1466 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1466 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Driver for high-speed SCC boards (those with DMA support)
 | |
|  * Copyright (C) 1997-2000 Klaus Kudielka
 | |
|  *
 | |
|  * S5SCC/DMA support by Janko Koleznik S52HI
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/rtnetlink.h>
 | |
| #include <linux/sockios.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <net/ax25.h>
 | |
| #include "z8530.h"
 | |
| 
 | |
| 
 | |
| /* Number of buffers per channel */
 | |
| 
 | |
| #define NUM_TX_BUF      2	/* NUM_TX_BUF >= 1 (min. 2 recommended) */
 | |
| #define NUM_RX_BUF      6	/* NUM_RX_BUF >= 1 (min. 2 recommended) */
 | |
| #define BUF_SIZE        1576	/* BUF_SIZE >= mtu + hard_header_len */
 | |
| 
 | |
| 
 | |
| /* Cards supported */
 | |
| 
 | |
| #define HW_PI           { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
 | |
|                             0, 8, 1843200, 3686400 }
 | |
| #define HW_PI2          { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
 | |
| 			    0, 8, 3686400, 7372800 }
 | |
| #define HW_TWIN         { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
 | |
| 			    0, 4, 6144000, 6144000 }
 | |
| #define HW_S5           { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
 | |
|                           0, 8, 4915200, 9830400 }
 | |
| 
 | |
| #define HARDWARE        { HW_PI, HW_PI2, HW_TWIN, HW_S5 }
 | |
| 
 | |
| #define TMR_0_HZ        25600	/* Frequency of timer 0 */
 | |
| 
 | |
| #define TYPE_PI         0
 | |
| #define TYPE_PI2        1
 | |
| #define TYPE_TWIN       2
 | |
| #define TYPE_S5         3
 | |
| #define NUM_TYPES       4
 | |
| 
 | |
| #define MAX_NUM_DEVS    32
 | |
| 
 | |
| 
 | |
| /* SCC chips supported */
 | |
| 
 | |
| #define Z8530           0
 | |
| #define Z85C30          1
 | |
| #define Z85230          2
 | |
| 
 | |
| #define CHIPNAMES       { "Z8530", "Z85C30", "Z85230" }
 | |
| 
 | |
| 
 | |
| /* I/O registers */
 | |
| 
 | |
| /* 8530 registers relative to card base */
 | |
| #define SCCB_CMD        0x00
 | |
| #define SCCB_DATA       0x01
 | |
| #define SCCA_CMD        0x02
 | |
| #define SCCA_DATA       0x03
 | |
| 
 | |
| /* 8253/8254 registers relative to card base */
 | |
| #define TMR_CNT0        0x00
 | |
| #define TMR_CNT1        0x01
 | |
| #define TMR_CNT2        0x02
 | |
| #define TMR_CTRL        0x03
 | |
| 
 | |
| /* Additional PI/PI2 registers relative to card base */
 | |
| #define PI_DREQ_MASK    0x04
 | |
| 
 | |
| /* Additional PackeTwin registers relative to card base */
 | |
| #define TWIN_INT_REG    0x08
 | |
| #define TWIN_CLR_TMR1   0x09
 | |
| #define TWIN_CLR_TMR2   0x0a
 | |
| #define TWIN_SPARE_1    0x0b
 | |
| #define TWIN_DMA_CFG    0x08
 | |
| #define TWIN_SERIAL_CFG 0x09
 | |
| #define TWIN_DMA_CLR_FF 0x0a
 | |
| #define TWIN_SPARE_2    0x0b
 | |
| 
 | |
| 
 | |
| /* PackeTwin I/O register values */
 | |
| 
 | |
| /* INT_REG */
 | |
| #define TWIN_SCC_MSK       0x01
 | |
| #define TWIN_TMR1_MSK      0x02
 | |
| #define TWIN_TMR2_MSK      0x04
 | |
| #define TWIN_INT_MSK       0x07
 | |
| 
 | |
| /* SERIAL_CFG */
 | |
| #define TWIN_DTRA_ON       0x01
 | |
| #define TWIN_DTRB_ON       0x02
 | |
| #define TWIN_EXTCLKA       0x04
 | |
| #define TWIN_EXTCLKB       0x08
 | |
| #define TWIN_LOOPA_ON      0x10
 | |
| #define TWIN_LOOPB_ON      0x20
 | |
| #define TWIN_EI            0x80
 | |
| 
 | |
| /* DMA_CFG */
 | |
| #define TWIN_DMA_HDX_T1    0x08
 | |
| #define TWIN_DMA_HDX_R1    0x0a
 | |
| #define TWIN_DMA_HDX_T3    0x14
 | |
| #define TWIN_DMA_HDX_R3    0x16
 | |
| #define TWIN_DMA_FDX_T3R1  0x1b
 | |
| #define TWIN_DMA_FDX_T1R3  0x1d
 | |
| 
 | |
| 
 | |
| /* Status values */
 | |
| 
 | |
| #define IDLE      0
 | |
| #define TX_HEAD   1
 | |
| #define TX_DATA   2
 | |
| #define TX_PAUSE  3
 | |
| #define TX_TAIL   4
 | |
| #define RTS_OFF   5
 | |
| #define WAIT      6
 | |
| #define DCD_ON    7
 | |
| #define RX_ON     8
 | |
| #define DCD_OFF   9
 | |
| 
 | |
| 
 | |
| /* Ioctls */
 | |
| 
 | |
| #define SIOCGSCCPARAM SIOCDEVPRIVATE
 | |
| #define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)
 | |
| 
 | |
| 
 | |
| /* Data types */
 | |
| 
 | |
| struct scc_param {
 | |
| 	int pclk_hz;		/* frequency of BRG input (don't change) */
 | |
| 	int brg_tc;		/* BRG terminal count; BRG disabled if < 0 */
 | |
| 	int nrzi;		/* 0 (nrz), 1 (nrzi) */
 | |
| 	int clocks;		/* see dmascc_cfg documentation */
 | |
| 	int txdelay;		/* [1/TMR_0_HZ] */
 | |
| 	int txtimeout;		/* [1/HZ] */
 | |
| 	int txtail;		/* [1/TMR_0_HZ] */
 | |
| 	int waittime;		/* [1/TMR_0_HZ] */
 | |
| 	int slottime;		/* [1/TMR_0_HZ] */
 | |
| 	int persist;		/* 1 ... 256 */
 | |
| 	int dma;		/* -1 (disable), 0, 1, 3 */
 | |
| 	int txpause;		/* [1/TMR_0_HZ] */
 | |
| 	int rtsoff;		/* [1/TMR_0_HZ] */
 | |
| 	int dcdon;		/* [1/TMR_0_HZ] */
 | |
| 	int dcdoff;		/* [1/TMR_0_HZ] */
 | |
| };
 | |
| 
 | |
| struct scc_hardware {
 | |
| 	char *name;
 | |
| 	int io_region;
 | |
| 	int io_delta;
 | |
| 	int io_size;
 | |
| 	int num_devs;
 | |
| 	int scc_offset;
 | |
| 	int tmr_offset;
 | |
| 	int tmr_hz;
 | |
| 	int pclk_hz;
 | |
| };
 | |
| 
 | |
| struct scc_priv {
 | |
| 	int type;
 | |
| 	int chip;
 | |
| 	struct net_device *dev;
 | |
| 	struct scc_info *info;
 | |
| 
 | |
| 	int channel;
 | |
| 	int card_base, scc_cmd, scc_data;
 | |
| 	int tmr_cnt, tmr_ctrl, tmr_mode;
 | |
| 	struct scc_param param;
 | |
| 	char rx_buf[NUM_RX_BUF][BUF_SIZE];
 | |
| 	int rx_len[NUM_RX_BUF];
 | |
| 	int rx_ptr;
 | |
| 	struct work_struct rx_work;
 | |
| 	int rx_head, rx_tail, rx_count;
 | |
| 	int rx_over;
 | |
| 	char tx_buf[NUM_TX_BUF][BUF_SIZE];
 | |
| 	int tx_len[NUM_TX_BUF];
 | |
| 	int tx_ptr;
 | |
| 	int tx_head, tx_tail, tx_count;
 | |
| 	int state;
 | |
| 	unsigned long tx_start;
 | |
| 	int rr0;
 | |
| 	spinlock_t *register_lock;	/* Per scc_info */
 | |
| 	spinlock_t ring_lock;
 | |
| };
 | |
| 
 | |
| struct scc_info {
 | |
| 	int irq_used;
