660 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			660 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of
 | |
|  * the "Intel 460GTX Chipset Software Developer's Manual":
 | |
|  * http://www.intel.com/design/archives/itanium/downloads/248704.htm 
 | |
|  */
 | |
| /*
 | |
|  * 460GX support by Chris Ahna <christopher.j.ahna@intel.com>
 | |
|  * Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/agp_backend.h>
 | |
| #include <linux/log2.h>
 | |
| 
 | |
| #include "agp.h"
 | |
| 
 | |
| #define INTEL_I460_BAPBASE		0x98
 | |
| #define INTEL_I460_GXBCTL		0xa0
 | |
| #define INTEL_I460_AGPSIZ		0xa2
 | |
| #define INTEL_I460_ATTBASE		0xfe200000
 | |
| #define INTEL_I460_GATT_VALID		(1UL << 24)
 | |
| #define INTEL_I460_GATT_COHERENT	(1UL << 25)
 | |
| 
 | |
| /*
 | |
|  * The i460 can operate with large (4MB) pages, but there is no sane way to support this
 | |
|  * within the current kernel/DRM environment, so we disable the relevant code for now.
 | |
|  * See also comments in ia64_alloc_page()...
 | |
|  */
 | |
| #define I460_LARGE_IO_PAGES		0
 | |
| 
 | |
| #if I460_LARGE_IO_PAGES
 | |
| # define I460_IO_PAGE_SHIFT		i460.io_page_shift
 | |
| #else
 | |
| # define I460_IO_PAGE_SHIFT		12
 | |
| #endif
 | |
| 
 | |
| #define I460_IOPAGES_PER_KPAGE		(PAGE_SIZE >> I460_IO_PAGE_SHIFT)
 | |
| #define I460_KPAGES_PER_IOPAGE		(1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT))
 | |
| #define I460_SRAM_IO_DISABLE		(1 << 4)
 | |
| #define I460_BAPBASE_ENABLE		(1 << 3)
 | |
| #define I460_AGPSIZ_MASK		0x7
 | |
| #define I460_4M_PS			(1 << 1)
 | |
| 
 | |
| /* Control bits for Out-Of-GART coherency and Burst Write Combining */
 | |
| #define I460_GXBCTL_OOG		(1UL << 0)
 | |
| #define I460_GXBCTL_BWC		(1UL << 2)
 | |
| 
 | |
| /*
 | |
|  * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the
 | |
|  * gatt_table and gatt_table_real pointers a "void *"...
 | |
|  */
 | |
| #define RD_GATT(index)		readl((u32 *) i460.gatt + (index))
 | |
| #define WR_GATT(index, val)	writel((val), (u32 *) i460.gatt + (index))
 | |
| /*
 | |
|  * The 460 spec says we have to read the last location written to make sure that all
 | |
|  * writes have taken effect
 | |
|  */
 | |
| #define WR_FLUSH_GATT(index)	RD_GATT(index)
 | |
| 
 | |
| static unsigned long i460_mask_memory (struct agp_bridge_data *bridge,
 | |
| 				       dma_addr_t addr, int type);
 | |
| 
 | |
| static struct {
 | |
| 	void *gatt;				/* ioremap'd GATT area */
 | |
| 
 | |
| 	/* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */
 | |
| 	u8 io_page_shift;
 | |
| 
 | |
| 	/* BIOS configures chipset to one of 2 possible apbase values: */
 | |
| 	u8 dynamic_apbase;
 | |
| 
 | |
| 	/* structure for tracking partial use of 4MB GART pages: */
 | |
| 	struct lp_desc {
 | |
| 		unsigned long *alloced_map;	/* bitmap of kernel-pages in use */
 | |
| 		int refcount;			/* number of kernel pages using the large page */
 | |
| 		u64 paddr;			/* physical address of large page */
 | |
| 		struct page *page; 		/* page pointer */
 | |
| 	} *lp_desc;
 | |
| } i460;
 | |
| 
 | |
| static const struct aper_size_info_8 i460_sizes[3] =
 | |
| {
 | |
| 	/*
 | |
| 	 * The 32GB aperture is only available with a 4M GART page size.  Due to the
 | |
| 	 * dynamic GART page size, we can't figure out page_order or num_entries until
 | |
| 	 * runtime.
