 
 | |
| 	if (list_empty(&rproc->dump_segments))
 | |
| 		return;
 | |
| 
 | |
| 	data_size = sizeof(*ehdr);
 | |
| 	list_for_each_entry(segment, &rproc->dump_segments, node) {
 | |
| 		data_size += sizeof(*phdr) + segment->size;
 | |
| 
 | |
| 		phnum++;
 | |
| 	}
 | |
| 
 | |
| 	data = vmalloc(data_size);
 | |
| 	if (!data)
 | |
| 		return;
 | |
| 
 | |
| 	ehdr = data;
 | |
| 
 | |
| 	memset(ehdr, 0, sizeof(*ehdr));
 | |
| 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
 | |
| 	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
 | |
| 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
 | |
| 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 | |
| 	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
 | |
| 	ehdr->e_type = ET_CORE;
 | |
| 	ehdr->e_machine = EM_NONE;
 | |
| 	ehdr->e_version = EV_CURRENT;
 | |
| 	ehdr->e_entry = rproc->bootaddr;
 | |
| 	ehdr->e_phoff = sizeof(*ehdr);
 | |
| 	ehdr->e_ehsize = sizeof(*ehdr);
 | |
| 	ehdr->e_phentsize = sizeof(*phdr);
 | |
| 	ehdr->e_phnum = phnum;
 | |
| 
 | |
| 	phdr = data + ehdr->e_phoff;
 | |
| 	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
 | |
| 	list_for_each_entry(segment, &rproc->dump_segments, node) {
 | |
| 		memset(phdr, 0, sizeof(*phdr));
 | |
| 		phdr->p_type = PT_LOAD;
 | |
| 		phdr->p_offset = offset;
 | |
| 		phdr->p_vaddr = segment->da;
 | |
| 		phdr->p_paddr = segment->da;
 | |
| 		phdr->p_filesz = segment->size;
 | |
| 		phdr->p_memsz = segment->size;
 | |
| 		phdr->p_flags = PF_R | PF_W | PF_X;
 | |
| 		phdr->p_align = 0;
 | |
| 
 | |
| 		ptr = rproc_da_to_va(rproc, segment->da, segment->size);
 | |
| 		if (!ptr) {
 | |
| 			dev_err(&rproc->dev,
 | |
| 				"invalid coredump segment (%pad, %zu)\n",
 | |
| 				&segment->da, segment->size);
 | |
| 			memset(data + offset, 0xff, segment->size);
 | |
| 		} else {
 | |
| 			memcpy(data + offset, ptr, segment->size);
 | |
| 		}
 | |
| 
 | |
| 		offset += phdr->p_filesz;
 | |
| 		phdr++;
 | |
| 	}
 | |
| 
 | |
| 	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_trigger_recovery() - recover a remoteproc
 | |
|  * @rproc: the remote processor
 | |
|  *
 | |
|  * The recovery is done by resetting all the virtio devices, that way all the
 | |
|  * rpmsg drivers will be reseted along with the remote processor making the
 | |
|  * remoteproc functional again.
 | |
|  *
 | |
|  * This function can sleep, so it cannot be called from atomic context.
 | |
|  */
 | |
| int rproc_trigger_recovery(struct rproc *rproc)
 | |
| {
 | |
| 	const struct firmware *firmware_p;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	dev_err(dev, "recovering %s\n", rproc->name);
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&rproc->lock);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = rproc_stop(rproc, true);
 | |
| 	if (ret)
 | |
| 		goto unlock_mutex;
 | |
| 
 | |
| 	/* generate coredump */
 | |
| 	rproc_coredump(rproc);
 | |
| 
 | |
| 	/* load firmware */
 | |
| 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "request_firmware failed: %d\n", ret);
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	/* boot the remote processor up again */
 | |
| 	ret = rproc_start(rproc, firmware_p);
 | |
| 
 | |
| 	release_firmware(firmware_p);
 | |
| 
 | |
| unlock_mutex:
 | |
| 	mutex_unlock(&rproc->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_crash_handler_work() - handle a crash
 | |
|  *
 | |
|  * This function needs to handle everything related to a crash, like cpu
 | |
|  * registers and stack dump, information to help to debug the fatal error, etc.