 | |
| 	int twin_serial_cfg;
 | |
| 	struct net_device *dev[2];
 | |
| 	struct scc_priv priv[2];
 | |
| 	struct scc_info *next;
 | |
| 	spinlock_t register_lock;	/* Per device register lock */
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Function declarations */
 | |
| static int setup_adapter(int card_base, int type, int n) __init;
 | |
| 
 | |
| static void write_scc(struct scc_priv *priv, int reg, int val);
 | |
| static void write_scc_data(struct scc_priv *priv, int val, int fast);
 | |
| static int read_scc(struct scc_priv *priv, int reg);
 | |
| static int read_scc_data(struct scc_priv *priv);
 | |
| 
 | |
| static int scc_open(struct net_device *dev);
 | |
| static int scc_close(struct net_device *dev);
 | |
| static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
 | |
| static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
 | |
| static int scc_set_mac_address(struct net_device *dev, void *sa);
 | |
| 
 | |
| static inline void tx_on(struct scc_priv *priv);
 | |
| static inline void rx_on(struct scc_priv *priv);
 | |
| static inline void rx_off(struct scc_priv *priv);
 | |
| static void start_timer(struct scc_priv *priv, int t, int r15);
 | |
| static inline unsigned char random(void);
 | |
| 
 | |
| static inline void z8530_isr(struct scc_info *info);
 | |
| static irqreturn_t scc_isr(int irq, void *dev_id);
 | |
| static void rx_isr(struct scc_priv *priv);
 | |
| static void special_condition(struct scc_priv *priv, int rc);
 | |
| static void rx_bh(struct work_struct *);
 | |
| static void tx_isr(struct scc_priv *priv);
 | |
| static void es_isr(struct scc_priv *priv);
 | |
| static void tm_isr(struct scc_priv *priv);
 | |
| 
 | |
| 
 | |
| /* Initialization variables */
 | |
| 
 | |
| static int io[MAX_NUM_DEVS] __initdata = { 0, };
 | |
| 
 | |
| /* Beware! hw[] is also used in dmascc_exit(). */
 | |
| static struct scc_hardware hw[NUM_TYPES] = HARDWARE;
 | |
| 
 | |
| 
 | |
| /* Global variables */
 | |
| 
 | |
| static struct scc_info *first;
 | |
| static unsigned long rand;
 | |
| 
 | |
| 
 | |
| MODULE_AUTHOR("Klaus Kudielka");
 | |
| MODULE_DESCRIPTION("Driver for high-speed SCC boards");
 | |
| module_param_hw_array(io, int, ioport, NULL, 0);
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| static void __exit dmascc_exit(void)
 | |
| {
 | |
| 	int i;
 | |
| 	struct scc_info *info;
 | |
| 
 | |
| 	while (first) {
 | |
| 		info = first;
 | |
| 
 | |
| 		/* Unregister devices */
 | |
| 		for (i = 0; i < 2; i++)
 | |
| 			unregister_netdev(info->dev[i]);
 | |
| 
 | |
| 		/* Reset board */
 | |
| 		if (info->priv[0].type == TYPE_TWIN)
 | |
| 			outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
 | |
| 		write_scc(&info->priv[0], R9, FHWRES);
 | |
| 		release_region(info->dev[0]->base_addr,
 | |
| 			       hw[info->priv[0].type].io_size);
 | |
| 
 | |
| 		for (i = 0; i < 2; i++)
 | |
| 			free_netdev(info->dev[i]);
 | |
| 
 | |
| 		/* Free memory */
 | |
| 		first = info->next;
 | |
| 		kfree(info);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init dmascc_init(void)
 | |
| {
 | |
| 	int h, i, j, n;
 | |
| 	int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
 | |
| 	    t1[MAX_NUM_DEVS];
 | |
| 	unsigned t_val;
 | |
| 	unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
 | |
| 	    counting[MAX_NUM_DEVS];
 | |
| 
 | |
| 	/* Initialize random number generator */
 | |
| 	rand = jiffies;
 | |
| 	/* Cards found = 0 */
 | |
| 	n = 0;
 | |
| 	/* Warning message */
 | |
| 	if (!io[0])
 | |
| 		printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");
 | |
| 
 | |
| 	/* Run autodetection for each card type */
 | |
| 	for (h = 0; h < NUM_TYPES; h++) {
 | |
| 
 | |
| 		if (io[0]) {
 | |
| 			/* User-specified I/O address regions */
 | |
| 			for (i = 0; i < hw[h].num_devs; i++)
 | |
| 				base[i] = 0;
 | |
| 			for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
 | |
| 				j = (io[i] -
 | |
| 				     hw[h].io_region) / hw[h].io_delta;
 | |
| 				if (j >= 0 && j < hw[h].num_devs &&
 | |
| 				    hw[h].io_region +
 | |
| 				    j * hw[h].io_delta == io[i]) {
 | |
| 					base[j] = io[i];
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Default I/O address regions */
 | |
| 			for (i = 0; i < hw[h].num_devs; i++) {
 | |
| 				base[i] =
 | |
| 				    hw[h].io_region + i * hw[h].io_delta;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Check valid I/O address regions */
 | |
| 		for (i = 0; i < hw[h].num_devs; i++)
 | |
| 			if (base[i]) {
 | |
| 				if (!request_region
 | |
| 				    (base[i], hw[h].io_size, "dmascc"))
 | |
| 					base[i] = 0;
 | |
| 				else {
 | |
| 					tcmd[i] =
 | |
| 					    base[i] + hw[h].tmr_offset +
 | |
| 					    TMR_CTRL;
 | |
| 					t0[i] =
 | |
| 					    base[i] + hw[h].tmr_offset +
 | |
| 					    TMR_CNT0;
 | |
| 					t1[i] =
 | |
| 					    base[i] + hw[h].tmr_offset +
 | |
| 					    TMR_CNT1;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		/* Start timers */
 | |
| 		for (i = 0; i < hw[h].num_devs; i++)
 | |
| 			if (base[i]) {
 | |
| 				/* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
 | |
| 				outb(0x36, tcmd[i]);
 | |
| 				outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
 | |
| 				     t0[i]);
 | |
| 				outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
 | |
| 				     t0[i]);
 | |
| 				/* Timer 1: LSB+MSB, Mode 0, HZ/10 */
 | |
| 				outb(0x70, tcmd[i]);
 | |
| 				outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
 | |
| 				outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
 | |
| 				start[i] = jiffies;
 | |
| 				delay[i] = 0;
 | |
| 				counting[i] = 1;
 | |
| 				/* Timer 2: LSB+MSB, Mode 0 */
 | |
| 				outb(0xb0, tcmd[i]);
 | |
| 			}
 | |
| 		time = jiffies;
 | |
| 		/* Wait until counter registers are loaded */
 | |
| 		udelay(2000000 / TMR_0_HZ);
 | |
| 
 | |
| 		/* Timing loop */
 | |
| 		while (jiffies - time < 13) {
 | |
| 			for (i = 0; i < hw[h].num_devs; i++)
 | |
| 				if (base[i] && counting[i]) {