 | |
| 	 */
 | |
| 	{32768, 0, 0, 4},
 | |
| 	{1024, 0, 0, 2},
 | |
| 	{256, 0, 0, 1}
 | |
| };
 | |
| 
 | |
| static struct gatt_mask i460_masks[] =
 | |
| {
 | |
| 	{
 | |
| 	  .mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT,
 | |
| 	  .type = 0
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static int i460_fetch_size (void)
 | |
| {
 | |
| 	int i;
 | |
| 	u8 temp;
 | |
| 	struct aper_size_info_8 *values;
 | |
| 
 | |
| 	/* Determine the GART page size */
 | |
| 	pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp);
 | |
| 	i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12;
 | |
| 	pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift);
 | |
| 
 | |
| 	if (i460.io_page_shift != I460_IO_PAGE_SHIFT) {
 | |
| 		printk(KERN_ERR PFX
 | |
| 			"I/O (GART) page-size %luKB doesn't match expected "
 | |
| 				"size %luKB\n",
 | |
| 			1UL << (i460.io_page_shift - 10),
 | |
| 			1UL << (I460_IO_PAGE_SHIFT));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	values = A_SIZE_8(agp_bridge->driver->aperture_sizes);
 | |
| 
 | |
| 	pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
 | |
| 
 | |
| 	/* Exit now if the IO drivers for the GART SRAMS are turned off */
 | |
| 	if (temp & I460_SRAM_IO_DISABLE) {
 | |
| 		printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n");
 | |
| 		printk(KERN_ERR PFX "AGPGART operation not possible\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure we don't try to create an 2 ^ 23 entry GATT */
 | |
| 	if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) {
 | |
| 		printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine the proper APBASE register */
 | |
| 	if (temp & I460_BAPBASE_ENABLE)
 | |
| 		i460.dynamic_apbase = INTEL_I460_BAPBASE;
 | |
| 	else
 | |
| 		i460.dynamic_apbase = AGP_APBASE;
 | |
| 
 | |
| 	for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
 | |
| 		/*
 | |
| 		 * Dynamically calculate the proper num_entries and page_order values for
 | |
| 		 * the define aperture sizes. Take care not to shift off the end of
 | |
| 		 * values[i].size.
 | |
| 		 */
 | |
| 		values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12);
 | |
| 		values[i].page_order = ilog2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
 | |
| 		/* Neglect control bits when matching up size_value */
 | |
| 		if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) {
 | |
| 			agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i);
 | |
| 			agp_bridge->aperture_size_idx = i;
 | |
| 			return values[i].size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* There isn't anything to do here since 460 has no GART TLB. */
 | |
| static void i460_tlb_flush (struct agp_memory *mem)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This utility function is needed to prevent corruption of the control bits
 | |
|  * which are stored along with the aperture size in 460's AGPSIZ register
 | |
|  */
 | |
| static void i460_write_agpsiz (u8 size_value)
 | |
| {
 | |
| 	u8 temp;
 | |
| 
 | |
| 	pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
 | |
| 	pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ,
 | |
| 			      ((temp & ~I460_AGPSIZ_MASK) | size_value));
 | |
| }
 | |
| 
 | |
| static void i460_cleanup (void)
 | |
| {
 | |
| 	struct aper_size_info_8 *previous_size;
 | |
| 
 | |
| 	previous_size = A_SIZE_8(agp_bridge->previous_size);
 | |
| 	i460_write_agpsiz(previous_size->size_value);
 | |
| 
 | |
| 	if (I460_IO_PAGE_SHIFT > PAGE_SHIFT)
 | |
| 		kfree(i460.lp_desc);
 | |
| }
 | |
| 
 | |
| static int i460_configure (void)
 | |
| {
 | |
| 	union {
 | |
| 		u32 small[2];
 | |
| 		u64 large;
 | |
| 	} temp;
 | |
| 	size_t size;
 | |
| 	u8 scratch;
 | |
| 	struct aper_size_info_8 *current_size;
 | |
| 
 | |
| 	temp.large = 0;
 | |
| 
 | |
| 	current_size = A_SIZE_8(agp_bridge->current_size);
 | |
| 	i460_write_agpsiz(current_size->size_value);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do the necessary rigmarole to read all eight bytes of APBASE.
