1096 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1096 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * v4l2-dv-timings - dv-timings helper functions
 | |
|  *
 | |
|  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/rational.h>
 | |
| #include <linux/videodev2.h>
 | |
| #include <linux/v4l2-dv-timings.h>
 | |
| #include <media/v4l2-dv-timings.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/hdmi.h>
 | |
| #include <media/cec.h>
 | |
| 
 | |
| MODULE_AUTHOR("Hans Verkuil");
 | |
| MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
 | |
| 	V4L2_DV_BT_CEA_640X480P59_94,
 | |
| 	V4L2_DV_BT_CEA_720X480I59_94,
 | |
| 	V4L2_DV_BT_CEA_720X480P59_94,
 | |
| 	V4L2_DV_BT_CEA_720X576I50,
 | |
| 	V4L2_DV_BT_CEA_720X576P50,
 | |
| 	V4L2_DV_BT_CEA_1280X720P24,
 | |
| 	V4L2_DV_BT_CEA_1280X720P25,
 | |
| 	V4L2_DV_BT_CEA_1280X720P30,
 | |
| 	V4L2_DV_BT_CEA_1280X720P50,
 | |
| 	V4L2_DV_BT_CEA_1280X720P60,
 | |
| 	V4L2_DV_BT_CEA_1920X1080P24,
 | |
| 	V4L2_DV_BT_CEA_1920X1080P25,
 | |
| 	V4L2_DV_BT_CEA_1920X1080P30,
 | |
| 	V4L2_DV_BT_CEA_1920X1080I50,
 | |
| 	V4L2_DV_BT_CEA_1920X1080P50,
 | |
| 	V4L2_DV_BT_CEA_1920X1080I60,
 | |
| 	V4L2_DV_BT_CEA_1920X1080P60,
 | |
| 	V4L2_DV_BT_DMT_640X350P85,
 | |
| 	V4L2_DV_BT_DMT_640X400P85,
 | |
| 	V4L2_DV_BT_DMT_720X400P85,
 | |
| 	V4L2_DV_BT_DMT_640X480P72,
 | |
| 	V4L2_DV_BT_DMT_640X480P75,
 | |
| 	V4L2_DV_BT_DMT_640X480P85,
 | |
| 	V4L2_DV_BT_DMT_800X600P56,
 | |
| 	V4L2_DV_BT_DMT_800X600P60,
 | |
| 	V4L2_DV_BT_DMT_800X600P72,
 | |
| 	V4L2_DV_BT_DMT_800X600P75,
 | |
| 	V4L2_DV_BT_DMT_800X600P85,
 | |
| 	V4L2_DV_BT_DMT_800X600P120_RB,
 | |
| 	V4L2_DV_BT_DMT_848X480P60,
 | |
| 	V4L2_DV_BT_DMT_1024X768I43,
 | |
| 	V4L2_DV_BT_DMT_1024X768P60,
 | |
| 	V4L2_DV_BT_DMT_1024X768P70,
 | |
| 	V4L2_DV_BT_DMT_1024X768P75,
 | |
| 	V4L2_DV_BT_DMT_1024X768P85,
 | |
| 	V4L2_DV_BT_DMT_1024X768P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1152X864P75,
 | |
| 	V4L2_DV_BT_DMT_1280X768P60_RB,
 | |
| 	V4L2_DV_BT_DMT_1280X768P60,
 | |
| 	V4L2_DV_BT_DMT_1280X768P75,
 | |
| 	V4L2_DV_BT_DMT_1280X768P85,
 | |
| 	V4L2_DV_BT_DMT_1280X768P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1280X800P60_RB,
 | |
| 	V4L2_DV_BT_DMT_1280X800P60,
 | |
| 	V4L2_DV_BT_DMT_1280X800P75,
 | |
| 	V4L2_DV_BT_DMT_1280X800P85,
 | |
| 	V4L2_DV_BT_DMT_1280X800P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1280X960P60,
 | |
| 	V4L2_DV_BT_DMT_1280X960P85,
 | |
| 	V4L2_DV_BT_DMT_1280X960P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1280X1024P60,
 | |
| 	V4L2_DV_BT_DMT_1280X1024P75,
 | |
| 	V4L2_DV_BT_DMT_1280X1024P85,
 | |
| 	V4L2_DV_BT_DMT_1280X1024P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1360X768P60,
 | |
| 	V4L2_DV_BT_DMT_1360X768P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1366X768P60,
 | |
| 	V4L2_DV_BT_DMT_1366X768P60_RB,
 | |
| 	V4L2_DV_BT_DMT_1400X1050P60_RB,
 | |
| 	V4L2_DV_BT_DMT_1400X1050P60,
 | |
| 	V4L2_DV_BT_DMT_1400X1050P75,
 | |
| 	V4L2_DV_BT_DMT_1400X1050P85,
 | |
| 	V4L2_DV_BT_DMT_1400X1050P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1440X900P60_RB,
 | |
| 	V4L2_DV_BT_DMT_1440X900P60,
 | |
| 	V4L2_DV_BT_DMT_1440X900P75,
 | |
| 	V4L2_DV_BT_DMT_1440X900P85,
 | |
| 	V4L2_DV_BT_DMT_1440X900P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1600X900P60_RB,
 | |
| 	V4L2_DV_BT_DMT_1600X1200P60,
 | |
| 	V4L2_DV_BT_DMT_1600X1200P65,
 | |
| 	V4L2_DV_BT_DMT_1600X1200P70,
 | |
| 	V4L2_DV_BT_DMT_1600X1200P75,
 | |
| 	V4L2_DV_BT_DMT_1600X1200P85,
 | |
| 	V4L2_DV_BT_DMT_1600X1200P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1680X1050P60_RB,
 | |
| 	V4L2_DV_BT_DMT_1680X1050P60,
 | |
| 	V4L2_DV_BT_DMT_1680X1050P75,
 | |
| 	V4L2_DV_BT_DMT_1680X1050P85,
 | |
| 	V4L2_DV_BT_DMT_1680X1050P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1792X1344P60,
 | |
| 	V4L2_DV_BT_DMT_1792X1344P75,
 | |
| 	V4L2_DV_BT_DMT_1792X1344P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1856X1392P60,
 | |
| 	V4L2_DV_BT_DMT_1856X1392P75,