 | |
| 					/* Read back Timer 1: latch; read LSB; read MSB */
 | |
| 					outb(0x40, tcmd[i]);
 | |
| 					t_val =
 | |
| 					    inb(t1[i]) + (inb(t1[i]) << 8);
 | |
| 					/* Also check whether counter did wrap */
 | |
| 					if (t_val == 0 ||
 | |
| 					    t_val > TMR_0_HZ / HZ * 10)
 | |
| 						counting[i] = 0;
 | |
| 					delay[i] = jiffies - start[i];
 | |
| 				}
 | |
| 		}
 | |
| 
 | |
| 		/* Evaluate measurements */
 | |
| 		for (i = 0; i < hw[h].num_devs; i++)
 | |
| 			if (base[i]) {
 | |
| 				if ((delay[i] >= 9 && delay[i] <= 11) &&
 | |
| 				    /* Ok, we have found an adapter */
 | |
| 				    (setup_adapter(base[i], h, n) == 0))
 | |
| 					n++;
 | |
| 				else
 | |
| 					release_region(base[i],
 | |
| 						       hw[h].io_size);
 | |
| 			}
 | |
| 
 | |
| 	}			/* NUM_TYPES */
 | |
| 
 | |
| 	/* If any adapter was successfully initialized, return ok */
 | |
| 	if (n)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If no adapter found, return error */
 | |
| 	printk(KERN_INFO "dmascc: no adapters found\n");
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| module_init(dmascc_init);
 | |
| module_exit(dmascc_exit);
 | |
| 
 | |
| static void __init dev_setup(struct net_device *dev)
 | |
| {
 | |
| 	dev->type = ARPHRD_AX25;
 | |
| 	dev->hard_header_len = AX25_MAX_HEADER_LEN;
 | |
| 	dev->mtu = 1500;
 | |
| 	dev->addr_len = AX25_ADDR_LEN;
 | |
| 	dev->tx_queue_len = 64;
 | |
| 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 | |
| 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops scc_netdev_ops = {
 | |
| 	.ndo_open = scc_open,
 | |
| 	.ndo_stop = scc_close,
 | |
| 	.ndo_start_xmit = scc_send_packet,
 | |
| 	.ndo_do_ioctl = scc_ioctl,
 | |
| 	.ndo_set_mac_address = scc_set_mac_address,
 | |
| };
 | |
| 
 | |
| static int __init setup_adapter(int card_base, int type, int n)
 | |
| {
 | |
| 	int i, irq, chip, err;
 | |
| 	struct scc_info *info;
 | |
| 	struct net_device *dev;
 | |
| 	struct scc_priv *priv;
 | |
| 	unsigned long time;
 | |
| 	unsigned int irqs;
 | |
| 	int tmr_base = card_base + hw[type].tmr_offset;
 | |
| 	int scc_base = card_base + hw[type].scc_offset;
 | |
| 	char *chipnames[] = CHIPNAMES;
 | |
| 
 | |
| 	/* Initialize what is necessary for write_scc and write_scc_data */
 | |
| 	info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
 | |
| 	if (!info) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	info->dev[0] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
 | |
| 	if (!info->dev[0]) {
 | |
| 		printk(KERN_ERR "dmascc: "
 | |
| 		       "could not allocate memory for %s at %#3x\n",
 | |
| 		       hw[type].name, card_base);
 | |
| 		err = -ENOMEM;
 | |
| 		goto out1;
 | |
| 	}
 | |
| 
 | |
| 	info->dev[1] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
 | |
| 	if (!info->dev[1]) {
 | |
| 		printk(KERN_ERR "dmascc: "
 | |
| 		       "could not allocate memory for %s at %#3x\n",
 | |
| 		       hw[type].name, card_base);
 | |
| 		err = -ENOMEM;
 | |
| 		goto out2;
 | |
| 	}
 | |
| 	spin_lock_init(&info->register_lock);
 | |
| 
 | |
| 	priv = &info->priv[0];
 | |
| 	priv->type = type;
 | |
| 	priv->card_base = card_base;
 | |
| 	priv->scc_cmd = scc_base + SCCA_CMD;
 | |
| 	priv->scc_data = scc_base + SCCA_DATA;
 | |
| 	priv->register_lock = &info->register_lock;
 | |
| 
 | |
| 	/* Reset SCC */
 | |
| 	write_scc(priv, R9, FHWRES | MIE | NV);
 | |
| 
 | |
| 	/* Determine type of chip by enabling SDLC/HDLC enhancements */
 | |
| 	write_scc(priv, R15, SHDLCE);
 | |
| 	if (!read_scc(priv, R15)) {
 | |
| 		/* WR7' not present. This is an ordinary Z8530 SCC. */
 | |
| 		chip = Z8530;
 | |
| 	} else {
 | |
| 		/* Put one character in TX FIFO */
 | |
| 		write_scc_data(priv, 0, 0);
 | |
| 		if (read_scc(priv, R0) & Tx_BUF_EMP) {
 | |
| 			/* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
 | |
| 			chip = Z85230;
 | |
| 		} else {
 | |
| 			/* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
 | |
| 			chip = Z85C30;
 | |
| 		}
 | |
| 	}
 | |
| 	write_scc(priv, R15, 0);
 | |
| 
 | |
| 	/* Start IRQ auto-detection */
 | |
| 	irqs = probe_irq_on();
 | |
| 
 | |
| 	/* Enable interrupts */
 | |
| 	if (type == TYPE_TWIN) {
 | |
| 		outb(0, card_base + TWIN_DMA_CFG);
 | |
| 		inb(card_base + TWIN_CLR_TMR1);
 | |
| 		inb(card_base + TWIN_CLR_TMR2);
 | |
| 		info->twin_serial_cfg = TWIN_EI;
 | |
| 		outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
 | |
| 	} else {
 | |
| 		write_scc(priv, R15, CTSIE);
 | |
| 		write_scc(priv, R0, RES_EXT_INT);
 | |
| 		write_scc(priv, R1, EXT_INT_ENAB);
 | |
| 	}
 | |
| 
 | |
| 	/* Start timer */
 | |
| 	outb(1, tmr_base + TMR_CNT1);
 | |
| 	outb(0, tmr_base + TMR_CNT1);
 | |
| 
 | |
| 	/* Wait and detect IRQ */
 | |
| 	time = jiffies;
 | |
| 	while (jiffies - time < 2 + HZ / TMR_0_HZ);
 | |
| 	irq = probe_irq_off(irqs);
 | |
| 
 | |
| 	/* Clear pending interrupt, disable interrupts */
 | |
| 	if (type == TYPE_TWIN) {
 | |
| 		inb(card_base + TWIN_CLR_TMR1);
 | |
| 	} else {
 | |
| 		write_scc(priv, R1, 0);
 | |
| 		write_scc(priv, R15, 0);
 | |
| 		write_scc(priv, R0, RES_EXT_INT);
 | |
| 	}
 | |
| 
 | |
| 	if (irq <= 0) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "dmascc: could not find irq of %s at %#3x (irq=%d)\n",
 | |
| 		       hw[type].name, card_base, irq);
 | |
| 		err = -ENODEV;
 | |
| 		goto out3;
 | |
| 	}
 | |
| 
 | |
| 	/* Set up data structures */
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		dev = info->dev[i];
 | |
| 		priv = &info->priv[i];
 | |
| 		priv->type = type;
 | |
| 		priv->chip = chip;
 | |
| 		priv->dev = dev;
 | |
| 		priv->info = info;
 | |
| 		priv->channel = i;
 | |
| 		spin_lock_init(&priv->ring_lock);
 | |
| 		priv->register_lock = &info->register_lock;
 | |
| 		priv->card_base = card_base;
 | |
| 		priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
 | |
| 		priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
 | |
| 		priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
 | |
| 		priv->tmr_ctrl = tmr_base + TMR_CTRL;