 | |
| 	 * This has to be done since the AGP aperture can be above 4GB on
 | |
| 	 * 460 based systems.
 | |
| 	 */
 | |
| 	pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0]));
 | |
| 	pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1]));
 | |
| 
 | |
| 	/* Clear BAR control bits */
 | |
| 	agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1);
 | |
| 
 | |
| 	pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch);
 | |
| 	pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL,
 | |
| 			      (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize partial allocation trackers if a GART page is bigger than a kernel
 | |
| 	 * page.
 | |
| 	 */
 | |
| 	if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) {
 | |
| 		size = current_size->num_entries * sizeof(i460.lp_desc[0]);
 | |
| 		i460.lp_desc = kzalloc(size, GFP_KERNEL);
 | |
| 		if (!i460.lp_desc)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int i460_create_gatt_table (struct agp_bridge_data *bridge)
 | |
| {
 | |
| 	int page_order, num_entries, i;
 | |
| 	void *temp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Load up the fixed address of the GART SRAMS which hold our GATT table.
 | |
| 	 */
 | |
| 	temp = agp_bridge->current_size;
 | |
| 	page_order = A_SIZE_8(temp)->page_order;
 | |
| 	num_entries = A_SIZE_8(temp)->num_entries;
 | |
| 
 | |
| 	i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order);
 | |
| 	if (!i460.gatt) {
 | |
| 		printk(KERN_ERR PFX "ioremap failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* These are no good, the should be removed from the agp_bridge strucure... */
 | |
| 	agp_bridge->gatt_table_real = NULL;
 | |
| 	agp_bridge->gatt_table = NULL;
 | |
| 	agp_bridge->gatt_bus_addr = 0;
 | |
| 
 | |
| 	for (i = 0; i < num_entries; ++i)
 | |
| 		WR_GATT(i, 0);
 | |
| 	WR_FLUSH_GATT(i - 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int i460_free_gatt_table (struct agp_bridge_data *bridge)
 | |
| {
 | |
| 	int num_entries, i;
 | |
| 	void *temp;
 | |
| 
 | |
| 	temp = agp_bridge->current_size;
 | |
| 
 | |
| 	num_entries = A_SIZE_8(temp)->num_entries;
 | |
| 
 | |
| 	for (i = 0; i < num_entries; ++i)
 | |
| 		WR_GATT(i, 0);
 | |
| 	WR_FLUSH_GATT(num_entries - 1);
 | |
| 
 | |
| 	iounmap(i460.gatt);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following functions are called when the I/O (GART) page size is smaller than
 | |
|  * PAGE_SIZE.
 | |
|  */
 | |
| 
 | |
| static int i460_insert_memory_small_io_page (struct agp_memory *mem,
 | |
| 				off_t pg_start, int type)
 | |
| {
 | |
| 	unsigned long paddr, io_pg_start, io_page_size;
 | |
| 	int i, j, k, num_entries;
 | |
| 	void *temp;
 | |
| 
 | |
| 	pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n",
 | |
| 		 mem, pg_start, type, page_to_phys(mem->pages[0]));
 | |
| 
 | |
| 	if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
 | |
| 
 | |
| 	temp = agp_bridge->current_size;
 | |
| 	num_entries = A_SIZE_8(temp)->num_entries;
 | |
| 
 | |
| 	if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) {
 | |
| 		printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	j = io_pg_start;
 | |
| 	while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) {
 | |
| 		if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) {
 | |
| 			pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n",
 | |
| 				 j, RD_GATT(j));
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 		j++;
 | |
| 	}
 | |
| 
 | |
| 	io_page_size = 1UL << I460_IO_PAGE_SHIFT;
 | |
| 	for (i = 0, j = io_pg_start; i < mem->page_count; i++) {
 | |
| 		paddr = page_to_phys(mem->pages[i]);
 | |
| 		for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size)
 | |
| 			WR_GATT(j, i460_mask_memory(agp_bridge, paddr, mem->type));
 | |
| 	}
 | |
| 	WR_FLUSH_GATT(j - 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int i460_remove_memory_small_io_page(struct agp_memory *mem,
 | |
| 				off_t pg_start, int type)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n",
 | |
| 		 mem, pg_start, type);
 | |
| 
 | |
| 	pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
 | |
| 
 | |
| 	for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++)
 | |
| 		WR_GATT(i, 0);
 | |
| 	WR_FLUSH_GATT(i - 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if I460_LARGE_IO_PAGES
 | |
| 
 | |
| /*
 | |
|  * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE.
