1127 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1127 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* Copyright (c) 2016-2017 Hisilicon Limited. */
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/dmapool.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <crypto/aes.h>
 | |
| #include <crypto/algapi.h>
 | |
| #include <crypto/des.h>
 | |
| #include <crypto/skcipher.h>
 | |
| #include <crypto/xts.h>
 | |
| #include <crypto/internal/skcipher.h>
 | |
| 
 | |
| #include "sec_drv.h"
 | |
| 
 | |
| #define SEC_MAX_CIPHER_KEY		64
 | |
| #define SEC_REQ_LIMIT SZ_32M
 | |
| 
 | |
| struct sec_c_alg_cfg {
 | |
| 	unsigned c_alg		: 3;
 | |
| 	unsigned c_mode		: 3;
 | |
| 	unsigned key_len	: 2;
 | |
| 	unsigned c_width	: 2;
 | |
| };
 | |
| 
 | |
| static const struct sec_c_alg_cfg sec_c_alg_cfgs[] =  {
 | |
| 	[SEC_C_DES_ECB_64] = {
 | |
| 		.c_alg = SEC_C_ALG_DES,
 | |
| 		.c_mode = SEC_C_MODE_ECB,
 | |
| 		.key_len = SEC_KEY_LEN_DES,
 | |
| 	},
 | |
| 	[SEC_C_DES_CBC_64] = {
 | |
| 		.c_alg = SEC_C_ALG_DES,
 | |
| 		.c_mode = SEC_C_MODE_CBC,
 | |
| 		.key_len = SEC_KEY_LEN_DES,
 | |
| 	},
 | |
| 	[SEC_C_3DES_ECB_192_3KEY] = {
 | |
| 		.c_alg = SEC_C_ALG_3DES,
 | |
| 		.c_mode = SEC_C_MODE_ECB,
 | |
| 		.key_len = SEC_KEY_LEN_3DES_3_KEY,
 | |
| 	},
 | |
| 	[SEC_C_3DES_ECB_192_2KEY] = {
 | |
| 		.c_alg = SEC_C_ALG_3DES,
 | |
| 		.c_mode = SEC_C_MODE_ECB,
 | |
| 		.key_len = SEC_KEY_LEN_3DES_2_KEY,
 | |
| 	},
 | |
| 	[SEC_C_3DES_CBC_192_3KEY] = {
 | |
| 		.c_alg = SEC_C_ALG_3DES,
 | |
| 		.c_mode = SEC_C_MODE_CBC,
 | |
| 		.key_len = SEC_KEY_LEN_3DES_3_KEY,
 | |
| 	},
 | |
| 	[SEC_C_3DES_CBC_192_2KEY] = {
 | |
| 		.c_alg = SEC_C_ALG_3DES,
 | |
| 		.c_mode = SEC_C_MODE_CBC,
 | |
| 		.key_len = SEC_KEY_LEN_3DES_2_KEY,
 | |
| 	},
 | |
| 	[SEC_C_AES_ECB_128] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_ECB,
 | |
| 		.key_len = SEC_KEY_LEN_AES_128,
 | |
| 	},
 | |
| 	[SEC_C_AES_ECB_192] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_ECB,
 | |
| 		.key_len = SEC_KEY_LEN_AES_192,
 | |
| 	},
 | |
| 	[SEC_C_AES_ECB_256] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_ECB,
 | |
| 		.key_len = SEC_KEY_LEN_AES_256,
 | |
| 	},
 | |
| 	[SEC_C_AES_CBC_128] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_CBC,
 | |
| 		.key_len = SEC_KEY_LEN_AES_128,
 | |
| 	},
 | |
| 	[SEC_C_AES_CBC_192] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_CBC,
 | |
| 		.key_len = SEC_KEY_LEN_AES_192,
 | |
| 	},
 | |
| 	[SEC_C_AES_CBC_256] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_CBC,
 | |
| 		.key_len = SEC_KEY_LEN_AES_256,
 | |
| 	},
 | |
| 	[SEC_C_AES_CTR_128] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_CTR,
 | |
| 		.key_len = SEC_KEY_LEN_AES_128,
 | |
| 	},
 | |
| 	[SEC_C_AES_CTR_192] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_CTR,
 | |
| 		.key_len = SEC_KEY_LEN_AES_192,
 | |
| 	},
 | |
| 	[SEC_C_AES_CTR_256] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_CTR,
 | |
| 		.key_len = SEC_KEY_LEN_AES_256,
 | |
| 	},
 | |
| 	[SEC_C_AES_XTS_128] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_XTS,
 | |
| 		.key_len = SEC_KEY_LEN_AES_128,
 | |
| 	},
 | |
| 	[SEC_C_AES_XTS_256] = {
 | |
| 		.c_alg = SEC_C_ALG_AES,
 | |
| 		.c_mode = SEC_C_MODE_XTS,
 | |
| 		.key_len = SEC_KEY_LEN_AES_256,
 | |
| 	},
 | |
| 	[SEC_C_NULL] = {
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Mutex used to ensure safe operation of reference count of
 | |
|  * alg providers
 | |
|  */
 | |
| static DEFINE_MUTEX(algs_lock);
 | |
| static unsigned int active_devs;
 | |
| 
 | |
| static void sec_alg_skcipher_init_template(struct sec_alg_tfm_ctx *ctx,
 | |
| 					   struct sec_bd_info *req,
 | |
| 					   enum sec_cipher_alg alg)
 | |
| {
 | |
| 	const struct sec_c_alg_cfg *cfg = &sec_c_alg_cfgs[alg];
 | |
| 
 | |
| 	memset(req, 0, sizeof(*req));
 | |
| 	req->w0 |= cfg->c_mode << SEC_BD_W0_C_MODE_S;
 | |
| 	req->w1 |= cfg->c_alg << SEC_BD_W1_C_ALG_S;
 | |
| 	req->w3 |= cfg->key_len << SEC_BD_W3_C_KEY_LEN_S;
 | |
| 	req->w0 |= cfg->c_width << SEC_BD_W0_C_WIDTH_S;
 | |
| 
 | |
| 	req->cipher_key_addr_lo = lower_32_bits(ctx->pkey);
 | |
| 	req->cipher_key_addr_hi = upper_32_bits(ctx->pkey);
 | |
| }
 | |
| 
 | |
| static void sec_alg_skcipher_init_context(struct crypto_skcipher *atfm,
 | |
| 					  const u8 *key,
 | |
| 					  unsigned int keylen,
 | |
| 					  enum sec_cipher_alg alg)
 | |
| {
 | |
| 	struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
 | |
| 	struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 
 | |
| 	ctx->cipher_alg = alg;
 | |
| 	memcpy(ctx->key, key, keylen);
 | |
| 	sec_alg_skcipher_init_template(ctx, &ctx->req_template,
 | |
| 				       ctx->cipher_alg);
 | |
| }
 | |
| 
 | |
| static int sec_alloc_and_fill_hw_sgl(struct sec_hw_sgl **sec_sgl,
 | |
| 				     dma_addr_t *psec_sgl,
 | |
| 				     struct scatterlist *sgl,
 | |