 | |
| 		priv->tmr_mode = i ? 0xb0 : 0x70;
 | |
| 		priv->param.pclk_hz = hw[type].pclk_hz;
 | |
| 		priv->param.brg_tc = -1;
 | |
| 		priv->param.clocks = TCTRxCP | RCRTxCP;
 | |
| 		priv->param.persist = 256;
 | |
| 		priv->param.dma = -1;
 | |
| 		INIT_WORK(&priv->rx_work, rx_bh);
 | |
| 		dev->ml_priv = priv;
 | |
| 		snprintf(dev->name, sizeof(dev->name), "dmascc%i", 2 * n + i);
 | |
| 		dev->base_addr = card_base;
 | |
| 		dev->irq = irq;
 | |
| 		dev->netdev_ops = &scc_netdev_ops;
 | |
| 		dev->header_ops = &ax25_header_ops;
 | |
| 	}
 | |
| 	if (register_netdev(info->dev[0])) {
 | |
| 		printk(KERN_ERR "dmascc: could not register %s\n",
 | |
| 		       info->dev[0]->name);
 | |
| 		err = -ENODEV;
 | |
| 		goto out3;
 | |
| 	}
 | |
| 	if (register_netdev(info->dev[1])) {
 | |
| 		printk(KERN_ERR "dmascc: could not register %s\n",
 | |
| 		       info->dev[1]->name);
 | |
| 		err = -ENODEV;
 | |
| 		goto out4;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	info->next = first;
 | |
| 	first = info;
 | |
| 	printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
 | |
| 	       hw[type].name, chipnames[chip], card_base, irq);
 | |
| 	return 0;
 | |
| 
 | |
|       out4:
 | |
| 	unregister_netdev(info->dev[0]);
 | |
|       out3:
 | |
| 	if (info->priv[0].type == TYPE_TWIN)
 | |
| 		outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
 | |
| 	write_scc(&info->priv[0], R9, FHWRES);
 | |
| 	free_netdev(info->dev[1]);
 | |
|       out2:
 | |
| 	free_netdev(info->dev[0]);
 | |
|       out1:
 | |
| 	kfree(info);
 | |
|       out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Driver functions */
 | |
| 
 | |
| static void write_scc(struct scc_priv *priv, int reg, int val)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	switch (priv->type) {
 | |
| 	case TYPE_S5:
 | |
| 		if (reg)
 | |
| 			outb(reg, priv->scc_cmd);
 | |
| 		outb(val, priv->scc_cmd);
 | |
| 		return;
 | |
| 	case TYPE_TWIN:
 | |
| 		if (reg)
 | |
| 			outb_p(reg, priv->scc_cmd);
 | |
| 		outb_p(val, priv->scc_cmd);
 | |
| 		return;
 | |
| 	default:
 | |
| 		spin_lock_irqsave(priv->register_lock, flags);
 | |
| 		outb_p(0, priv->card_base + PI_DREQ_MASK);
 | |
| 		if (reg)
 | |
| 			outb_p(reg, priv->scc_cmd);
 | |
| 		outb_p(val, priv->scc_cmd);
 | |
| 		outb(1, priv->card_base + PI_DREQ_MASK);
 | |
| 		spin_unlock_irqrestore(priv->register_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void write_scc_data(struct scc_priv *priv, int val, int fast)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	switch (priv->type) {
 | |
| 	case TYPE_S5:
 | |
| 		outb(val, priv->scc_data);
 | |
| 		return;
 | |
| 	case TYPE_TWIN:
 | |
| 		outb_p(val, priv->scc_data);
 | |
| 		return;
 | |
| 	default:
 | |
| 		if (fast)
 | |
| 			outb_p(val, priv->scc_data);
 | |
| 		else {
 | |
| 			spin_lock_irqsave(priv->register_lock, flags);
 | |
| 			outb_p(0, priv->card_base + PI_DREQ_MASK);
 | |
| 			outb_p(val, priv->scc_data);
 | |
| 			outb(1, priv->card_base + PI_DREQ_MASK);
 | |
| 			spin_unlock_irqrestore(priv->register_lock, flags);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int read_scc(struct scc_priv *priv, int reg)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned long flags;
 | |
| 	switch (priv->type) {
 | |
| 	case TYPE_S5:
 | |
| 		if (reg)
 | |
| 			outb(reg, priv->scc_cmd);
 | |
| 		return inb(priv->scc_cmd);
 | |
| 	case TYPE_TWIN:
 | |
| 		if (reg)
 | |
| 			outb_p(reg, priv->scc_cmd);
 | |
| 		return inb_p(priv->scc_cmd);
 | |
| 	default:
 | |
| 		spin_lock_irqsave(priv->register_lock, flags);
 | |
| 		outb_p(0, priv->card_base + PI_DREQ_MASK);
 | |
| 		if (reg)
 | |
| 			outb_p(reg, priv->scc_cmd);
 | |
| 		rc = inb_p(priv->scc_cmd);
 | |
| 		outb(1, priv->card_base + PI_DREQ_MASK);
 | |
| 		spin_unlock_irqrestore(priv->register_lock, flags);
 | |
| 		return rc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int read_scc_data(struct scc_priv *priv)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned long flags;
 | |
| 	switch (priv->type) {
 | |
| 	case TYPE_S5:
 | |
| 		return inb(priv->scc_data);
 | |
| 	case TYPE_TWIN:
 | |
| 		return inb_p(priv->scc_data);
 | |
| 	default:
 | |
| 		spin_lock_irqsave(priv->register_lock, flags);
 | |
| 		outb_p(0, priv->card_base + PI_DREQ_MASK);
 | |
| 		rc = inb_p(priv->scc_data);
 | |
| 		outb(1, priv->card_base + PI_DREQ_MASK);
 | |
| 		spin_unlock_irqrestore(priv->register_lock, flags);
 | |
| 		return rc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int scc_open(struct net_device *dev)
 | |
| {
 | |
| 	struct scc_priv *priv = dev->ml_priv;
 | |
| 	struct scc_info *info = priv->info;
 | |
| 	int card_base = priv->card_base;
 | |
| 
 | |
| 	/* Request IRQ if not already used by other channel */
 | |
| 	if (!info->irq_used) {
 | |
| 		if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 	}
 | |
| 	info->irq_used++;
 | |
| 
 | |
| 	/* Request DMA if required */
 | |
| 	if (priv->param.dma >= 0) {
 | |
| 		if (request_dma(priv->param.dma, "dmascc")) {
 | |
| 			if (--info->irq_used == 0)
 | |
| 				free_irq(dev->irq, info);
 | |
| 			return -EAGAIN;
 | |
| 		} else {
 | |
| 			unsigned long flags = claim_dma_lock();
 | |
| 			clear_dma_ff(priv->param.dma);
 | |
| 			release_dma_lock(flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize local variables */
 | |
| 	priv->rx_ptr = 0;
 | |
| 	priv->rx_over = 0;
 | |
| 	priv->rx_head = priv->rx_tail = priv->rx_count = 0;
 | |
| 	priv->state = IDLE;
 | |
| 	priv->tx_head = priv->tx_tail = priv->tx_count = 0;
 | |
| 	priv->tx_ptr = 0;
 | |
| 
 | |
| 	/* Reset channel */
 | |
| 	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
 | |
| 	/* X1 clock, SDLC mode */
 | |
| 	write_scc(priv, R4, SDLC | X1CLK);
 | |
| 	/* DMA */
 | |
| 	write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
 | |
| 	/* 8 bit RX char, RX disable */
 | |
| 	write_scc(priv, R3, Rx8);
 | |
| 	/* 8 bit TX char, TX disable */
 | |
| 	write_scc(priv, R5, Tx8);
 | |