 | |
|  *
 | |
|  * This situation is interesting since AGP memory allocations that are smaller than a
 | |
|  * single GART page are possible.  The i460.lp_desc array tracks partial allocation of the
 | |
|  * large GART pages to work around this issue.
 | |
|  *
 | |
|  * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page
 | |
|  * pg_num.  i460.lp_desc[pg_num].paddr is the physical address of the large page and
 | |
|  * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated).
 | |
|  */
 | |
| 
 | |
| static int i460_alloc_large_page (struct lp_desc *lp)
 | |
| {
 | |
| 	unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT;
 | |
| 	size_t map_size;
 | |
| 
 | |
| 	lp->page = alloc_pages(GFP_KERNEL, order);
 | |
| 	if (!lp->page) {
 | |
| 		printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8;
 | |
| 	lp->alloced_map = kzalloc(map_size, GFP_KERNEL);
 | |
| 	if (!lp->alloced_map) {
 | |
| 		__free_pages(lp->page, order);
 | |
| 		printk(KERN_ERR PFX "Out of memory, we're in trouble...\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	lp->paddr = page_to_phys(lp->page);
 | |
| 	lp->refcount = 0;
 | |
| 	atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void i460_free_large_page (struct lp_desc *lp)
 | |
| {
 | |
| 	kfree(lp->alloced_map);
 | |
| 	lp->alloced_map = NULL;
 | |
| 
 | |
| 	__free_pages(lp->page, I460_IO_PAGE_SHIFT - PAGE_SHIFT);
 | |
| 	atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
 | |
| }
 | |
| 
 | |
| static int i460_insert_memory_large_io_page (struct agp_memory *mem,
 | |
| 				off_t pg_start, int type)
 | |
| {
 | |
| 	int i, start_offset, end_offset, idx, pg, num_entries;
 | |
| 	struct lp_desc *start, *end, *lp;
 | |
| 	void *temp;
 | |
| 
 | |
| 	if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	temp = agp_bridge->current_size;
 | |
| 	num_entries = A_SIZE_8(temp)->num_entries;
 | |
| 
 | |
| 	/* Figure out what pg_start means in terms of our large GART pages */
 | |
| 	start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
 | |
| 	end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
 | |
| 	start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
 | |
| 	end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
 | |
| 
 | |
| 	if (end > i460.lp_desc + num_entries) {
 | |
| 		printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if the requested region of the aperture is free */
 | |
| 	for (lp = start; lp <= end; ++lp) {
 | |
| 		if (!lp->alloced_map)
 | |
| 			continue;	/* OK, the entire large page is available... */
 | |
| 
 | |
| 		for (idx = ((lp == start) ? start_offset : 0);
 | |
| 		     idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
 | |
| 		     idx++)
 | |
| 		{
 | |
| 			if (test_bit(idx, lp->alloced_map))
 | |
| 				return -EBUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (lp = start, i = 0; lp <= end; ++lp) {
 | |
| 		if (!lp->alloced_map) {
 | |
| 			/* Allocate new GART pages... */
 | |
| 			if (i460_alloc_large_page(lp) < 0)
 | |
| 				return -ENOMEM;
 | |
| 			pg = lp - i460.lp_desc;
 | |
| 			WR_GATT(pg, i460_mask_memory(agp_bridge,
 | |
| 						     lp->paddr, 0));
 | |
| 			WR_FLUSH_GATT(pg);
 | |
| 		}
 | |
| 
 | |
| 		for (idx = ((lp == start) ? start_offset : 0);
 | |
| 		     idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
 | |
| 		     idx++, i++)
 | |
| 		{
 | |
| 			mem->pages[i] = lp->page;
 | |
| 			__set_bit(idx, lp->alloced_map);
 | |
| 			++lp->refcount;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int i460_remove_memory_large_io_page (struct agp_memory *mem,