 | |
| 	V4L2_DV_BT_DMT_1856X1392P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1920X1200P60_RB,
 | |
| 	V4L2_DV_BT_DMT_1920X1200P60,
 | |
| 	V4L2_DV_BT_DMT_1920X1200P75,
 | |
| 	V4L2_DV_BT_DMT_1920X1200P85,
 | |
| 	V4L2_DV_BT_DMT_1920X1200P120_RB,
 | |
| 	V4L2_DV_BT_DMT_1920X1440P60,
 | |
| 	V4L2_DV_BT_DMT_1920X1440P75,
 | |
| 	V4L2_DV_BT_DMT_1920X1440P120_RB,
 | |
| 	V4L2_DV_BT_DMT_2048X1152P60_RB,
 | |
| 	V4L2_DV_BT_DMT_2560X1600P60_RB,
 | |
| 	V4L2_DV_BT_DMT_2560X1600P60,
 | |
| 	V4L2_DV_BT_DMT_2560X1600P75,
 | |
| 	V4L2_DV_BT_DMT_2560X1600P85,
 | |
| 	V4L2_DV_BT_DMT_2560X1600P120_RB,
 | |
| 	V4L2_DV_BT_CEA_3840X2160P24,
 | |
| 	V4L2_DV_BT_CEA_3840X2160P25,
 | |
| 	V4L2_DV_BT_CEA_3840X2160P30,
 | |
| 	V4L2_DV_BT_CEA_3840X2160P50,
 | |
| 	V4L2_DV_BT_CEA_3840X2160P60,
 | |
| 	V4L2_DV_BT_CEA_4096X2160P24,
 | |
| 	V4L2_DV_BT_CEA_4096X2160P25,
 | |
| 	V4L2_DV_BT_CEA_4096X2160P30,
 | |
| 	V4L2_DV_BT_CEA_4096X2160P50,
 | |
| 	V4L2_DV_BT_DMT_4096X2160P59_94_RB,
 | |
| 	V4L2_DV_BT_CEA_4096X2160P60,
 | |
| 	{ }
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
 | |
| 
 | |
| bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
 | |
| 			   const struct v4l2_dv_timings_cap *dvcap,
 | |
| 			   v4l2_check_dv_timings_fnc fnc,
 | |
| 			   void *fnc_handle)
 | |
| {
 | |
| 	const struct v4l2_bt_timings *bt = &t->bt;
 | |
| 	const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
 | |
| 	u32 caps = cap->capabilities;
 | |
| 
 | |
| 	if (t->type != V4L2_DV_BT_656_1120)
 | |
| 		return false;
 | |
| 	if (t->type != dvcap->type ||
 | |
| 	    bt->height < cap->min_height ||
 | |
| 	    bt->height > cap->max_height ||
 | |
| 	    bt->width < cap->min_width ||
 | |
| 	    bt->width > cap->max_width ||
 | |
| 	    bt->pixelclock < cap->min_pixelclock ||
 | |
| 	    bt->pixelclock > cap->max_pixelclock ||
 | |
| 	    (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
 | |
| 	     cap->standards && bt->standards &&
 | |
| 	     !(bt->standards & cap->standards)) ||
 | |
| 	    (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
 | |
| 	    (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
 | |
| 		return false;
 | |
| 	return fnc == NULL || fnc(t, fnc_handle);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
 | |
| 
 | |
| int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
 | |
| 			     const struct v4l2_dv_timings_cap *cap,
 | |
| 			     v4l2_check_dv_timings_fnc fnc,
 | |
| 			     void *fnc_handle)
 | |
| {
 | |
| 	u32 i, idx;
 | |
| 
 | |
| 	memset(t->reserved, 0, sizeof(t->reserved));
 | |
| 	for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
 | |
| 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
 | |
| 					  fnc, fnc_handle) &&
 | |
| 		    idx++ == t->index) {
 | |
| 			t->timings = v4l2_dv_timings_presets[i];
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
 | |
| 
 | |
| bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
 | |
| 			      const struct v4l2_dv_timings_cap *cap,
 | |
| 			      unsigned pclock_delta,
 | |
| 			      v4l2_check_dv_timings_fnc fnc,
 | |
| 			      void *fnc_handle)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
 | |
| 		return false;
 | |
| 
 | |
| 	for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
 | |
| 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
 | |
| 					  fnc, fnc_handle) &&
 | |
| 		    v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
 | |
| 					  pclock_delta, false)) {
 | |
| 			u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
 | |
| 
 | |
| 			*t = v4l2_dv_timings_presets[i];
 | |
| 			if (can_reduce_fps(&t->bt))
 | |
| 				t->bt.flags |= flags;
 | |
| 
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
 | |
| 
 | |
| bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
 | |
| 		const struct v4l2_bt_timings *bt =
 | |
| 			&v4l2_dv_timings_presets[i].bt;
 | |
| 
 | |
| 		if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
 | |