| 	/* SDLC address field */
 | |
| 	write_scc(priv, R6, 0);
 | |
| 	/* SDLC flag */
 | |
| 	write_scc(priv, R7, FLAG);
 | |
| 	switch (priv->chip) {
 | |
| 	case Z85C30:
 | |
| 		/* Select WR7' */
 | |
| 		write_scc(priv, R15, SHDLCE);
 | |
| 		/* Auto EOM reset */
 | |
| 		write_scc(priv, R7, AUTOEOM);
 | |
| 		write_scc(priv, R15, 0);
 | |
| 		break;
 | |
| 	case Z85230:
 | |
| 		/* Select WR7' */
 | |
| 		write_scc(priv, R15, SHDLCE);
 | |
| 		/* The following bits are set (see 2.5.2.1):
 | |
| 		   - Automatic EOM reset
 | |
| 		   - Interrupt request if RX FIFO is half full
 | |
| 		   This bit should be ignored in DMA mode (according to the
 | |
| 		   documentation), but actually isn't. The receiver doesn't work if
 | |
| 		   it is set. Thus, we have to clear it in DMA mode.
 | |
| 		   - Interrupt/DMA request if TX FIFO is completely empty
 | |
| 		   a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
 | |
| 		   compatibility).
 | |
| 		   b) If cleared, DMA requests may follow each other very quickly,
 | |
| 		   filling up the TX FIFO.
 | |
| 		   Advantage: TX works even in case of high bus latency.
 | |
| 		   Disadvantage: Edge-triggered DMA request circuitry may miss
 | |
| 		   a request. No more data is delivered, resulting
 | |
| 		   in a TX FIFO underrun.
 | |
| 		   Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
 | |
| 		   The PackeTwin doesn't. I don't know about the PI, but let's
 | |
| 		   assume it behaves like the PI2.
 | |
| 		 */
 | |
| 		if (priv->param.dma >= 0) {
 | |
| 			if (priv->type == TYPE_TWIN)
 | |
| 				write_scc(priv, R7, AUTOEOM | TXFIFOE);
 | |
| 			else
 | |
| 				write_scc(priv, R7, AUTOEOM);
 | |
| 		} else {
 | |
| 			write_scc(priv, R7, AUTOEOM | RXFIFOH);
 | |
| 		}
 | |
| 		write_scc(priv, R15, 0);
 | |
| 		break;
 | |
| 	}
 | |
| 	/* Preset CRC, NRZ(I) encoding */
 | |
| 	write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
 | |
| 
 | |
| 	/* Configure baud rate generator */
 | |
| 	if (priv->param.brg_tc >= 0) {
 | |
| 		/* Program BR generator */
 | |
| 		write_scc(priv, R12, priv->param.brg_tc & 0xFF);
 | |
| 		write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
 | |
| 		/* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
 | |
| 		   PackeTwin, not connected on the PI2); set DPLL source to BRG */
 | |
| 		write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
 | |
| 		/* Enable DPLL */
 | |
| 		write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
 | |
| 	} else {
 | |
| 		/* Disable BR generator */
 | |
| 		write_scc(priv, R14, DTRREQ | BRSRC);
 | |
| 	}
 | |
| 
 | |
| 	/* Configure clocks */
 | |
| 	if (priv->type == TYPE_TWIN) {
 | |
| 		/* Disable external TX clock receiver */
 | |
| 		outb((info->twin_serial_cfg &=
 | |
| 		      ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
 | |
| 		     card_base + TWIN_SERIAL_CFG);
 | |
| 	}
 | |
| 	write_scc(priv, R11, priv->param.clocks);
 | |
| 	if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
 | |
| 		/* Enable external TX clock receiver */
 | |
| 		outb((info->twin_serial_cfg |=
 | |
| 		      (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
 | |
| 		     card_base + TWIN_SERIAL_CFG);
 | |
| 	}
 | |
| 
 | |
| 	/* Configure PackeTwin */
 | |
| 	if (priv->type == TYPE_TWIN) {
 | |
| 		/* Assert DTR, enable interrupts */
 | |
| 		outb((info->twin_serial_cfg |= TWIN_EI |
 | |
| 		      (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
 | |
| 		     card_base + TWIN_SERIAL_CFG);
 | |
| 	}
 | |
| 
 | |
| 	/* Read current status */
 | |
| 	priv->rr0 = read_scc(priv, R0);
 | |
| 	/* Enable DCD interrupt */
 | |
| 	write_scc(priv, R15, DCDIE);
 | |
| 
 | |
| 	netif_start_queue(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int scc_close(struct net_device *dev)
 | |
| {
 | |
| 	struct scc_priv *priv = dev->ml_priv;
 | |
| 	struct scc_info *info = priv->info;
 | |
| 	int card_base = priv->card_base;
 | |
| 
 | |
| 	netif_stop_queue(dev);
 | |
| 
 | |
| 	if (priv->type == TYPE_TWIN) {
 | |
| 		/* Drop DTR */
 | |
| 		outb((info->twin_serial_cfg &=
 | |
| 		      (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
 | |
| 		     card_base + TWIN_SERIAL_CFG);
 | |
| 	}
 | |
| 
 | |
| 	/* Reset channel, free DMA and IRQ */
 | |
| 	write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
 | |
| 	if (priv->param.dma >= 0) {
 | |
| 		if (priv->type == TYPE_TWIN)
 | |
| 			outb(0, card_base + TWIN_DMA_CFG);
 | |
| 		free_dma(priv->param.dma);
 | |
| 	}
 | |
| 	if (--info->irq_used == 0)
 | |
| 		free_irq(dev->irq, info);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	struct scc_priv *priv = dev->ml_priv;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case SIOCGSCCPARAM:
 | |
| 		if (copy_to_user
 | |
| 		    (ifr->ifr_data, &priv->param,
 | |
| 		     sizeof(struct scc_param)))
 | |
| 			return -EFAULT;
 | |
| 		return 0;
 | |
| 	case SIOCSSCCPARAM:
 | |
| 		if (!capable(CAP_NET_ADMIN))
 | |
| 			return -EPERM;
 | |
| 		if (netif_running(dev))
 | |
| 			return -EAGAIN;
 | |
| 		if (copy_from_user
 | |
| 		    (&priv->param, ifr->ifr_data,
 | |
| 		     sizeof(struct scc_param)))
 | |
| 			return -EFAULT;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct scc_priv *priv = dev->ml_priv;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	if (skb->protocol == htons(ETH_P_IP))
 | |
| 		return ax25_ip_xmit(skb);
 | |
| 
 | |
| 	/* Temporarily stop the scheduler feeding us packets */
 | |
| 	netif_stop_queue(dev);
 | |
| 
 | |
| 	/* Transfer data to DMA buffer */
 | |
| 	i = priv->tx_head;
 | |
| 	skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1);
 | |
| 	priv->tx_len[i] = skb->len - 1;
 | |
| 
 | |
| 	/* Clear interrupts while we touch our circular buffers */
 | |
| 
 | |
| 	spin_lock_irqsave(&priv->ring_lock, flags);
 | |
| 	/* Move the ring buffer's head */
 | |
| 	priv->tx_head = (i + 1) % NUM_TX_BUF;
 | |
| 	priv->tx_count++;
 | |
| 
 | |
| 	/* If we just filled up the last buffer, leave queue stopped.