 | |
| 				off_t pg_start, int type)
 | |
| {
 | |
| 	int i, pg, start_offset, end_offset, idx, num_entries;
 | |
| 	struct lp_desc *start, *end, *lp;
 | |
| 	void *temp;
 | |
| 
 | |
| 	temp = agp_bridge->current_size;
 | |
| 	num_entries = A_SIZE_8(temp)->num_entries;
 | |
| 
 | |
| 	/* Figure out what pg_start means in terms of our large GART pages */
 | |
| 	start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
 | |
| 	end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
 | |
| 	start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
 | |
| 	end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
 | |
| 
 | |
| 	for (i = 0, lp = start; lp <= end; ++lp) {
 | |
| 		for (idx = ((lp == start) ? start_offset : 0);
 | |
| 		     idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
 | |
| 		     idx++, i++)
 | |
| 		{
 | |
| 			mem->pages[i] = NULL;
 | |
| 			__clear_bit(idx, lp->alloced_map);
 | |
| 			--lp->refcount;
 | |
| 		}
 | |
| 
 | |
| 		/* Free GART pages if they are unused */
 | |
| 		if (lp->refcount == 0) {
 | |
| 			pg = lp - i460.lp_desc;
 | |
| 			WR_GATT(pg, 0);
 | |
| 			WR_FLUSH_GATT(pg);
 | |
| 			i460_free_large_page(lp);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Wrapper routines to call the approriate {small_io_page,large_io_page} function */
 | |
| 
 | |
| static int i460_insert_memory (struct agp_memory *mem,
 | |
| 				off_t pg_start, int type)
 | |
| {
 | |
| 	if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
 | |
| 		return i460_insert_memory_small_io_page(mem, pg_start, type);
 | |
| 	else
 | |
| 		return i460_insert_memory_large_io_page(mem, pg_start, type);
 | |
| }
 | |
| 
 | |
| static int i460_remove_memory (struct agp_memory *mem,
 | |
| 				off_t pg_start, int type)
 | |
| {
 | |
| 	if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
 | |
| 		return i460_remove_memory_small_io_page(mem, pg_start, type);
 | |
| 	else
 | |
| 		return i460_remove_memory_large_io_page(mem, pg_start, type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the I/O (GART) page size is bigger than the kernel page size, we don't want to
 | |
|  * allocate memory until we know where it is to be bound in the aperture (a
 | |
|  * multi-kernel-page alloc might fit inside of an already allocated GART page).
 | |
|  *
 | |
|  * Let's just hope nobody counts on the allocated AGP memory being there before bind time
 | |
|  * (I don't think current drivers do)...
 | |
|  */
 | |
| static struct page *i460_alloc_page (struct agp_bridge_data *bridge)
 | |
| {
 | |
| 	void *page;
 | |
| 
 | |
| 	if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
 | |
| 		page = agp_generic_alloc_page(agp_bridge);
 | |
| 	} else
 | |
| 		/* Returning NULL would cause problems */
 | |
| 		/* AK: really dubious code. */
 | |
| 		page = (void *)~0UL;
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void i460_destroy_page (struct page *page, int flags)
 | |
| {
 | |
| 	if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
 | |
| 		agp_generic_destroy_page(page, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif /* I460_LARGE_IO_PAGES */
 | |
| 
 | |
| static unsigned long i460_mask_memory (struct agp_bridge_data *bridge,
 | |
| 				       dma_addr_t addr, int type)
 | |
| {
 | |
| 	/* Make sure the returned address is a valid GATT entry */
 | |
| 	return bridge->driver->masks[0].mask
 | |
| 		| (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12);
 | |
| }
 | |
| 