| 		    bt->cea861_vic == vic) {
 | |
| 			*t = v4l2_dv_timings_presets[i];
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
 | |
| 
 | |
| /**
 | |
|  * v4l2_match_dv_timings - check if two timings match
 | |
|  * @t1: compare this v4l2_dv_timings struct...
 | |
|  * @t2: with this struct.
 | |
|  * @pclock_delta: the allowed pixelclock deviation.
 | |
|  * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
 | |
|  *	match.
 | |
|  *
 | |
|  * Compare t1 with t2 with a given margin of error for the pixelclock.
 | |
|  */
 | |
| bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
 | |
| 			   const struct v4l2_dv_timings *t2,
 | |
| 			   unsigned pclock_delta, bool match_reduced_fps)
 | |
| {
 | |
| 	if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
 | |
| 		return false;
 | |
| 	if (t1->bt.width == t2->bt.width &&
 | |
| 	    t1->bt.height == t2->bt.height &&
 | |
| 	    t1->bt.interlaced == t2->bt.interlaced &&
 | |
| 	    t1->bt.polarities == t2->bt.polarities &&
 | |
| 	    t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
 | |
| 	    t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
 | |
| 	    t1->bt.hfrontporch == t2->bt.hfrontporch &&
 | |
| 	    t1->bt.hsync == t2->bt.hsync &&
 | |
| 	    t1->bt.hbackporch == t2->bt.hbackporch &&
 | |
| 	    t1->bt.vfrontporch == t2->bt.vfrontporch &&
 | |
| 	    t1->bt.vsync == t2->bt.vsync &&
 | |
| 	    t1->bt.vbackporch == t2->bt.vbackporch &&
 | |
| 	    (!match_reduced_fps ||
 | |
| 	     (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
 | |
| 		(t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
 | |
| 	    (!t1->bt.interlaced ||
 | |
| 		(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
 | |
| 		 t1->bt.il_vsync == t2->bt.il_vsync &&
 | |
| 		 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
 | |
| 
 | |
| void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
 | |
| 			   const struct v4l2_dv_timings *t, bool detailed)
 | |
| {
 | |
| 	const struct v4l2_bt_timings *bt = &t->bt;
 | |
| 	u32 htot, vtot;
 | |
| 	u32 fps;
 | |
| 
 | |
| 	if (t->type != V4L2_DV_BT_656_1120)
 | |
| 		return;
 | |
| 
 | |
| 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
 | |
| 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
 | |
| 	if (bt->interlaced)
 | |
| 		vtot /= 2;
 | |
| 
 | |
| 	fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
 | |
| 				  (htot * vtot)) : 0;
 | |
| 
 | |
| 	if (prefix == NULL)
 | |
| 		prefix = "";
 | |
| 
 | |
| 	pr_info("%s: %s%ux%u%s%u.%u (%ux%u)\n", dev_prefix, prefix,
 | |
| 		bt->width, bt->height, bt->interlaced ? "i" : "p",
 | |
| 		fps / 100, fps % 100, htot, vtot);
 | |
| 
 | |
| 	if (!detailed)
 | |
| 		return;
 | |
| 
 | |
| 	pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
 | |
| 			dev_prefix, bt->hfrontporch,
 | |
| 			(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
 | |
| 			bt->hsync, bt->hbackporch);
 | |
| 	pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
 | |
| 			dev_prefix, bt->vfrontporch,
 | |
| 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
 | |
| 			bt->vsync, bt->vbackporch);
 | |
| 	if (bt->interlaced)
 | |
| 		pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
 | |
| 			dev_prefix, bt->il_vfrontporch,
 | |
| 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
 | |
| 			bt->il_vsync, bt->il_vbackporch);
 | |
| 	pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
 | |
| 	pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
 | |
| 			dev_prefix, bt->flags,
 | |
| 			(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
 | |
| 			" REDUCED_BLANKING" : "",
 | |
| 			((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
 | |
| 			 bt->vsync == 8) ? " (V2)" : "",
 | |
| 			(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
 | |
| 			" CAN_REDUCE_FPS" : "",
 | |
| 			(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
 | |
| 			" REDUCED_FPS" : "",
 | |
| 			(bt->flags & V4L2_DV_FL_HALF_LINE) ?
 | |