 | |
| 	   The higher layers must wait until we have a DMA buffer
 | |
| 	   to accept the data. */
 | |
| 	if (priv->tx_count < NUM_TX_BUF)
 | |
| 		netif_wake_queue(dev);
 | |
| 
 | |
| 	/* Set new TX state */
 | |
| 	if (priv->state == IDLE) {
 | |
| 		/* Assert RTS, start timer */
 | |
| 		priv->state = TX_HEAD;
 | |
| 		priv->tx_start = jiffies;
 | |
| 		write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
 | |
| 		write_scc(priv, R15, 0);
 | |
| 		start_timer(priv, priv->param.txdelay, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Turn interrupts back on and free buffer */
 | |
| 	spin_unlock_irqrestore(&priv->ring_lock, flags);
 | |
| 	dev_kfree_skb(skb);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int scc_set_mac_address(struct net_device *dev, void *sa)
 | |
| {
 | |
| 	memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
 | |
| 	       dev->addr_len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void tx_on(struct scc_priv *priv)
 | |
| {
 | |
| 	int i, n;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (priv->param.dma >= 0) {
 | |
| 		n = (priv->chip == Z85230) ? 3 : 1;
 | |
| 		/* Program DMA controller */
 | |
| 		flags = claim_dma_lock();
 | |
| 		set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
 | |
| 		set_dma_addr(priv->param.dma,
 | |
| 			     (int) priv->tx_buf[priv->tx_tail] + n);
 | |
| 		set_dma_count(priv->param.dma,
 | |
| 			      priv->tx_len[priv->tx_tail] - n);
 | |
| 		release_dma_lock(flags);
 | |
| 		/* Enable TX underrun interrupt */
 | |
| 		write_scc(priv, R15, TxUIE);
 | |
| 		/* Configure DREQ */
 | |
| 		if (priv->type == TYPE_TWIN)
 | |
| 			outb((priv->param.dma ==
 | |
| 			      1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
 | |
| 			     priv->card_base + TWIN_DMA_CFG);
 | |
| 		else
 | |
| 			write_scc(priv, R1,
 | |
| 				  EXT_INT_ENAB | WT_FN_RDYFN |
 | |
| 				  WT_RDY_ENAB);
 | |
| 		/* Write first byte(s) */
 | |
| 		spin_lock_irqsave(priv->register_lock, flags);
 | |
| 		for (i = 0; i < n; i++)
 | |
| 			write_scc_data(priv,
 | |
| 				       priv->tx_buf[priv->tx_tail][i], 1);
 | |
| 		enable_dma(priv->param.dma);
 | |
| 		spin_unlock_irqrestore(priv->register_lock, flags);
 | |
| 	} else {
 | |
| 		write_scc(priv, R15, TxUIE);
 | |
| 		write_scc(priv, R1,
 | |
| 			  EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
 | |
| 		tx_isr(priv);
 | |
| 	}
 | |
| 	/* Reset EOM latch if we do not have the AUTOEOM feature */
 | |
| 	if (priv->chip == Z8530)
 | |
| 		write_scc(priv, R0, RES_EOM_L);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void rx_on(struct scc_priv *priv)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Clear RX FIFO */
 | |
| 	while (read_scc(priv, R0) & Rx_CH_AV)
 | |
| 		read_scc_data(priv);
 | |
| 	priv->rx_over = 0;
 | |
| 	if (priv->param.dma >= 0) {
 | |
| 		/* Program DMA controller */
 | |
| 		flags = claim_dma_lock();
 | |
| 		set_dma_mode(priv->param.dma, DMA_MODE_READ);
 | |
| 		set_dma_addr(priv->param.dma,
 | |
| 			     (int) priv->rx_buf[priv->rx_head]);
 | |
| 		set_dma_count(priv->param.dma, BUF_SIZE);
 | |
| 		release_dma_lock(flags);
 | |
| 		enable_dma(priv->param.dma);
 | |
| 		/* Configure PackeTwin DMA */
 | |
| 		if (priv->type == TYPE_TWIN) {
 | |
| 			outb((priv->param.dma ==
 | |
| 			      1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
 | |
| 			     priv->card_base + TWIN_DMA_CFG);
 | |
| 		}
 | |
| 		/* Sp. cond. intr. only, ext int enable, RX DMA enable */
 | |
| 		write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
 | |
| 			  WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
 | |
| 	} else {
 | |
| 		/* Reset current frame */
 | |
| 		priv->rx_ptr = 0;
 | |
| 		/* Intr. on all Rx characters and Sp. cond., ext int enable */
 | |
| 		write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
 | |
| 			  WT_FN_RDYFN);
 | |
| 	}
 | |
| 	write_scc(priv, R0, ERR_RES);
 | |
| 	write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void rx_off(struct scc_priv *priv)
 | |
| {
 | |
| 	/* Disable receiver */
 | |
| 	write_scc(priv, R3, Rx8);
 | |
| 	/* Disable DREQ / RX interrupt */
 | |
| 	if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
 | |
| 		outb(0, priv->card_base + TWIN_DMA_CFG);
 | |
| 	else
 | |
| 		write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
 | |
| 	/* Disable DMA */
 | |
| 	if (priv->param.dma >= 0)
 | |
| 		disable_dma(priv->param.dma);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void start_timer(struct scc_priv *priv, int t, int r15)
 | |
| {
 | |
| 	outb(priv->tmr_mode, priv->tmr_ctrl);
 | |
| 	if (t == 0) {
 | |
| 		tm_isr(priv);
 | |
| 	} else if (t > 0) {
 | |
| 		outb(t & 0xFF, priv->tmr_cnt);
 | |
| 		outb((t >> 8) & 0xFF, priv->tmr_cnt);
 | |
| 		if (priv->type != TYPE_TWIN) {
 | |
| 			write_scc(priv, R15, r15 | CTSIE);
 | |
| 			priv->rr0 |= CTS;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline unsigned char random(void)
 | |
| {
 | |
| 	/* See "Numerical Recipes in C", second edition, p. 284 */
 | |
| 	rand = rand * 1664525L + 1013904223L;
 | |
| 	return (unsigned char) (rand >> 24);
 | |
| }
 | |
| 
 | |
| static inline void z8530_isr(struct scc_info *info)
 | |
| {
 | |
| 	int is, i = 100;
 | |
| 
 | |
| 	while ((is = read_scc(&info->priv[0], R3)) && i--) {
 | |
| 		if (is & CHARxIP) {
 | |
| 			rx_isr(&info->priv[0]);
 | |
| 		} else if (is & CHATxIP) {
 | |
| 			tx_isr(&info->priv[0]);
 | |
| 		} else if (is & CHAEXT) {
 | |
| 			es_isr(&info->priv[0]);
 | |
| 		} else if (is & CHBRxIP) {
 | |
| 			rx_isr(&info->priv[1]);
 | |
| 		} else if (is & CHBTxIP) {
 | |
| 			tx_isr(&info->priv[1]);
 | |
| 		} else {
 | |
| 			es_isr(&info->priv[1]);
 | |
| 		}
 | |
| 		write_scc(&info->priv[0], R0, RES_H_IUS);
 | |
| 		i++;
 | |
| 	}
 | |
| 	if (i < 0) {
 | |
| 		printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
 | |
| 		       is);
 | |
| 	}
 | |
| 	/* Ok, no interrupts pending from this 8530. The INT line should
 | |
| 	   be inactive now. */
 | |
| }
 | |
| 
 | |
| 
 | |
| static irqreturn_t scc_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct scc_info *info = dev_id;
 | |
| 
 | |
| 	spin_lock(info->priv[0].register_lock);
 | |
| 	/* At this point interrupts are enabled, and the interrupt under service
 | |
| 	   is already acknowledged, but masked off.