 | |
|  */
 | |
| static void rproc_crash_handler_work(struct work_struct *work)
 | |
| {
 | |
| 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 
 | |
| 	dev_dbg(dev, "enter %s\n", __func__);
 | |
| 
 | |
| 	mutex_lock(&rproc->lock);
 | |
| 
 | |
| 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
 | |
| 		/* handle only the first crash detected */
 | |
| 		mutex_unlock(&rproc->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rproc->state = RPROC_CRASHED;
 | |
| 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
 | |
| 		rproc->name);
 | |
| 
 | |
| 	mutex_unlock(&rproc->lock);
 | |
| 
 | |
| 	if (!rproc->recovery_disabled)
 | |
| 		rproc_trigger_recovery(rproc);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_boot() - boot a remote processor
 | |
|  * @rproc: handle of a remote processor
 | |
|  *
 | |
|  * Boot a remote processor (i.e. load its firmware, power it on, ...).
 | |
|  *
 | |
|  * If the remote processor is already powered on, this function immediately
 | |
|  * returns (successfully).
 | |
|  *
 | |
|  * Returns 0 on success, and an appropriate error value otherwise.
 | |
|  */
 | |
| int rproc_boot(struct rproc *rproc)
 | |
| {
 | |
| 	const struct firmware *firmware_p;
 | |
| 	struct device *dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!rproc) {
 | |
| 		pr_err("invalid rproc handle\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev = &rproc->dev;
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&rproc->lock);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (rproc->state == RPROC_DELETED) {
 | |
| 		ret = -ENODEV;
 | |
| 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	/* skip the boot process if rproc is already powered up */
 | |
| 	if (atomic_inc_return(&rproc->power) > 1) {
 | |
| 		ret = 0;
 | |
| 		goto unlock_mutex;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(dev, "powering up %s\n", rproc->name);
 | |
| 
 | |
| 	/* load firmware */
 | |
| 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "request_firmware failed: %d\n", ret);
 | |
| 		goto downref_rproc;
 | |
| 	}
 | |
| 
 | |
| 	ret = rproc_fw_boot(rproc, firmware_p);
 | |
| 
 | |
| 	release_firmware(firmware_p);
 | |
| 
 | |
| downref_rproc:
 | |
| 	if (ret)
 | |
| 		atomic_dec(&rproc->power);
 | |
| unlock_mutex:
 | |
| 	mutex_unlock(&rproc->lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_boot);
 | |
| 
 | |
| /**
 | |
|  * rproc_shutdown() - power off the remote processor
 | |
|  * @rproc: the remote processor
 | |
|  *
 | |
|  * Power off a remote processor (previously booted with rproc_boot()).
 | |
|  *
 | |
|  * In case @rproc is still being used by an additional user(s), then
 | |
|  * this function will just decrement the power refcount and exit,
 | |
|  * without really powering off the device.
 | |
|  *
 | |
|  * Every call to rproc_boot() must (eventually) be accompanied by a call
 | |
|  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 | |
|  *
 | |
|  * Notes:
 | |
|  * - we're not decrementing the rproc's refcount, only the power refcount.
 | |
|  *   which means that the @rproc handle stays valid even after rproc_shutdown()
 | |
|  *   returns, and users can still use it with a subsequent rproc_boot(), if
 | |
|  *   needed.
 | |
|  */
 | |
| void rproc_shutdown(struct rproc *rproc)
 | |
| {
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&rproc->lock);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* if the remote proc is still needed, bail out */
 | |
| 	if (!atomic_dec_and_test(&rproc->power))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = rproc_stop(rproc, false);
 | |
| 	if (ret) {
 | |
| 		atomic_inc(&rproc->power);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* clean up all acquired resources */
 | |
| 	rproc_resource_cleanup(rproc);
 | |
| 
 | |
| 	rproc_disable_iommu(rproc);
 | |
| 
 | |
| 	/* Free the copy of the resource table */
 | |
| 	kfree(rproc->cached_table);
 | |
| 	rproc->cached_table = NULL;
 | |
| 	rproc->table_ptr = NULL;
 | |
| out:
 | |
| 	mutex_unlock(&rproc->lock);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_shutdown);
 | |
| 
 | |
| /**
 | |
|  * rproc_get_by_phandle() - find a remote processor by phandle
 | |
|  * @phandle: phandle to the rproc
 | |
|  *
 | |
|  * Finds an rproc handle using the remote processor's phandle, and then
 | |
|  * return a handle to the rproc.
 | |
|  *
 | |
|  * This function increments the remote processor's refcount, so always
 | |
|  * use rproc_put() to decrement it back once rproc isn't needed anymore.
 | |
|  *
 | |
|  * Returns the rproc handle on success, and NULL on failure.