| 			" HALF_LINE" : "",
 | |
| 			(bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
 | |
| 			" CE_VIDEO" : "",
 | |
| 			(bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
 | |
| 			" FIRST_FIELD_EXTRA_LINE" : "",
 | |
| 			(bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
 | |
| 			" HAS_PICTURE_ASPECT" : "",
 | |
| 			(bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
 | |
| 			" HAS_CEA861_VIC" : "",
 | |
| 			(bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
 | |
| 			" HAS_HDMI_VIC" : "");
 | |
| 	pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
 | |
| 			(bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
 | |
| 			(bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
 | |
| 			(bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
 | |
| 			(bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
 | |
| 			(bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
 | |
| 	if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
 | |
| 		pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
 | |
| 			bt->picture_aspect.numerator,
 | |
| 			bt->picture_aspect.denominator);
 | |
| 	if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
 | |
| 		pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
 | |
| 	if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
 | |
| 		pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
 | |
| 
 | |
| struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
 | |
| {
 | |
| 	struct v4l2_fract ratio = { 1, 1 };
 | |
| 	unsigned long n, d;
 | |
| 
 | |
| 	if (t->type != V4L2_DV_BT_656_1120)
 | |
| 		return ratio;
 | |
| 	if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
 | |
| 		return ratio;
 | |
| 
 | |
| 	ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
 | |
| 	ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
 | |
| 
 | |
| 	rational_best_approximation(ratio.numerator, ratio.denominator,
 | |
| 				    ratio.numerator, ratio.denominator, &n, &d);
 | |
| 	ratio.numerator = n;
 | |
| 	ratio.denominator = d;
 | |
| 	return ratio;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
 | |
| 
 | |
| /*
 | |
|  * CVT defines
 | |
|  * Based on Coordinated Video Timings Standard
 | |
|  * version 1.1 September 10, 2003
 | |
|  */
 | |
| 
 | |
| #define CVT_PXL_CLK_GRAN	250000	/* pixel clock granularity */
 | |
| #define CVT_PXL_CLK_GRAN_RB_V2 1000	/* granularity for reduced blanking v2*/
 | |
| 
 | |
| /* Normal blanking */
 | |
| #define CVT_MIN_V_BPORCH	7	/* lines */
 | |
| #define CVT_MIN_V_PORCH_RND	3	/* lines */
 | |
| #define CVT_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
 | |
| #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
 | |
| 
 | |
| /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
 | |
| #define CVT_CELL_GRAN		8	/* character cell granularity */
 | |
| #define CVT_M			600	/* blanking formula gradient */
 | |
| #define CVT_C			40	/* blanking formula offset */
 | |
| #define CVT_K			128	/* blanking formula scaling factor */
 | |
| #define CVT_J			20	/* blanking formula scaling factor */
 | |
| #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
 | |
| #define CVT_M_PRIME (CVT_K * CVT_M / 256)
 | |
| 
 | |
| /* Reduced Blanking */
 | |
| #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
 | |
| #define CVT_RB_V_FPORCH        3       /* lines  */
 | |
| #define CVT_RB_MIN_V_BLANK   460       /* us     */
 | |
| #define CVT_RB_H_SYNC         32       /* pixels */
 | |
| #define CVT_RB_H_BLANK       160       /* pixels */
 | |
| /* Reduce blanking Version 2 */
 | |
| #define CVT_RB_V2_H_BLANK     80       /* pixels */
 | |
| #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
 | |
| #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
 | |
| #define CVT_RB_V_BPORCH        6       /* lines  */
 | |
| 
 | |
| /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
 | |
|  * @frame_height - the total height of the frame (including blanking) in lines.