| 				     int count,
 | |
| 				     struct sec_dev_info *info)
 | |
| {
 | |
| 	struct sec_hw_sgl *sgl_current = NULL;
 | |
| 	struct sec_hw_sgl *sgl_next;
 | |
| 	dma_addr_t sgl_next_dma;
 | |
| 	struct scatterlist *sg;
 | |
| 	int ret, sge_index, i;
 | |
| 
 | |
| 	if (!count)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for_each_sg(sgl, sg, count, i) {
 | |
| 		sge_index = i % SEC_MAX_SGE_NUM;
 | |
| 		if (sge_index == 0) {
 | |
| 			sgl_next = dma_pool_zalloc(info->hw_sgl_pool,
 | |
| 						   GFP_KERNEL, &sgl_next_dma);
 | |
| 			if (!sgl_next) {
 | |
| 				ret = -ENOMEM;
 | |
| 				goto err_free_hw_sgls;
 | |
| 			}
 | |
| 
 | |
| 			if (!sgl_current) { /* First one */
 | |
| 				*psec_sgl = sgl_next_dma;
 | |
| 				*sec_sgl = sgl_next;
 | |
| 			} else { /* Chained */
 | |
| 				sgl_current->entry_sum_in_sgl = SEC_MAX_SGE_NUM;
 | |
| 				sgl_current->next_sgl = sgl_next_dma;
 | |
| 				sgl_current->next = sgl_next;
 | |
| 			}
 | |
| 			sgl_current = sgl_next;
 | |
| 		}
 | |
| 		sgl_current->sge_entries[sge_index].buf = sg_dma_address(sg);
 | |
| 		sgl_current->sge_entries[sge_index].len = sg_dma_len(sg);
 | |
| 		sgl_current->data_bytes_in_sgl += sg_dma_len(sg);
 | |
| 	}
 | |
| 	sgl_current->entry_sum_in_sgl = count % SEC_MAX_SGE_NUM;
 | |
| 	sgl_current->next_sgl = 0;
 | |
| 	(*sec_sgl)->entry_sum_in_chain = count;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_free_hw_sgls:
 | |
| 	sgl_current = *sec_sgl;
 | |
| 	while (sgl_current) {
 | |
| 		sgl_next = sgl_current->next;
 | |
| 		dma_pool_free(info->hw_sgl_pool, sgl_current,
 | |
| 			      sgl_current->next_sgl);
 | |
| 		sgl_current = sgl_next;
 | |
| 	}
 | |
| 	*psec_sgl = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sec_free_hw_sgl(struct sec_hw_sgl *hw_sgl,
 | |
| 			    dma_addr_t psec_sgl, struct sec_dev_info *info)
 | |
| {
 | |
| 	struct sec_hw_sgl *sgl_current, *sgl_next;
 | |
| 	dma_addr_t sgl_next_dma;
 | |
| 
 | |
| 	sgl_current = hw_sgl;
 | |
| 	while (sgl_current) {
 | |
| 		sgl_next = sgl_current->next;
 | |
| 		sgl_next_dma = sgl_current->next_sgl;
 | |
| 
 | |
| 		dma_pool_free(info->hw_sgl_pool, sgl_current, psec_sgl);
 | |
| 
 | |
| 		sgl_current = sgl_next;
 | |
| 		psec_sgl = sgl_next_dma;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_setkey(struct crypto_skcipher *tfm,
 | |
| 				   const u8 *key, unsigned int keylen,
 | |
| 				   enum sec_cipher_alg alg)
 | |
| {
 | |
| 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct device *dev = ctx->queue->dev_info->dev;
 | |
| 
 | |
| 	mutex_lock(&ctx->lock);
 | |
| 	if (ctx->key) {
 | |
| 		/* rekeying */
 | |
| 		memset(ctx->key, 0, SEC_MAX_CIPHER_KEY);
 | |
| 	} else {
 | |
| 		/* new key */
 | |
| 		ctx->key = dma_zalloc_coherent(dev, SEC_MAX_CIPHER_KEY,
 | |
| 					       &ctx->pkey, GFP_KERNEL);
 | |
| 		if (!ctx->key) {
 | |
| 			mutex_unlock(&ctx->lock);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&ctx->lock);
 | |
| 	sec_alg_skcipher_init_context(tfm, key, keylen, alg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_setkey_aes_ecb(struct crypto_skcipher *tfm,
 | |
| 					   const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	enum sec_cipher_alg alg;
 | |
| 
 | |
| 	switch (keylen) {
 | |
| 	case AES_KEYSIZE_128:
 | |
| 		alg = SEC_C_AES_ECB_128;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_192:
 | |
| 		alg = SEC_C_AES_ECB_192;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_256:
 | |
| 		alg = SEC_C_AES_ECB_256;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_setkey_aes_cbc(struct crypto_skcipher *tfm,
 | |
| 					   const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	enum sec_cipher_alg alg;
 | |
| 
 | |
| 	switch (keylen) {
 | |
| 	case AES_KEYSIZE_128:
 | |
| 		alg = SEC_C_AES_CBC_128;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_192:
 | |
| 		alg = SEC_C_AES_CBC_192;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_256:
 | |
| 		alg = SEC_C_AES_CBC_256;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_setkey_aes_ctr(struct crypto_skcipher *tfm,
 | |
| 					   const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	enum sec_cipher_alg alg;
 | |
| 
 | |
| 	switch (keylen) {
 | |
| 	case AES_KEYSIZE_128:
 | |
| 		alg = SEC_C_AES_CTR_128;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_192:
 | |
| 		alg = SEC_C_AES_CTR_192;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_256:
 | |
| 		alg = SEC_C_AES_CTR_256;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_setkey_aes_xts(struct crypto_skcipher *tfm,
 | |
| 					   const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	enum sec_cipher_alg alg;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = xts_verify_key(tfm, key, keylen);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	switch (keylen) {
 | |
| 	case AES_KEYSIZE_128 * 2:
 | |
| 		alg = SEC_C_AES_XTS_128;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_256 * 2:
 | |
| 		alg = SEC_C_AES_XTS_256;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_setkey_des_ecb(struct crypto_skcipher *tfm,
 | |
| 					   const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	if (keylen != DES_KEY_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_ECB_64);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_setkey_des_cbc(struct crypto_skcipher *tfm,
 | |
| 					   const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	if (keylen != DES_KEY_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_CBC_64);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_setkey_3des_ecb(struct crypto_skcipher *tfm,
 | |
| 					    const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	if (keylen != DES_KEY_SIZE * 3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return sec_alg_skcipher_setkey(tfm, key, keylen,
 | |
| 				       SEC_C_3DES_ECB_192_3KEY);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_setkey_3des_cbc(struct crypto_skcipher *tfm,
 | |
| 					    const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	if (keylen != DES3_EDE_KEY_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return sec_alg_skcipher_setkey(tfm, key, keylen,
 | |
| 				       SEC_C_3DES_CBC_192_3KEY);
 | |
| }
 | |
| 
 | |
| static void sec_alg_free_el(struct sec_request_el *el,
 | |
| 			    struct sec_dev_info *info)
 | |
| {
 | |
| 	sec_free_hw_sgl(el->out, el->dma_out, info);
 | |
| 	sec_free_hw_sgl(el->in, el->dma_in, info);
 | |
| 	kfree(el->sgl_in);
 | |
| 	kfree(el->sgl_out);
 | |
| 	kfree(el);
 | |
| }
 | |
| 
 | |
| /* queuelock must be held */
 | |
| static int sec_send_request(struct sec_request *sec_req, struct sec_queue *queue)
 | |
| {
 | |
| 	struct sec_request_el *el, *temp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&sec_req->lock);
 | |
| 	list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
 | |
| 		/*
 | |
| 		 * Add to hardware queue only under following circumstances
 | |
| 		 * 1) Software and hardware queue empty so no chain dependencies
 | |
| 		 * 2) No dependencies as new IV - (check software queue empty
 | |
| 		 *    to maintain order)
 | |
| 		 * 3) No dependencies because the mode does no chaining.
 | |
| 		 *
 | |
| 		 * In other cases first insert onto the software queue which
 | |
| 		 * is then emptied as requests complete
 | |
| 		 */
 | |
| 		if (!queue->havesoftqueue ||
 | |
| 		    (kfifo_is_empty(&queue->softqueue) &&
 | |
| 		     sec_queue_empty(queue))) {
 | |
| 			ret = sec_queue_send(queue, &el->req, sec_req);
 | |
| 			if (ret == -EAGAIN) {
 | |
| 				/* Wait unti we can send then try again */
 | |
| 				/* DEAD if here - should not happen */
 | |
| 				ret = -EBUSY;
 | |
| 				goto err_unlock;
 | |
| 			}
 | |
| 		} else {
 | |
| 			kfifo_put(&queue->softqueue, el);
 | |
| 		}
 | |
| 	}
 | |
| err_unlock:
 | |
| 	mutex_unlock(&sec_req->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sec_skcipher_alg_callback(struct sec_bd_info *sec_resp,
 | |
| 				      struct crypto_async_request *req_base)
 | |
| {
 | |
| 	struct skcipher_request *skreq = container_of(req_base,
 | |
| 						      struct skcipher_request,
 | |
| 						      base);
 | |
| 	struct sec_request *sec_req = skcipher_request_ctx(skreq);
 | |
| 	struct sec_request *backlog_req;
 | |
| 	struct sec_request_el *sec_req_el, *nextrequest;
 | |
| 	struct sec_alg_tfm_ctx *ctx = sec_req->tfm_ctx;
 | |
| 	struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
 | |
| 	struct device *dev = ctx->queue->dev_info->dev;
 | |
| 	int icv_or_skey_en, ret;
 | |
| 	bool done;
 | |
| 
 | |
| 	sec_req_el = list_first_entry(&sec_req->elements, struct sec_request_el,
 | |
| 				      head);
 | |
| 	icv_or_skey_en = (sec_resp->w0 & SEC_BD_W0_ICV_OR_SKEY_EN_M) >>
 | |
| 		SEC_BD_W0_ICV_OR_SKEY_EN_S;
 | |
| 	if (sec_resp->w1 & SEC_BD_W1_BD_INVALID || icv_or_skey_en == 3) {
 | |
| 		dev_err(dev, "Got an invalid answer %lu %d\n",
 | |
| 			sec_resp->w1 & SEC_BD_W1_BD_INVALID,
 | |
| 			icv_or_skey_en);
 | |
| 		sec_req->err = -EINVAL;
 | |
| 		/*
 | |
| 		 * We need to muddle on to avoid getting stuck with elements
 | |
| 		 * on the queue. Error will be reported so requester so
 | |
| 		 * it should be able to handle appropriately.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&ctx->queue->queuelock);
 | |
| 	/* Put the IV in place for chained cases */
 | |
| 	switch (ctx->cipher_alg) {
 | |
| 	case SEC_C_AES_CBC_128:
 | |
| 	case SEC_C_AES_CBC_192:
 | |
| 	case SEC_C_AES_CBC_256:
 | |
| 		if (sec_req_el->req.w0 & SEC_BD_W0_DE)
 | |
| 			sg_pcopy_to_buffer(sec_req_el->sgl_out,
 | |
| 					   sg_nents(sec_req_el->sgl_out),
 | |
| 					   skreq->iv,
 | |
| 					   crypto_skcipher_ivsize(atfm),
 | |
| 					   sec_req_el->el_length -
 | |
| 					   crypto_skcipher_ivsize(atfm));
 | |
| 		else
 | |
| 			sg_pcopy_to_buffer(sec_req_el->sgl_in,