 | |
|  */
 | |
| #ifdef CONFIG_OF
 | |
| struct rproc *rproc_get_by_phandle(phandle phandle)
 | |
| {
 | |
| 	struct rproc *rproc = NULL, *r;
 | |
| 	struct device_node *np;
 | |
| 
 | |
| 	np = of_find_node_by_phandle(phandle);
 | |
| 	if (!np)
 | |
| 		return NULL;
 | |
| 
 | |
| 	mutex_lock(&rproc_list_mutex);
 | |
| 	list_for_each_entry(r, &rproc_list, node) {
 | |
| 		if (r->dev.parent && r->dev.parent->of_node == np) {
 | |
| 			/* prevent underlying implementation from being removed */
 | |
| 			if (!try_module_get(r->dev.parent->driver->owner)) {
 | |
| 				dev_err(&r->dev, "can't get owner\n");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			rproc = r;
 | |
| 			get_device(&rproc->dev);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&rproc_list_mutex);
 | |
| 
 | |
| 	of_node_put(np);
 | |
| 
 | |
| 	return rproc;
 | |
| }
 | |
| #else
 | |
| struct rproc *rproc_get_by_phandle(phandle phandle)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| EXPORT_SYMBOL(rproc_get_by_phandle);
 | |
| 
 | |
| /**
 | |
|  * rproc_add() - register a remote processor
 | |
|  * @rproc: the remote processor handle to register
 | |
|  *
 | |
|  * Registers @rproc with the remoteproc framework, after it has been
 | |
|  * allocated with rproc_alloc().
 | |
|  *
 | |
|  * This is called by the platform-specific rproc implementation, whenever
 | |
|  * a new remote processor device is probed.
 | |
|  *
 | |
|  * Returns 0 on success and an appropriate error code otherwise.
 | |
|  *
 | |
|  * Note: this function initiates an asynchronous firmware loading
 | |
|  * context, which will look for virtio devices supported by the rproc's
 | |
|  * firmware.
 | |
|  *
 | |
|  * If found, those virtio devices will be created and added, so as a result
 | |
|  * of registering this remote processor, additional virtio drivers might be
 | |
|  * probed.
 | |
|  */
 | |
| int rproc_add(struct rproc *rproc)
 | |
| {
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = device_add(dev);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	dev_info(dev, "%s is available\n", rproc->name);
 | |
| 
 | |
| 	/* create debugfs entries */
 | |
| 	rproc_create_debug_dir(rproc);
 | |
| 
 | |
| 	/* if rproc is marked always-on, request it to boot */
 | |
| 	if (rproc->auto_boot) {
 | |
| 		ret = rproc_trigger_auto_boot(rproc);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* expose to rproc_get_by_phandle users */
 | |
| 	mutex_lock(&rproc_list_mutex);
 | |
| 	list_add(&rproc->node, &rproc_list);
 | |
| 	mutex_unlock(&rproc_list_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_add);
 | |
| 
 | |
| /**
 | |
|  * rproc_type_release() - release a remote processor instance
 | |
|  * @dev: the rproc's device
 | |
|  *
 | |
|  * This function should _never_ be called directly.
 | |
|  *
 | |
|  * It will be called by the driver core when no one holds a valid pointer
 | |
|  * to @dev anymore.
 | |
|  */
 | |
| static void rproc_type_release(struct device *dev)
 | |
| {
 | |
| 	struct rproc *rproc = container_of(dev, struct rproc, dev);
 | |
| 
 | |
| 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
 | |
| 
 | |
| 	idr_destroy(&rproc->notifyids);
 | |
| 
 | |
| 	if (rproc->index >= 0)
 | |
| 		ida_simple_remove(&rproc_dev_index, rproc->index);
 | |
| 
 | |
| 	kfree(rproc->firmware);
 | |
| 	kfree(rproc->ops);
 | |
| 	kfree(rproc);
 | |
| }
 | |
| 
 | |
| static const struct device_type rproc_type = {
 | |
| 	.name		= "remoteproc",
 | |
| 	.release	= rproc_type_release,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * rproc_alloc() - allocate a remote processor handle
 | |
|  * @dev: the underlying device
 | |
|  * @name: name of this remote processor
 | |
|  * @ops: platform-specific handlers (mainly start/stop)
 | |
|  * @firmware: name of firmware file to load, can be NULL
 | |
|  * @len: length of private data needed by the rproc driver (in bytes)
 | |
|  *
 | |
|  * Allocates a new remote processor handle, but does not register
 | |
|  * it yet. if @firmware is NULL, a default name is used.
 | |
|  *
 | |
|  * This function should be used by rproc implementations during initialization
 | |
|  * of the remote processor.