 | |
|  * @hfreq - the horizontal frequency in Hz.
 | |
|  * @vsync - the height of the vertical sync in lines.
 | |
|  * @active_width - active width of image (does not include blanking). This
 | |
|  * information is needed only in case of version 2 of reduced blanking.
 | |
|  * In other cases, this parameter does not have any effect on timings.
 | |
|  * @polarities - the horizontal and vertical polarities (same as struct
 | |
|  *		v4l2_bt_timings polarities).
 | |
|  * @interlaced - if this flag is true, it indicates interlaced format
 | |
|  * @fmt - the resulting timings.
 | |
|  *
 | |
|  * This function will attempt to detect if the given values correspond to a
 | |
|  * valid CVT format. If so, then it will return true, and fmt will be filled
 | |
|  * in with the found CVT timings.
 | |
|  */
 | |
| bool v4l2_detect_cvt(unsigned frame_height,
 | |
| 		     unsigned hfreq,
 | |
| 		     unsigned vsync,
 | |
| 		     unsigned active_width,
 | |
| 		     u32 polarities,
 | |
| 		     bool interlaced,
 | |
| 		     struct v4l2_dv_timings *fmt)
 | |
| {
 | |
| 	int  v_fp, v_bp, h_fp, h_bp, hsync;
 | |
| 	int  frame_width, image_height, image_width;
 | |
| 	bool reduced_blanking;
 | |
| 	bool rb_v2 = false;
 | |
| 	unsigned pix_clk;
 | |
| 
 | |
| 	if (vsync < 4 || vsync > 8)
 | |
| 		return false;
 | |
| 
 | |
| 	if (polarities == V4L2_DV_VSYNC_POS_POL)
 | |
| 		reduced_blanking = false;
 | |
| 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
 | |
| 		reduced_blanking = true;
 | |
| 	else
 | |
| 		return false;
 | |
| 
 | |
| 	if (reduced_blanking && vsync == 8)
 | |
| 		rb_v2 = true;
 | |
| 
 | |
| 	if (rb_v2 && active_width == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!rb_v2 && vsync > 7)
 | |
| 		return false;
 | |
| 
 | |
| 	if (hfreq == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Vertical */
 | |
| 	if (reduced_blanking) {
 | |
| 		if (rb_v2) {
 | |
| 			v_bp = CVT_RB_V_BPORCH;
 | |
| 			v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
 | |
| 			v_fp -= vsync + v_bp;
 | |
| 
 | |
| 			if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
 | |
| 				v_fp = CVT_RB_V2_MIN_V_FPORCH;
 | |
| 		} else {
 | |
| 			v_fp = CVT_RB_V_FPORCH;
 | |
| 			v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
 | |
| 			v_bp -= vsync + v_fp;
 | |
| 
 | |
| 			if (v_bp < CVT_RB_MIN_V_BPORCH)
 | |
| 				v_bp = CVT_RB_MIN_V_BPORCH;
 | |
| 		}
 | |
| 	} else {
 | |
| 		v_fp = CVT_MIN_V_PORCH_RND;
 | |
| 		v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
 | |
| 
 | |
| 		if (v_bp < CVT_MIN_V_BPORCH)
 | |
| 			v_bp = CVT_MIN_V_BPORCH;
 | |
| 	}
 | |
| 
 | |
| 	if (interlaced)
 | |
| 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
 | |
| 	else
 | |
| 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
 | |
| 
 | |
| 	if (image_height < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Aspect ratio based on vsync */
 | |
| 	switch (vsync) {
 | |
| 	case 4:
 | |
| 		image_width = (image_height * 4) / 3;
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		image_width = (image_height * 16) / 9;
 | |
| 		break;
 | |
| 	case 6:
 | |
| 		image_width = (image_height * 16) / 10;
 | |
| 		break;
 | |
| 	case 7:
 | |
| 		/* special case */
 | |
| 		if (image_height == 1024)
 | |
| 			image_width = (image_height * 5) / 4;
 | |
| 		else if (image_height == 768)
 | |
| 			image_width = (image_height * 15) / 9;
 | |
| 		else
 | |
| 			return false;
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		image_width = active_width;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (!rb_v2)
 | |
| 		image_width = image_width & ~7;
 | |
| 
 | |
| 	/* Horizontal */
 | |
| 	if (reduced_blanking) {
 | |
| 		int h_blank;
 | |
| 		int clk_gran;
 | |
| 
 | |