 | |
| 					   sg_nents(sec_req_el->sgl_in),
 | |
| 					   skreq->iv,
 | |
| 					   crypto_skcipher_ivsize(atfm),
 | |
| 					   sec_req_el->el_length -
 | |
| 					   crypto_skcipher_ivsize(atfm));
 | |
| 		/* No need to sync to the device as coherent DMA */
 | |
| 		break;
 | |
| 	case SEC_C_AES_CTR_128:
 | |
| 	case SEC_C_AES_CTR_192:
 | |
| 	case SEC_C_AES_CTR_256:
 | |
| 		crypto_inc(skreq->iv, 16);
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Do not update */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->queue->havesoftqueue &&
 | |
| 	    !kfifo_is_empty(&ctx->queue->softqueue) &&
 | |
| 	    sec_queue_empty(ctx->queue)) {
 | |
| 		ret = kfifo_get(&ctx->queue->softqueue, &nextrequest);
 | |
| 		if (ret <= 0)
 | |
| 			dev_err(dev,
 | |
| 				"Error getting next element from kfifo %d\n",
 | |
| 				ret);
 | |
| 		else
 | |
| 			/* We know there is space so this cannot fail */
 | |
| 			sec_queue_send(ctx->queue, &nextrequest->req,
 | |
| 				       nextrequest->sec_req);
 | |
| 	} else if (!list_empty(&ctx->backlog)) {
 | |
| 		/* Need to verify there is room first */
 | |
| 		backlog_req = list_first_entry(&ctx->backlog,
 | |
| 					       typeof(*backlog_req),
 | |
| 					       backlog_head);
 | |
| 		if (sec_queue_can_enqueue(ctx->queue,
 | |
| 		    backlog_req->num_elements) ||
 | |
| 		    (ctx->queue->havesoftqueue &&
 | |
| 		     kfifo_avail(&ctx->queue->softqueue) >
 | |
| 		     backlog_req->num_elements)) {
 | |
| 			sec_send_request(backlog_req, ctx->queue);
 | |
| 			backlog_req->req_base->complete(backlog_req->req_base,
 | |
| 							-EINPROGRESS);
 | |
| 			list_del(&backlog_req->backlog_head);
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&ctx->queue->queuelock);
 | |
| 
 | |
| 	mutex_lock(&sec_req->lock);
 | |
| 	list_del(&sec_req_el->head);
 | |
| 	mutex_unlock(&sec_req->lock);
 | |
| 	sec_alg_free_el(sec_req_el, ctx->queue->dev_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * Request is done.
 | |
| 	 * The dance is needed as the lock is freed in the completion
 | |
| 	 */
 | |
| 	mutex_lock(&sec_req->lock);
 | |
| 	done = list_empty(&sec_req->elements);
 | |
| 	mutex_unlock(&sec_req->lock);
 | |
| 	if (done) {
 | |
| 		if (crypto_skcipher_ivsize(atfm)) {
 | |
| 			dma_unmap_single(dev, sec_req->dma_iv,
 | |
| 					 crypto_skcipher_ivsize(atfm),
 | |
| 					 DMA_TO_DEVICE);
 | |
| 		}
 | |
| 		dma_unmap_sg(dev, skreq->src, sec_req->len_in,
 | |
| 			     DMA_BIDIRECTIONAL);
 | |
| 		if (skreq->src != skreq->dst)
 | |
| 			dma_unmap_sg(dev, skreq->dst, sec_req->len_out,
 | |
| 				     DMA_BIDIRECTIONAL);
 | |
| 		skreq->base.complete(&skreq->base, sec_req->err);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void sec_alg_callback(struct sec_bd_info *resp, void *shadow)
 | |
| {
 | |
| 	struct sec_request *sec_req = shadow;
 | |
| 
 | |
| 	sec_req->cb(resp, sec_req->req_base);
 | |
| }
 | |
| 
 | |
| static int sec_alg_alloc_and_calc_split_sizes(int length, size_t **split_sizes,
 | |
| 					      int *steps)
 | |
| {
 | |
| 	size_t *sizes;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Split into suitable sized blocks */
 | |
| 	*steps = roundup(length, SEC_REQ_LIMIT) / SEC_REQ_LIMIT;
 | |
| 	sizes = kcalloc(*steps, sizeof(*sizes), GFP_KERNEL);
 | |
| 	if (!sizes)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < *steps - 1; i++)
 | |
| 		sizes[i] = SEC_REQ_LIMIT;
 | |
| 	sizes[*steps - 1] = length - SEC_REQ_LIMIT * (*steps - 1);
 | |
| 	*split_sizes = sizes;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sec_map_and_split_sg(struct scatterlist *sgl, size_t *split_sizes,
 | |
| 				int steps, struct scatterlist ***splits,
 | |
| 				int **splits_nents,
 | |
| 				int sgl_len_in,
 | |
| 				struct device *dev)
 | |
| {
 | |
| 	int ret, count;
 | |
| 
 | |
| 	count = dma_map_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
 | |
| 	if (!count)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*splits = kcalloc(steps, sizeof(struct scatterlist *), GFP_KERNEL);
 | |
| 	if (!*splits) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_unmap_sg;
 | |
| 	}
 | |
| 	*splits_nents = kcalloc(steps, sizeof(int), GFP_KERNEL);
 | |
| 	if (!*splits_nents) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_free_splits;
 | |
| 	}
 | |
| 
 | |
| 	/* output the scatter list before and after this */
 | |
| 	ret = sg_split(sgl, count, 0, steps, split_sizes,
 | |
| 		       *splits, *splits_nents, GFP_KERNEL);
 | |
| 	if (ret) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_free_splits_nents;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_free_splits_nents:
 | |
| 	kfree(*splits_nents);
 | |
| err_free_splits:
 | |
| 	kfree(*splits);
 | |
| err_unmap_sg:
 | |
| 	dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reverses the sec_map_and_split_sg call for messages not yet added to
 | |
|  * the queues.