 | |
|  *
 | |
|  * After creating an rproc handle using this function, and when ready,
 | |
|  * implementations should then call rproc_add() to complete
 | |
|  * the registration of the remote processor.
 | |
|  *
 | |
|  * On success the new rproc is returned, and on failure, NULL.
 | |
|  *
 | |
|  * Note: _never_ directly deallocate @rproc, even if it was not registered
 | |
|  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
 | |
|  */
 | |
| struct rproc *rproc_alloc(struct device *dev, const char *name,
 | |
| 			  const struct rproc_ops *ops,
 | |
| 			  const char *firmware, int len)
 | |
| {
 | |
| 	struct rproc *rproc;
 | |
| 	char *p, *template = "rproc-%s-fw";
 | |
| 	int name_len;
 | |
| 
 | |
| 	if (!dev || !name || !ops)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!firmware) {
 | |
| 		/*
 | |
| 		 * If the caller didn't pass in a firmware name then
 | |
| 		 * construct a default name.
 | |
| 		 */
 | |
| 		name_len = strlen(name) + strlen(template) - 2 + 1;
 | |
| 		p = kmalloc(name_len, GFP_KERNEL);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 		snprintf(p, name_len, template, name);
 | |
| 	} else {
 | |
| 		p = kstrdup(firmware, GFP_KERNEL);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
 | |
| 	if (!rproc) {
 | |
| 		kfree(p);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
 | |
| 	if (!rproc->ops) {
 | |
| 		kfree(p);
 | |
| 		kfree(rproc);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	rproc->firmware = p;
 | |
| 	rproc->name = name;
 | |
| 	rproc->priv = &rproc[1];
 | |
| 	rproc->auto_boot = true;
 | |
| 
 | |
| 	device_initialize(&rproc->dev);
 | |
| 	rproc->dev.parent = dev;
 | |
| 	rproc->dev.type = &rproc_type;
 | |
| 	rproc->dev.class = &rproc_class;
 | |
| 	rproc->dev.driver_data = rproc;
 | |
| 
 | |
| 	/* Assign a unique device index and name */
 | |
| 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
 | |
| 	if (rproc->index < 0) {
 | |
| 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
 | |
| 		put_device(&rproc->dev);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
 | |
| 
 | |
| 	atomic_set(&rproc->power, 0);
 | |
| 
 | |
| 	/* Default to ELF loader if no load function is specified */
 | |
| 	if (!rproc->ops->load) {
 | |
| 		rproc->ops->load = rproc_elf_load_segments;
 | |
| 		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
 | |
| 		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
 | |
| 		rproc->ops->sanity_check = rproc_elf_sanity_check;
 | |
| 		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
 | |
| 	}
 | |
| 
 | |
| 	mutex_init(&rproc->lock);
 | |
| 
 | |
| 	idr_init(&rproc->notifyids);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&rproc->carveouts);
 | |
| 	INIT_LIST_HEAD(&rproc->mappings);
 | |
| 	INIT_LIST_HEAD(&rproc->traces);
 | |
| 	INIT_LIST_HEAD(&rproc->rvdevs);
 | |
| 	INIT_LIST_HEAD(&rproc->subdevs);
 | |
| 	INIT_LIST_HEAD(&rproc->dump_segments);
 | |
| 
 | |
| 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
 | |
| 
 | |
| 	rproc->state = RPROC_OFFLINE;
 | |
| 
 | |
| 	return rproc;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_alloc);
 | |
| 
 | |
| /**
 | |
|  * rproc_free() - unroll rproc_alloc()
 | |
|  * @rproc: the remote processor handle
 | |
|  *
 | |
|  * This function decrements the rproc dev refcount.
 | |
|  *
 | |
|  * If no one holds any reference to rproc anymore, then its refcount would
 | |
|  * now drop to zero, and it would be freed.
 | |
|  */
 | |
| void rproc_free(struct rproc *rproc)
 | |
| {
 | |
| 	put_device(&rproc->dev);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_free);
 | |
| 
 | |
| /**
 | |
|  * rproc_put() - release rproc reference
 | |
|  * @rproc: the remote processor handle
 | |
|  *
 | |
|  * This function decrements the rproc dev refcount.
 | |
|  *
 | |
|  * If no one holds any reference to rproc anymore, then its refcount would
 | |
|  * now drop to zero, and it would be freed.