| 		h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
 | |
| 		clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
 | |
| 
 | |
| 		pix_clk = (image_width + h_blank) * hfreq;
 | |
| 		pix_clk = (pix_clk / clk_gran) * clk_gran;
 | |
| 
 | |
| 		h_bp  = h_blank / 2;
 | |
| 		hsync = CVT_RB_H_SYNC;
 | |
| 		h_fp  = h_blank - h_bp - hsync;
 | |
| 
 | |
| 		frame_width = image_width + h_blank;
 | |
| 	} else {
 | |
| 		unsigned ideal_duty_cycle_per_myriad =
 | |
| 			100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
 | |
| 		int h_blank;
 | |
| 
 | |
| 		if (ideal_duty_cycle_per_myriad < 2000)
 | |
| 			ideal_duty_cycle_per_myriad = 2000;
 | |
| 
 | |
| 		h_blank = image_width * ideal_duty_cycle_per_myriad /
 | |
| 					(10000 - ideal_duty_cycle_per_myriad);
 | |
| 		h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
 | |
| 
 | |
| 		pix_clk = (image_width + h_blank) * hfreq;
 | |
| 		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
 | |
| 
 | |
| 		h_bp = h_blank / 2;
 | |
| 		frame_width = image_width + h_blank;
 | |
| 
 | |
| 		hsync = frame_width * CVT_HSYNC_PERCENT / 100;
 | |
| 		hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
 | |
| 		h_fp = h_blank - hsync - h_bp;
 | |
| 	}
 | |
| 
 | |
| 	fmt->type = V4L2_DV_BT_656_1120;
 | |
| 	fmt->bt.polarities = polarities;
 | |
| 	fmt->bt.width = image_width;
 | |
| 	fmt->bt.height = image_height;
 | |
| 	fmt->bt.hfrontporch = h_fp;
 | |
| 	fmt->bt.vfrontporch = v_fp;
 | |
| 	fmt->bt.hsync = hsync;
 | |
| 	fmt->bt.vsync = vsync;
 | |
| 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
 | |
| 
 | |
| 	if (!interlaced) {
 | |
| 		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
 | |
| 		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
 | |
| 	} else {
 | |
| 		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
 | |
| 				      2 * vsync) / 2;
 | |
| 		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
 | |
| 					2 * vsync - fmt->bt.vbackporch;
 | |
| 		fmt->bt.il_vfrontporch = v_fp;
 | |
| 		fmt->bt.il_vsync = vsync;
 | |
| 		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
 | |
| 		fmt->bt.interlaced = V4L2_DV_INTERLACED;
 | |
| 	}
 | |
| 
 | |
| 	fmt->bt.pixelclock = pix_clk;
 | |
| 	fmt->bt.standards = V4L2_DV_BT_STD_CVT;
 | |
| 
 | |
| 	if (reduced_blanking)
 | |
| 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
 | |
| 
 | |
| /*
 | |
|  * GTF defines
 | |
|  * Based on Generalized Timing Formula Standard
 | |
|  * Version 1.1 September 2, 1999
 | |
|  */
 | |
| 
 | |
| #define GTF_PXL_CLK_GRAN	250000	/* pixel clock granularity */
 | |
| 
 | |
| #define GTF_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
 | |
| #define GTF_V_FP		1	/* vertical front porch (lines) */
 | |
| #define GTF_CELL_GRAN		8	/* character cell granularity */
 | |
| 
 | |
| /* Default */
 | |
| #define GTF_D_M			600	/* blanking formula gradient */
 | |
| #define GTF_D_C			40	/* blanking formula offset */
 | |
| #define GTF_D_K			128	/* blanking formula scaling factor */
 | |
| #define GTF_D_J			20	/* blanking formula scaling factor */
 | |
| #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
 | |
| #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
 | |
| 
 | |
| /* Secondary */
 | |
| #define GTF_S_M			3600	/* blanking formula gradient */
 | |
| #define GTF_S_C			40	/* blanking formula offset */
 | |
| #define GTF_S_K			128	/* blanking formula scaling factor */
 | |
| #define GTF_S_J			35	/* blanking formula scaling factor */
 | |
| #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
 | |
| #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
 | |
| 
 | |
| /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
 | |
|  * @frame_height - the total height of the frame (including blanking) in lines.