 | |
| const struct agp_bridge_driver intel_i460_driver = {
 | |
| 	.owner			= THIS_MODULE,
 | |
| 	.aperture_sizes		= i460_sizes,
 | |
| 	.size_type		= U8_APER_SIZE,
 | |
| 	.num_aperture_sizes	= 3,
 | |
| 	.configure		= i460_configure,
 | |
| 	.fetch_size		= i460_fetch_size,
 | |
| 	.cleanup		= i460_cleanup,
 | |
| 	.tlb_flush		= i460_tlb_flush,
 | |
| 	.mask_memory		= i460_mask_memory,
 | |
| 	.masks			= i460_masks,
 | |
| 	.agp_enable		= agp_generic_enable,
 | |
| 	.cache_flush		= global_cache_flush,
 | |
| 	.create_gatt_table	= i460_create_gatt_table,
 | |
| 	.free_gatt_table	= i460_free_gatt_table,
 | |
| #if I460_LARGE_IO_PAGES
 | |
| 	.insert_memory		= i460_insert_memory,
 | |
| 	.remove_memory		= i460_remove_memory,
 | |
| 	.agp_alloc_page		= i460_alloc_page,
 | |
| 	.agp_destroy_page	= i460_destroy_page,
 | |
| #else
 | |
| 	.insert_memory		= i460_insert_memory_small_io_page,
 | |
| 	.remove_memory		= i460_remove_memory_small_io_page,
 | |
| 	.agp_alloc_page		= agp_generic_alloc_page,
 | |
| 	.agp_alloc_pages	= agp_generic_alloc_pages,
 | |
| 	.agp_destroy_page	= agp_generic_destroy_page,
 | |
| 	.agp_destroy_pages	= agp_generic_destroy_pages,
 | |
| #endif
 | |
| 	.alloc_by_type		= agp_generic_alloc_by_type,
 | |
| 	.free_by_type		= agp_generic_free_by_type,
 | |
| 	.agp_type_to_mask_type  = agp_generic_type_to_mask_type,
 | |
| 	.cant_use_aperture	= true,
 | |
| };
 | |
| 
 | |
| static int agp_intel_i460_probe(struct pci_dev *pdev,
 | |
| 				const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct agp_bridge_data *bridge;
 | |
| 	u8 cap_ptr;
 | |
| 
 | |
| 	cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP);
 | |
| 	if (!cap_ptr)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	bridge = agp_alloc_bridge();
 | |
| 	if (!bridge)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bridge->driver = &intel_i460_driver;
 | |
| 	bridge->dev = pdev;
 | |
| 	bridge->capndx = cap_ptr;
 | |
| 
 | |
| 	printk(KERN_INFO PFX "Detected Intel 460GX chipset\n");
 | |
| 
 | |
| 	pci_set_drvdata(pdev, bridge);
 | |
| 	return agp_add_bridge(bridge);
 | |
| }
 | |
| 
 | |
| static void agp_intel_i460_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct agp_bridge_data *bridge = pci_get_drvdata(pdev);
 | |
| 
 | |
| 	agp_remove_bridge(bridge);
 | |
| 	agp_put_bridge(bridge);
 | |
| }
 | |
| 
 | |
| static struct pci_device_id agp_intel_i460_pci_table[] = {
 | |
| 	{
 | |
| 	.class		= (PCI_CLASS_BRIDGE_HOST << 8),
 | |
| 	.class_mask	= ~0,
 | |
| 	.vendor		= PCI_VENDOR_ID_INTEL,
 | |
| 	.device		= PCI_DEVICE_ID_INTEL_84460GX,
 | |
| 	.subvendor	= PCI_ANY_ID,
 | |
| 	.subdevice	= PCI_ANY_ID,
 | |
| 	},
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table);
 | |
| 
 | |
| static struct pci_driver agp_intel_i460_pci_driver = {
 | |
| 	.name		= "agpgart-intel-i460",
 | |
| 	.id_table	= agp_intel_i460_pci_table,
 | |
| 	.probe		= agp_intel_i460_probe,
 | |
| 	.remove		= agp_intel_i460_remove,
 | |
| };
 | |
| 
 | |
| static int __init agp_intel_i460_init(void)
 | |
| {
 | |
| 	if (agp_off)
 | |
| 		return -EINVAL;
 | |
| 	return pci_register_driver(&agp_intel_i460_pci_driver);
 | |
| }
 | |
| 
 | |
| static void __exit agp_intel_i460_cleanup(void)
 | |
| {
 | |
| 	pci_unregister_driver(&agp_intel_i460_pci_driver);
 | |
| }
 | |
| 
 | |
| module_init(agp_intel_i460_init);
 | |
| module_exit(agp_intel_i460_cleanup);
 | |
| 
 | |
| MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>");
 | |
| MODULE_LICENSE("GPL and additional rights");
 | 