 | |
|  */
 | |
| void rproc_put(struct rproc *rproc)
 | |
| {
 | |
| 	module_put(rproc->dev.parent->driver->owner);
 | |
| 	put_device(&rproc->dev);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_put);
 | |
| 
 | |
| /**
 | |
|  * rproc_del() - unregister a remote processor
 | |
|  * @rproc: rproc handle to unregister
 | |
|  *
 | |
|  * This function should be called when the platform specific rproc
 | |
|  * implementation decides to remove the rproc device. it should
 | |
|  * _only_ be called if a previous invocation of rproc_add()
 | |
|  * has completed successfully.
 | |
|  *
 | |
|  * After rproc_del() returns, @rproc isn't freed yet, because
 | |
|  * of the outstanding reference created by rproc_alloc. To decrement that
 | |
|  * one last refcount, one still needs to call rproc_free().
 | |
|  *
 | |
|  * Returns 0 on success and -EINVAL if @rproc isn't valid.
 | |
|  */
 | |
| int rproc_del(struct rproc *rproc)
 | |
| {
 | |
| 	if (!rproc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* if rproc is marked always-on, rproc_add() booted it */
 | |
| 	/* TODO: make sure this works with rproc->power > 1 */
 | |
| 	if (rproc->auto_boot)
 | |
| 		rproc_shutdown(rproc);
 | |
| 
 | |
| 	mutex_lock(&rproc->lock);
 | |
| 	rproc->state = RPROC_DELETED;
 | |
| 	mutex_unlock(&rproc->lock);
 | |
| 
 | |
| 	rproc_delete_debug_dir(rproc);
 | |
| 
 | |
| 	/* the rproc is downref'ed as soon as it's removed from the klist */
 | |
| 	mutex_lock(&rproc_list_mutex);
 | |
| 	list_del(&rproc->node);
 | |
| 	mutex_unlock(&rproc_list_mutex);
 | |
| 
 | |
| 	device_del(&rproc->dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_del);
 | |
| 
 | |
| /**
 | |
|  * rproc_add_subdev() - add a subdevice to a remoteproc
 | |
|  * @rproc: rproc handle to add the subdevice to
 | |
|  * @subdev: subdev handle to register
 | |
|  *
 | |
|  * Caller is responsible for populating optional subdevice function pointers.
 | |
|  */
 | |
| void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
 | |
| {
 | |
| 	list_add_tail(&subdev->node, &rproc->subdevs);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_add_subdev);
 | |
| 
 | |
| /**
 | |
|  * rproc_remove_subdev() - remove a subdevice from a remoteproc
 | |
|  * @rproc: rproc handle to remove the subdevice from
 | |
|  * @subdev: subdev handle, previously registered with rproc_add_subdev()
 | |
|  */
 | |
| void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
 | |
| {
 | |
| 	list_del(&subdev->node);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_remove_subdev);
 | |
| 
 | |
| /**
 | |
|  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
 | |
|  * @dev:	child device to find ancestor of
 | |
|  *
 | |
|  * Returns the ancestor rproc instance, or NULL if not found.
 | |
|  */
 | |
| struct rproc *rproc_get_by_child(struct device *dev)
 | |
| {
 | |
| 	for (dev = dev->parent; dev; dev = dev->parent) {
 | |
| 		if (dev->type == &rproc_type)
 | |
| 			return dev->driver_data;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_get_by_child);
 | |
| 
 | |
| /**
 | |
|  * rproc_report_crash() - rproc crash reporter function
 | |
|  * @rproc: remote processor
 | |
|  * @type: crash type
 | |
|  *
 | |
|  * This function must be called every time a crash is detected by the low-level
 | |
|  * drivers implementing a specific remoteproc. This should not be called from a
 | |
|  * non-remoteproc driver.
 | |
|  *
 | |
|  * This function can be called from atomic/interrupt context.
 | |
|  */
 | |
| void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
 | |
| {
 | |
| 	if (!rproc) {
 | |
| 		pr_err("NULL rproc pointer\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
 | |
| 		rproc->name, rproc_crash_to_string(type));
 | |
| 
 | |
| 	/* create a new task to handle the error */
 | |
| 	schedule_work(&rproc->crash_handler);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_report_crash);
 | |
| 
 | |
| static int __init remoteproc_init(void)
 | |
| {
 | |
| 	rproc_init_sysfs();
 | |
| 	rproc_init_debugfs();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| module_init(remoteproc_init);
 | |
| 
 | |
| static void __exit remoteproc_exit(void)
 | |
| {
 | |
| 	ida_destroy(&rproc_dev_index);
 | |
| 
 | |
| 	rproc_exit_debugfs();
 | |
| 	rproc_exit_sysfs();
 | |
| }
 | |
| module_exit(remoteproc_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_DESCRIPTION("Generic Remote Processor Framework");
 | 