 | |
|  * @hfreq - the horizontal frequency in Hz.
 | |
|  * @vsync - the height of the vertical sync in lines.
 | |
|  * @polarities - the horizontal and vertical polarities (same as struct
 | |
|  *		v4l2_bt_timings polarities).
 | |
|  * @interlaced - if this flag is true, it indicates interlaced format
 | |
|  * @aspect - preferred aspect ratio. GTF has no method of determining the
 | |
|  *		aspect ratio in order to derive the image width from the
 | |
|  *		image height, so it has to be passed explicitly. Usually
 | |
|  *		the native screen aspect ratio is used for this. If it
 | |
|  *		is not filled in correctly, then 16:9 will be assumed.
 | |
|  * @fmt - the resulting timings.
 | |
|  *
 | |
|  * This function will attempt to detect if the given values correspond to a
 | |
|  * valid GTF format. If so, then it will return true, and fmt will be filled
 | |
|  * in with the found GTF timings.
 | |
|  */
 | |
| bool v4l2_detect_gtf(unsigned frame_height,
 | |
| 		unsigned hfreq,
 | |
| 		unsigned vsync,
 | |
| 		u32 polarities,
 | |
| 		bool interlaced,
 | |
| 		struct v4l2_fract aspect,
 | |
| 		struct v4l2_dv_timings *fmt)
 | |
| {
 | |
| 	int pix_clk;
 | |
| 	int  v_fp, v_bp, h_fp, hsync;
 | |
| 	int frame_width, image_height, image_width;
 | |
| 	bool default_gtf;
 | |
| 	int h_blank;
 | |
| 
 | |
| 	if (vsync != 3)
 | |
| 		return false;
 | |
| 
 | |
| 	if (polarities == V4L2_DV_VSYNC_POS_POL)
 | |
| 		default_gtf = true;
 | |
| 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
 | |
| 		default_gtf = false;
 | |
| 	else
 | |
| 		return false;
 | |
| 
 | |
| 	if (hfreq == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Vertical */
 | |
| 	v_fp = GTF_V_FP;
 | |
| 	v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
 | |
| 	if (interlaced)
 | |
| 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
 | |
| 	else
 | |
| 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
 | |
| 
 | |
| 	if (image_height < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	if (aspect.numerator == 0 || aspect.denominator == 0) {
 | |
| 		aspect.numerator = 16;
 | |
| 		aspect.denominator = 9;
 | |
| 	}
 | |
| 	image_width = ((image_height * aspect.numerator) / aspect.denominator);
 | |
| 	image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
 | |
| 
 | |
| 	/* Horizontal */
 | |
| 	if (default_gtf) {
 | |
| 		u64 num;
 | |
| 		u32 den;
 | |
| 
 | |
| 		num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
 | |
| 		      ((u64)image_width * GTF_D_M_PRIME * 1000));
 | |
| 		den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
 | |
| 		      (2 * GTF_CELL_GRAN);
 | |
| 		h_blank = div_u64((num + (den >> 1)), den);
 | |
| 		h_blank *= (2 * GTF_CELL_GRAN);
 | |
| 	} else {
 | |
| 		u64 num;
 | |
| 		u32 den;
 | |
| 
 | |
| 		num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
 | |
| 		      ((u64)image_width * GTF_S_M_PRIME * 1000));
 | |
| 		den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
 | |
| 		      (2 * GTF_CELL_GRAN);
 | |
| 		h_blank = div_u64((num + (den >> 1)), den);
 | |
| 		h_blank *= (2 * GTF_CELL_GRAN);
 | |
| 	}
 | |
| 
 | |
| 	frame_width = image_width + h_blank;
 | |
| 
 | |
| 	pix_clk = (image_width + h_blank) * hfreq;
 | |
| 	pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
 | |
| 
 | |
| 	hsync = (frame_width * 8 + 50) / 100;
 | |
| 	hsync = ((hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN) * GTF_CELL_GRAN;
 | |
| 
 | |
| 	h_fp = h_blank / 2 - hsync;
 | |
| 
 | |
| 	fmt->type = V4L2_DV_BT_656_1120;
 | |
| 	fmt->bt.polarities = polarities;