 | |
| 
 | |
| 	   Interrupt processing: We loop until we know that the IRQ line is
 | |
| 	   low. If another positive edge occurs afterwards during the ISR,
 | |
| 	   another interrupt will be triggered by the interrupt controller
 | |
| 	   as soon as the IRQ level is enabled again (see asm/irq.h).
 | |
| 
 | |
| 	   Bottom-half handlers will be processed after scc_isr(). This is
 | |
| 	   important, since we only have small ringbuffers and want new data
 | |
| 	   to be fetched/delivered immediately. */
 | |
| 
 | |
| 	if (info->priv[0].type == TYPE_TWIN) {
 | |
| 		int is, card_base = info->priv[0].card_base;
 | |
| 		while ((is = ~inb(card_base + TWIN_INT_REG)) &
 | |
| 		       TWIN_INT_MSK) {
 | |
| 			if (is & TWIN_SCC_MSK) {
 | |
| 				z8530_isr(info);
 | |
| 			} else if (is & TWIN_TMR1_MSK) {
 | |
| 				inb(card_base + TWIN_CLR_TMR1);
 | |
| 				tm_isr(&info->priv[0]);
 | |
| 			} else {
 | |
| 				inb(card_base + TWIN_CLR_TMR2);
 | |
| 				tm_isr(&info->priv[1]);
 | |
| 			}
 | |
| 		}
 | |
| 	} else
 | |
| 		z8530_isr(info);
 | |
| 	spin_unlock(info->priv[0].register_lock);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void rx_isr(struct scc_priv *priv)
 | |
| {
 | |
| 	if (priv->param.dma >= 0) {
 | |
| 		/* Check special condition and perform error reset. See 2.4.7.5. */
 | |
| 		special_condition(priv, read_scc(priv, R1));
 | |
| 		write_scc(priv, R0, ERR_RES);
 | |
| 	} else {
 | |
| 		/* Check special condition for each character. Error reset not necessary.
 | |
| 		   Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
 | |
| 		int rc;
 | |
| 		while (read_scc(priv, R0) & Rx_CH_AV) {
 | |
| 			rc = read_scc(priv, R1);
 | |
| 			if (priv->rx_ptr < BUF_SIZE)
 | |
| 				priv->rx_buf[priv->rx_head][priv->
 | |
| 							    rx_ptr++] =
 | |
| 				    read_scc_data(priv);
 | |
| 			else {
 | |
| 				priv->rx_over = 2;
 | |
| 				read_scc_data(priv);
 | |
| 			}
 | |
| 			special_condition(priv, rc);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void special_condition(struct scc_priv *priv, int rc)
 | |
| {
 | |
| 	int cb;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* See Figure 2-15. Only overrun and EOF need to be checked. */
 | |
| 
 | |
| 	if (rc & Rx_OVR) {
 | |
| 		/* Receiver overrun */
 | |
| 		priv->rx_over = 1;
 | |
| 		if (priv->param.dma < 0)
 | |
| 			write_scc(priv, R0, ERR_RES);
 | |
| 	} else if (rc & END_FR) {
 | |
| 		/* End of frame. Get byte count */
 | |
| 		if (priv->param.dma >= 0) {
 | |
| 			flags = claim_dma_lock();
 | |
| 			cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
 | |
| 			    2;
 | |
| 			release_dma_lock(flags);
 | |
| 		} else {
 | |
| 			cb = priv->rx_ptr - 2;
 | |
| 		}
 | |
| 		if (priv->rx_over) {
 | |
| 			/* We had an overrun */
 | |
| 			priv->dev->stats.rx_errors++;
 | |
| 			if (priv->rx_over == 2)
 | |
| 				priv->dev->stats.rx_length_errors++;
 | |
| 			else
 | |
| 				priv->dev->stats.rx_fifo_errors++;
 | |
| 			priv->rx_over = 0;
 | |
| 		} else if (rc & CRC_ERR) {
 | |
| 			/* Count invalid CRC only if packet length >= minimum */
 | |
| 			if (cb >= 15) {
 | |
| 				priv->dev->stats.rx_errors++;
 | |
| 				priv->dev->stats.rx_crc_errors++;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (cb >= 15) {
 | |
| 				if (priv->rx_count < NUM_RX_BUF - 1) {
 | |
| 					/* Put good frame in FIFO */
 | |
| 					priv->rx_len[priv->rx_head] = cb;
 | |
| 					priv->rx_head =
 | |
| 					    (priv->rx_head +
 | |
| 					     1) % NUM_RX_BUF;
 | |
| 					priv->rx_count++;
 | |
| 					schedule_work(&priv->rx_work);
 | |
| 				} else {
 | |
| 					priv->dev->stats.rx_errors++;
 | |
| 					priv->dev->stats.rx_over_errors++;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		/* Get ready for new frame */
 | |
| 		if (priv->param.dma >= 0) {
 | |
| 			flags = claim_dma_lock();
 | |
| 			set_dma_addr(priv->param.dma,
 | |
| 				     (int) priv->rx_buf[priv->rx_head]);
 | |
| 			set_dma_count(priv->param.dma, BUF_SIZE);
 | |
| 			release_dma_lock(flags);
 | |
| 		} else {
 | |
| 			priv->rx_ptr = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void rx_bh(struct work_struct *ugli_api)
 | |
| {
 | |
| 	struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work);
 | |
| 	int i = priv->rx_tail;
 | |
| 	int cb;
 | |
| 	unsigned long flags;
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned char *data;
 | |
| 
 | |
| 	spin_lock_irqsave(&priv->ring_lock, flags);
 | |
| 	while (priv->rx_count) {
 | |
| 		spin_unlock_irqrestore(&priv->ring_lock, flags);
 | |
| 		cb = priv->rx_len[i];
 | |
| 		/* Allocate buffer */
 | |
| 		skb = dev_alloc_skb(cb + 1);
 | |
| 		if (skb == NULL) {
 | |
| 			/* Drop packet */
 | |
| 			priv->dev->stats.rx_dropped++;
 | |
| 		} else {
 | |
| 			/* Fill buffer */
 | |
| 			data = skb_put(skb, cb + 1);
 | |
| 			data[0] = 0;
 | |
| 			memcpy(&data[1], priv->rx_buf[i], cb);
 | |
| 			skb->protocol = ax25_type_trans(skb, priv->dev);
 | |
| 			netif_rx(skb);
 | |
| 			priv->dev->stats.rx_packets++;
 | |
| 			priv->dev->stats.rx_bytes += cb;
 | |
| 		}
 | |
| 		spin_lock_irqsave(&priv->ring_lock, flags);
 | |
| 		/* Move tail */
 | |
| 		priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
 | |
| 		priv->rx_count--;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&priv->ring_lock, flags);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void tx_isr(struct scc_priv *priv)
 | |
| {
 | |
| 	int i = priv->tx_tail, p = priv->tx_ptr;
 | |
| 
 | |
| 	/* Suspend TX interrupts if we don't want to send anything.