 | |
|  */
 | |
| static void sec_unmap_sg_on_err(struct scatterlist *sgl, int steps,
 | |
| 				struct scatterlist **splits, int *splits_nents,
 | |
| 				int sgl_len_in, struct device *dev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < steps; i++)
 | |
| 		kfree(splits[i]);
 | |
| 	kfree(splits_nents);
 | |
| 	kfree(splits);
 | |
| 
 | |
| 	dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
 | |
| }
 | |
| 
 | |
| static struct sec_request_el
 | |
| *sec_alg_alloc_and_fill_el(struct sec_bd_info *template, int encrypt,
 | |
| 			   int el_size, bool different_dest,
 | |
| 			   struct scatterlist *sgl_in, int n_ents_in,
 | |
| 			   struct scatterlist *sgl_out, int n_ents_out,
 | |
| 			   struct sec_dev_info *info)
 | |
| {
 | |
| 	struct sec_request_el *el;
 | |
| 	struct sec_bd_info *req;
 | |
| 	int ret;
 | |
| 
 | |
| 	el = kzalloc(sizeof(*el), GFP_KERNEL);
 | |
| 	if (!el)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	el->el_length = el_size;
 | |
| 	req = &el->req;
 | |
| 	memcpy(req, template, sizeof(*req));
 | |
| 
 | |
| 	req->w0 &= ~SEC_BD_W0_CIPHER_M;
 | |
| 	if (encrypt)
 | |
| 		req->w0 |= SEC_CIPHER_ENCRYPT << SEC_BD_W0_CIPHER_S;
 | |
| 	else
 | |
| 		req->w0 |= SEC_CIPHER_DECRYPT << SEC_BD_W0_CIPHER_S;
 | |
| 
 | |
| 	req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_19_16_M;
 | |
| 	req->w0 |= ((el_size >> 16) << SEC_BD_W0_C_GRAN_SIZE_19_16_S) &
 | |
| 		SEC_BD_W0_C_GRAN_SIZE_19_16_M;
 | |
| 
 | |
| 	req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_21_20_M;
 | |
| 	req->w0 |= ((el_size >> 20) << SEC_BD_W0_C_GRAN_SIZE_21_20_S) &
 | |
| 		SEC_BD_W0_C_GRAN_SIZE_21_20_M;
 | |
| 
 | |
| 	/* Writing whole u32 so no need to take care of masking */
 | |
| 	req->w2 = ((1 << SEC_BD_W2_GRAN_NUM_S) & SEC_BD_W2_GRAN_NUM_M) |
 | |
| 		((el_size << SEC_BD_W2_C_GRAN_SIZE_15_0_S) &
 | |
| 		 SEC_BD_W2_C_GRAN_SIZE_15_0_M);
 | |
| 
 | |
| 	req->w3 &= ~SEC_BD_W3_CIPHER_LEN_OFFSET_M;
 | |
| 	req->w1 |= SEC_BD_W1_ADDR_TYPE;
 | |
| 
 | |
| 	el->sgl_in = sgl_in;
 | |
| 
 | |
| 	ret = sec_alloc_and_fill_hw_sgl(&el->in, &el->dma_in, el->sgl_in,
 | |
| 					n_ents_in, info);
 | |
| 	if (ret)
 | |
| 		goto err_free_el;
 | |
| 
 | |
| 	req->data_addr_lo = lower_32_bits(el->dma_in);
 | |
| 	req->data_addr_hi = upper_32_bits(el->dma_in);
 | |
| 
 | |
| 	if (different_dest) {
 | |
| 		el->sgl_out = sgl_out;
 | |
| 		ret = sec_alloc_and_fill_hw_sgl(&el->out, &el->dma_out,
 | |
| 						el->sgl_out,
 | |
| 						n_ents_out, info);
 | |
| 		if (ret)
 | |
| 			goto err_free_hw_sgl_in;
 | |
| 
 | |
| 		req->w0 |= SEC_BD_W0_DE;
 | |
| 		req->cipher_destin_addr_lo = lower_32_bits(el->dma_out);
 | |
| 		req->cipher_destin_addr_hi = upper_32_bits(el->dma_out);
 | |
| 
 | |
| 	} else {
 | |
| 		req->w0 &= ~SEC_BD_W0_DE;
 | |
| 		req->cipher_destin_addr_lo = lower_32_bits(el->dma_in);
 | |
| 		req->cipher_destin_addr_hi = upper_32_bits(el->dma_in);
 | |
| 	}
 | |
| 
 | |
| 	return el;
 | |
| 
 | |
| err_free_hw_sgl_in:
 | |
| 	sec_free_hw_sgl(el->in, el->dma_in, info);
 | |
| err_free_el:
 | |
| 	kfree(el);
 | |
| 
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_crypto(struct skcipher_request *skreq,
 | |
| 				   bool encrypt)
 | |
| {
 | |
| 	struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
 | |
| 	struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
 | |
| 	struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct sec_queue *queue = ctx->queue;
 | |
| 	struct sec_request *sec_req = skcipher_request_ctx(skreq);
 | |
| 	struct sec_dev_info *info = queue->dev_info;
 | |
| 	int i, ret, steps;
 | |
| 	size_t *split_sizes;
 | |
| 	struct scatterlist **splits_in;
 | |
| 	struct scatterlist **splits_out = NULL;
 | |
| 	int *splits_in_nents;
 | |
| 	int *splits_out_nents = NULL;
 | |
| 	struct sec_request_el *el, *temp;
 | |
| 	bool split = skreq->src != skreq->dst;
 | |
| 
 | |
| 	mutex_init(&sec_req->lock);
 | |
| 	sec_req->req_base = &skreq->base;
 | |
| 	sec_req->err = 0;
 | |
| 	/* SGL mapping out here to allow us to break it up as necessary */
 | |
| 	sec_req->len_in = sg_nents(skreq->src);
 | |
| 
 | |
| 	ret = sec_alg_alloc_and_calc_split_sizes(skreq->cryptlen, &split_sizes,
 | |
| 						 &steps);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	sec_req->num_elements = steps;
 | |
| 	ret = sec_map_and_split_sg(skreq->src, split_sizes, steps, &splits_in,
 | |
| 				   &splits_in_nents, sec_req->len_in,
 | |
| 				   info->dev);
 | |
| 	if (ret)
 | |
| 		goto err_free_split_sizes;
 | |
| 
 | |
| 	if (split) {
 | |
| 		sec_req->len_out = sg_nents(skreq->dst);
 | |
| 		ret = sec_map_and_split_sg(skreq->dst, split_sizes, steps,
 | |
| 					   &splits_out, &splits_out_nents,
 | |
| 					   sec_req->len_out, info->dev);
 | |
| 		if (ret)
 | |
| 			goto err_unmap_in_sg;
 | |
| 	}
 | |
| 	/* Shared info stored in seq_req - applies to all BDs */
 | |
| 	sec_req->tfm_ctx = ctx;
 | |
| 	sec_req->cb = sec_skcipher_alg_callback;
 | |
| 	INIT_LIST_HEAD(&sec_req->elements);
 | |
| 
 | |
| 	/*
 | |
| 	 * Future optimization.