 | |
| 	   See Figure 2-22. */
 | |
| 	if (p == priv->tx_len[i]) {
 | |
| 		write_scc(priv, R0, RES_Tx_P);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Write characters */
 | |
| 	while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
 | |
| 		write_scc_data(priv, priv->tx_buf[i][p++], 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Reset EOM latch of Z8530 */
 | |
| 	if (!priv->tx_ptr && p && priv->chip == Z8530)
 | |
| 		write_scc(priv, R0, RES_EOM_L);
 | |
| 
 | |
| 	priv->tx_ptr = p;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void es_isr(struct scc_priv *priv)
 | |
| {
 | |
| 	int i, rr0, drr0, res;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Read status, reset interrupt bit (open latches) */
 | |
| 	rr0 = read_scc(priv, R0);
 | |
| 	write_scc(priv, R0, RES_EXT_INT);
 | |
| 	drr0 = priv->rr0 ^ rr0;
 | |
| 	priv->rr0 = rr0;
 | |
| 
 | |
| 	/* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
 | |
| 	   it might have already been cleared again by AUTOEOM. */
 | |
| 	if (priv->state == TX_DATA) {
 | |
| 		/* Get remaining bytes */
 | |
| 		i = priv->tx_tail;
 | |
| 		if (priv->param.dma >= 0) {
 | |
| 			disable_dma(priv->param.dma);
 | |
| 			flags = claim_dma_lock();
 | |
| 			res = get_dma_residue(priv->param.dma);
 | |
| 			release_dma_lock(flags);
 | |
| 		} else {
 | |
| 			res = priv->tx_len[i] - priv->tx_ptr;
 | |
| 			priv->tx_ptr = 0;
 | |
| 		}
 | |
| 		/* Disable DREQ / TX interrupt */
 | |
| 		if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
 | |
| 			outb(0, priv->card_base + TWIN_DMA_CFG);
 | |
| 		else
 | |
| 			write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
 | |
| 		if (res) {
 | |
| 			/* Update packet statistics */
 | |
| 			priv->dev->stats.tx_errors++;
 | |
| 			priv->dev->stats.tx_fifo_errors++;
 | |
| 			/* Other underrun interrupts may already be waiting */
 | |
| 			write_scc(priv, R0, RES_EXT_INT);
 | |
| 			write_scc(priv, R0, RES_EXT_INT);
 | |
| 		} else {
 | |
| 			/* Update packet statistics */
 | |
| 			priv->dev->stats.tx_packets++;
 | |
| 			priv->dev->stats.tx_bytes += priv->tx_len[i];
 | |
| 			/* Remove frame from FIFO */
 | |
| 			priv->tx_tail = (i + 1) % NUM_TX_BUF;
 | |
| 			priv->tx_count--;
 | |
| 			/* Inform upper layers */
 | |
| 			netif_wake_queue(priv->dev);
 | |
| 		}
 | |
| 		/* Switch state */
 | |
| 		write_scc(priv, R15, 0);
 | |
| 		if (priv->tx_count &&
 | |
| 		    (jiffies - priv->tx_start) < priv->param.txtimeout) {
 | |
| 			priv->state = TX_PAUSE;
 | |
| 			start_timer(priv, priv->param.txpause, 0);
 | |
| 		} else {
 | |
| 			priv->state = TX_TAIL;
 | |
| 			start_timer(priv, priv->param.txtail, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* DCD transition */
 | |
| 	if (drr0 & DCD) {
 | |
| 		if (rr0 & DCD) {
 | |
| 			switch (priv->state) {
 | |
| 			case IDLE:
 | |
| 			case WAIT:
 | |
| 				priv->state = DCD_ON;
 | |
| 				write_scc(priv, R15, 0);
 | |
| 				start_timer(priv, priv->param.dcdon, 0);
 | |
| 			}
 | |
| 		} else {
 | |
| 			switch (priv->state) {
 | |
| 			case RX_ON:
 | |
| 				rx_off(priv);
 | |
| 				priv->state = DCD_OFF;
 | |
| 				write_scc(priv, R15, 0);
 | |
| 				start_timer(priv, priv->param.dcdoff, 0);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* CTS transition */
 | |
| 	if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
 | |
| 		tm_isr(priv);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| static void tm_isr(struct scc_priv *priv)
 | |
| {
 | |
| 	switch (priv->state) {
 | |
| 	case TX_HEAD:
 | |
| 	case TX_PAUSE:
 | |
| 		tx_on(priv);
 | |
| 		priv->state = TX_DATA;
 | |
| 		break;
 | |
| 	case TX_TAIL:
 | |
| 		write_scc(priv, R5, TxCRC_ENAB | Tx8);
 | |
| 		priv->state = RTS_OFF;
 | |
| 		if (priv->type != TYPE_TWIN)
 | |
| 			write_scc(priv, R15, 0);
 | |
| 		start_timer(priv, priv->param.rtsoff, 0);
 | |
| 		break;
 | |
| 	case RTS_OFF:
 | |
| 		write_scc(priv, R15, DCDIE);
 | |
| 		priv->rr0 = read_scc(priv, R0);
 | |
| 		if (priv->rr0 & DCD) {
 | |
| 			priv->dev->stats.collisions++;
 | |
| 			rx_on(priv);
 | |
| 			priv->state = RX_ON;
 | |
| 		} else {
 | |
| 			priv->state = WAIT;
 | |
| 			start_timer(priv, priv->param.waittime, DCDIE);
 | |
| 		}
 | |
| 		break;
 | |
| 	case WAIT:
 | |
| 		if (priv->tx_count) {
 | |
| 			priv->state = TX_HEAD;
 | |
| 			priv->tx_start = jiffies;
 | |
| 			write_scc(priv, R5,
 | |
| 				  TxCRC_ENAB | RTS | TxENAB | Tx8);
 | |
| 			write_scc(priv, R15, 0);
 | |
| 			start_timer(priv, priv->param.txdelay, 0);
 | |
| 		} else {
 | |
| 			priv->state = IDLE;
 | |
| 			if (priv->type != TYPE_TWIN)
 | |
| 				write_scc(priv, R15, DCDIE);
 | |
| 		}
 | |
| 		break;
 | |
| 	case DCD_ON:
 | |
| 	case DCD_OFF:
 | |
| 		write_scc(priv, R15, DCDIE);
 | |
| 		priv->rr0 = read_scc(priv, R0);
 | |
| 		if (priv->rr0 & DCD) {
 | |
| 			rx_on(priv);
 | |
| 			priv->state = RX_ON;
 | |
| 		} else {
 | |
| 			priv->state = WAIT;
 | |
| 			start_timer(priv,
 | |
| 				    random() / priv->param.persist *
 | |
| 				    priv->param.slottime, DCDIE);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| }
 | 