 | |
| 	 * In the chaining case we can't use a dma pool bounce buffer
 | |
| 	 * but in the case where we know there is no chaining we can
 | |
| 	 */
 | |
| 	if (crypto_skcipher_ivsize(atfm)) {
 | |
| 		sec_req->dma_iv = dma_map_single(info->dev, skreq->iv,
 | |
| 						 crypto_skcipher_ivsize(atfm),
 | |
| 						 DMA_TO_DEVICE);
 | |
| 		if (dma_mapping_error(info->dev, sec_req->dma_iv)) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err_unmap_out_sg;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set them all up then queue - cleaner error handling. */
 | |
| 	for (i = 0; i < steps; i++) {
 | |
| 		el = sec_alg_alloc_and_fill_el(&ctx->req_template,
 | |
| 					       encrypt ? 1 : 0,
 | |
| 					       split_sizes[i],
 | |
| 					       skreq->src != skreq->dst,
 | |
| 					       splits_in[i], splits_in_nents[i],
 | |
| 					       split ? splits_out[i] : NULL,
 | |
| 					       split ? splits_out_nents[i] : 0,
 | |
| 					       info);
 | |
| 		if (IS_ERR(el)) {
 | |
| 			ret = PTR_ERR(el);
 | |
| 			goto err_free_elements;
 | |
| 		}
 | |
| 		el->req.cipher_iv_addr_lo = lower_32_bits(sec_req->dma_iv);
 | |
| 		el->req.cipher_iv_addr_hi = upper_32_bits(sec_req->dma_iv);
 | |
| 		el->sec_req = sec_req;
 | |
| 		list_add_tail(&el->head, &sec_req->elements);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only attempt to queue if the whole lot can fit in the queue -
 | |
| 	 * we can't successfully cleanup after a partial queing so this
 | |
| 	 * must succeed or fail atomically.
 | |
| 	 *
 | |
| 	 * Big hammer test of both software and hardware queues - could be
 | |
| 	 * more refined but this is unlikely to happen so no need.
 | |
| 	 */
 | |
| 
 | |
| 	/* Grab a big lock for a long time to avoid concurrency issues */
 | |
| 	mutex_lock(&queue->queuelock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Can go on to queue if we have space in either:
 | |
| 	 * 1) The hardware queue and no software queue
 | |
| 	 * 2) The software queue
 | |
| 	 * AND there is nothing in the backlog.  If there is backlog we
 | |
| 	 * have to only queue to the backlog queue and return busy.
 | |
| 	 */
 | |
| 	if ((!sec_queue_can_enqueue(queue, steps) &&
 | |
| 	     (!queue->havesoftqueue ||
 | |
| 	      kfifo_avail(&queue->softqueue) > steps)) ||
 | |
| 	    !list_empty(&ctx->backlog)) {
 | |
| 		ret = -EBUSY;
 | |
| 		if ((skreq->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
 | |
| 			list_add_tail(&sec_req->backlog_head, &ctx->backlog);
 | |
| 			mutex_unlock(&queue->queuelock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&queue->queuelock);
 | |
| 		goto err_free_elements;
 | |
| 	}
 | |
| 	ret = sec_send_request(sec_req, queue);
 | |
| 	mutex_unlock(&queue->queuelock);
 | |
| 	if (ret)
 | |
| 		goto err_free_elements;
 | |
| 
 | |
| 	ret = -EINPROGRESS;
 | |
| out:
 | |
| 	/* Cleanup - all elements in pointer arrays have been copied */
 | |
| 	kfree(splits_in_nents);
 | |
| 	kfree(splits_in);
 | |
| 	kfree(splits_out_nents);
 | |
| 	kfree(splits_out);
 | |
| 	kfree(split_sizes);
 | |
| 	return ret;
 | |
| 
 | |
| err_free_elements:
 | |
| 	list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
 | |
| 		list_del(&el->head);
 | |
| 		sec_alg_free_el(el, info);
 | |
| 	}
 | |
| 	if (crypto_skcipher_ivsize(atfm))
 | |
| 		dma_unmap_single(info->dev, sec_req->dma_iv,
 | |
| 				 crypto_skcipher_ivsize(atfm),
 | |
| 				 DMA_BIDIRECTIONAL);
 | |
| err_unmap_out_sg:
 | |
| 	if (split)
 | |
| 		sec_unmap_sg_on_err(skreq->dst, steps, splits_out,
 | |
| 				    splits_out_nents, sec_req->len_out,
 | |
| 				    info->dev);
 | |
| err_unmap_in_sg:
 | |
| 	sec_unmap_sg_on_err(skreq->src, steps, splits_in, splits_in_nents,
 | |
| 			    sec_req->len_in, info->dev);
 | |
| err_free_split_sizes:
 | |
| 	kfree(split_sizes);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	return sec_alg_skcipher_crypto(req, true);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	return sec_alg_skcipher_crypto(req, false);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_init(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 
 | |
| 	mutex_init(&ctx->lock);
 | |
| 	INIT_LIST_HEAD(&ctx->backlog);
 | |
| 	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_request));
 | |
| 
 | |
| 	ctx->queue = sec_queue_alloc_start_safe();
 | |
| 	if (IS_ERR(ctx->queue))
 | |
| 		return PTR_ERR(ctx->queue);
 | |
| 
 | |
| 	mutex_init(&ctx->queue->queuelock);
 | |
| 	ctx->queue->havesoftqueue = false;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sec_alg_skcipher_exit(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct device *dev = ctx->queue->dev_info->dev;
 | |
| 
 | |
| 	if (ctx->key) {
 | |
| 		memzero_explicit(ctx->key, SEC_MAX_CIPHER_KEY);
 | |
| 		dma_free_coherent(dev, SEC_MAX_CIPHER_KEY, ctx->key,
 | |
| 				  ctx->pkey);
 | |
| 	}
 | |
| 	sec_queue_stop_release(ctx->queue);
 | |
| }
 | |
| 
 | |
| static int sec_alg_skcipher_init_with_queue(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sec_alg_skcipher_init(tfm);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	INIT_KFIFO(ctx->queue->softqueue);
 | |
| 	ret = kfifo_alloc(&ctx->queue->softqueue, 512, GFP_KERNEL);
 | |
| 	if (ret) {
 | |
| 		sec_alg_skcipher_exit(tfm);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	ctx->queue->havesoftqueue = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sec_alg_skcipher_exit_with_queue(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 
 | |
| 	kfifo_free(&ctx->queue->softqueue);
 | |
| 	sec_alg_skcipher_exit(tfm);
 | |
| }
 | |
| 
 | |
| static struct skcipher_alg sec_algs[] = {
 | |
| 	{
 | |
| 		.base = {
 | |
| 			.cra_name = "ecb(aes)",
 | |
| 			.cra_driver_name = "hisi_sec_aes_ecb",
 | |
| 			.cra_priority = 4001,
 | |
| 			.cra_flags = CRYPTO_ALG_ASYNC,
 | |
| 			.cra_blocksize = AES_BLOCK_SIZE,
 | |
| 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
 | |
| 			.cra_alignmask = 0,
 | |
| 			.cra_module = THIS_MODULE,
 | |
| 		},
 | |
| 		.init = sec_alg_skcipher_init,
 | |
| 		.exit = sec_alg_skcipher_exit,
 | |
| 		.setkey = sec_alg_skcipher_setkey_aes_ecb,
 | |
| 		.decrypt = sec_alg_skcipher_decrypt,
 | |
| 		.encrypt = sec_alg_skcipher_encrypt,
 | |
| 		.min_keysize = AES_MIN_KEY_SIZE,
 | |
| 		.max_keysize = AES_MAX_KEY_SIZE,
 | |
| 		.ivsize = 0,
 | |
| 	}, {
 | |
| 		.base = {
 | |
| 			.cra_name = "cbc(aes)",
 | |
| 			.cra_driver_name = "hisi_sec_aes_cbc",
 | |
| 			.cra_priority = 4001,
 | |
| 			.cra_flags = CRYPTO_ALG_ASYNC,
 | |
| 			.cra_blocksize = AES_BLOCK_SIZE,
 | |
| 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
 | |
| 			.cra_alignmask = 0,
 | |
| 			.cra_module = THIS_MODULE,
 | |
| 		},
 | |
| 		.init = sec_alg_skcipher_init_with_queue,
 | |
| 		.exit = sec_alg_skcipher_exit_with_queue,
 | |
| 		.setkey = sec_alg_skcipher_setkey_aes_cbc,
 | |
| 		.decrypt = sec_alg_skcipher_decrypt,
 | |
| 		.encrypt = sec_alg_skcipher_encrypt,
 | |
| 		.min_keysize = AES_MIN_KEY_SIZE,
 | |
| 		.max_keysize = AES_MAX_KEY_SIZE,
 | |
| 		.ivsize = AES_BLOCK_SIZE,
 | |
| 	}, {
 | |
| 		.base = {
 | |
| 			.cra_name = "ctr(aes)",
 | |
| 			.cra_driver_name = "hisi_sec_aes_ctr",
 | |
| 			.cra_priority = 4001,
 | |
| 			.cra_flags = CRYPTO_ALG_ASYNC,
 | |
| 			.cra_blocksize = AES_BLOCK_SIZE,
 | |
| 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
 | |
| 			.cra_alignmask = 0,
 | |
| 			.cra_module = THIS_MODULE,
 | |
| 		},
 | |
| 		.init = sec_alg_skcipher_init_with_queue,
 | |
| 		.exit = sec_alg_skcipher_exit_with_queue,
 | |
| 		.setkey = sec_alg_skcipher_setkey_aes_ctr,
 | |
| 		.decrypt = sec_alg_skcipher_decrypt,
 | |
| 		.encrypt = sec_alg_skcipher_encrypt,
 | |
| 		.min_keysize = AES_MIN_KEY_SIZE,
 | |
| 		.max_keysize = AES_MAX_KEY_SIZE,
 | |
| 		.ivsize = AES_BLOCK_SIZE,
 | |
| 	}, {
 | |
| 		.base = {
 | |
| 			.cra_name = "xts(aes)",
 | |
| 			.cra_driver_name = "hisi_sec_aes_xts",
 | |
| 			.cra_priority = 4001,
 | |
| 			.cra_flags = CRYPTO_ALG_ASYNC,
 | |
| 			.cra_blocksize = AES_BLOCK_SIZE,
 | |
| 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
 | |
| 			.cra_alignmask = 0,
 | |
| 			.cra_module = THIS_MODULE,
 | |
| 		},
 | |
| 		.init = sec_alg_skcipher_init,
 | |
| 		.exit = sec_alg_skcipher_exit,
 | |
| 		.setkey = sec_alg_skcipher_setkey_aes_xts,
 | |
| 		.decrypt = sec_alg_skcipher_decrypt,
 | |
| 		.encrypt = sec_alg_skcipher_encrypt,
 | |
| 		.min_keysize = 2 * AES_MIN_KEY_SIZE,
 | |
| 		.max_keysize = 2 * AES_MAX_KEY_SIZE,
 | |
| 		.ivsize = AES_BLOCK_SIZE,
 | |
| 	}, {
 | |
| 	/* Unable to find any test vectors so untested */
 | |
| 		.base = {
 | |
| 			.cra_name = "ecb(des)",
 | |
| 			.cra_driver_name = "hisi_sec_des_ecb",
 | |
| 			.cra_priority = 4001,
 | |
| 			.cra_flags = CRYPTO_ALG_ASYNC,
 | |
| 			.cra_blocksize = DES_BLOCK_SIZE,
 | |
| 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
 | |
| 			.cra_alignmask = 0,
 | |
| 			.cra_module = THIS_MODULE,
 | |
| 		},
 | |
| 		.init = sec_alg_skcipher_init,
 | |
| 		.exit = sec_alg_skcipher_exit,
 | |
| 		.setkey = sec_alg_skcipher_setkey_des_ecb,
 | |
| 		.decrypt = sec_alg_skcipher_decrypt,
 | |
| 		.encrypt = sec_alg_skcipher_encrypt,
 | |
| 		.min_keysize = DES_KEY_SIZE,
 | |
| 		.max_keysize = DES_KEY_SIZE,
 | |
| 		.ivsize = 0,
 | |
| 	}, {
 | |
| 		.base = {
 | |
| 			.cra_name = "cbc(des)",
 | |
| 			.cra_driver_name = "hisi_sec_des_cbc",
 | |
| 			.cra_priority = 4001,
 | |
| 			.cra_flags = CRYPTO_ALG_ASYNC,
 | |
| 			.cra_blocksize = DES_BLOCK_SIZE,
 | |
| 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
 | |
| 			.cra_alignmask = 0,
 | |
| 			.cra_module = THIS_MODULE,
 | |
| 		},
 | |
| 		.init = sec_alg_skcipher_init_with_queue,
 | |
| 		.exit = sec_alg_skcipher_exit_with_queue,
 | |
| 		.setkey = sec_alg_skcipher_setkey_des_cbc,
 | |
| 		.decrypt = sec_alg_skcipher_decrypt,
 | |
| 		.encrypt = sec_alg_skcipher_encrypt,
 | |
| 		.min_keysize = DES_KEY_SIZE,
 | |
| 		.max_keysize = DES_KEY_SIZE,
 | |
| 		.ivsize = DES_BLOCK_SIZE,
 | |
| 	}, {
 | |
| 		.base = {
 | |
| 			.cra_name = "cbc(des3_ede)",
 | |
| 			.cra_driver_name = "hisi_sec_3des_cbc",
 | |
| 			.cra_priority = 4001,
 | |
| 			.cra_flags = CRYPTO_ALG_ASYNC,
 | |
| 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
 | |
| 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
 | |
| 			.cra_alignmask = 0,
 | |
| 			.cra_module = THIS_MODULE,
 | |
| 		},
 | |
| 		.init = sec_alg_skcipher_init_with_queue,
 | |
| 		.exit = sec_alg_skcipher_exit_with_queue,
 | |
| 		.setkey = sec_alg_skcipher_setkey_3des_cbc,
 | |
| 		.decrypt = sec_alg_skcipher_decrypt,
 | |
| 		.encrypt = sec_alg_skcipher_encrypt,
 | |
| 		.min_keysize = DES3_EDE_KEY_SIZE,
 | |
| 		.max_keysize = DES3_EDE_KEY_SIZE,
 | |
| 		.ivsize = DES3_EDE_BLOCK_SIZE,
 | |
| 	}, {
 | |
| 		.base = {
 | |
| 			.cra_name = "ecb(des3_ede)",
 | |
| 			.cra_driver_name = "hisi_sec_3des_ecb",
 | |
| 			.cra_priority = 4001,
 | |
| 			.cra_flags = CRYPTO_ALG_ASYNC,
 | |
| 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
 | |
| 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
 | |
| 			.cra_alignmask = 0,
 | |
| 			.cra_module = THIS_MODULE,
 | |
| 		},
 | |
| 		.init = sec_alg_skcipher_init,
 | |
| 		.exit = sec_alg_skcipher_exit,
 | |
| 		.setkey = sec_alg_skcipher_setkey_3des_ecb,
 | |
| 		.decrypt = sec_alg_skcipher_decrypt,
 | |
| 		.encrypt = sec_alg_skcipher_encrypt,
 | |
| 		.min_keysize = DES3_EDE_KEY_SIZE,
 | |
| 		.max_keysize = DES3_EDE_KEY_SIZE,
 | |
| 		.ivsize = 0,
 | |
| 	}
 | |
| };
 | |
| 
 | |
| int sec_algs_register(void)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&algs_lock);
 | |
| 	if (++active_devs != 1)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	ret = crypto_register_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
 | |
| 	if (ret)
 | |
| 		--active_devs;
 | |
| unlock:
 | |
| 	mutex_unlock(&algs_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void sec_algs_unregister(void)
 | |
| {
 | |
| 	mutex_lock(&algs_lock);
 | |
| 	if (--active_devs != 0)
 | |
| 		goto unlock;
 | |
| 	crypto_unregister_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&algs_lock);
 | |
| }
 | 