 | |
| 	fmt->bt.width = image_width;
 | |
| 	fmt->bt.height = image_height;
 | |
| 	fmt->bt.hfrontporch = h_fp;
 | |
| 	fmt->bt.vfrontporch = v_fp;
 | |
| 	fmt->bt.hsync = hsync;
 | |
| 	fmt->bt.vsync = vsync;
 | |
| 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
 | |
| 
 | |
| 	if (!interlaced) {
 | |
| 		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
 | |
| 		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
 | |
| 	} else {
 | |
| 		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
 | |
| 				      2 * vsync) / 2;
 | |
| 		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
 | |
| 					2 * vsync - fmt->bt.vbackporch;
 | |
| 		fmt->bt.il_vfrontporch = v_fp;
 | |
| 		fmt->bt.il_vsync = vsync;
 | |
| 		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
 | |
| 		fmt->bt.interlaced = V4L2_DV_INTERLACED;
 | |
| 	}
 | |
| 
 | |
| 	fmt->bt.pixelclock = pix_clk;
 | |
| 	fmt->bt.standards = V4L2_DV_BT_STD_GTF;
 | |
| 
 | |
| 	if (!default_gtf)
 | |
| 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
 | |
| 
 | |
| /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
 | |
|  *	0x15 and 0x16 from the EDID.
 | |
|  * @hor_landscape - byte 0x15 from the EDID.
 | |
|  * @vert_portrait - byte 0x16 from the EDID.
 | |
|  *
 | |
|  * Determines the aspect ratio from the EDID.
 | |
|  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
 | |
|  * "Horizontal and Vertical Screen Size or Aspect Ratio"
 | |
|  */
 | |
| struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
 | |
| {
 | |
| 	struct v4l2_fract aspect = { 16, 9 };
 | |
| 	u8 ratio;
 | |
| 
 | |
| 	/* Nothing filled in, fallback to 16:9 */
 | |
| 	if (!hor_landscape && !vert_portrait)
 | |
| 		return aspect;
 | |
| 	/* Both filled in, so they are interpreted as the screen size in cm */
 | |
| 	if (hor_landscape && vert_portrait) {
 | |
| 		aspect.numerator = hor_landscape;
 | |
| 		aspect.denominator = vert_portrait;
 | |
| 		return aspect;
 | |
| 	}
 | |
| 	/* Only one is filled in, so interpret them as a ratio:
 | |
| 	   (val + 99) / 100 */
 | |
| 	ratio = hor_landscape | vert_portrait;
 | |
| 	/* Change some rounded values into the exact aspect ratio */
 | |
| 	if (ratio == 79) {
 | |
| 		aspect.numerator = 16;
 | |
| 		aspect.denominator = 9;
 | |
| 	} else if (ratio == 34) {
 | |
| 		aspect.numerator = 4;
 | |
| 		aspect.denominator = 3;
 | |
| 	} else if (ratio == 68) {
 | |
| 		aspect.numerator = 15;
 | |
| 		aspect.denominator = 9;
 | |
| 	} else {
 | |
| 		aspect.numerator = hor_landscape + 99;
 | |
| 		aspect.denominator = 100;
 | |
| 	}
 | |
| 	if (hor_landscape)
 | |
| 		return aspect;
 | |
| 	/* The aspect ratio is for portrait, so swap numerator and denominator */
 | |
| 	swap(aspect.denominator, aspect.numerator);
 | |
| 	return aspect;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
 | |
| 
 | |
| /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
 | |
|  *	based on various InfoFrames.
 | |
|  * @avi: the AVI InfoFrame
 | |
|  * @hdmi: the HDMI Vendor InfoFrame, may be NULL
 | |
|  * @height: the frame height
 | |
|  *
 | |
|  * Determines the HDMI colorimetry information, i.e. how the HDMI
 | |
|  * pixel color data should be interpreted.
 | |
|  *
 | |
|  * Note that some of the newer features (DCI-P3, HDR) are not yet
 | |
|  * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
 | |
|  * and CTA-861-G standards.
 | |
|  */
 | |
| struct v4l2_hdmi_colorimetry
 | |
| v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
 | |
| 			 const struct hdmi_vendor_infoframe *hdmi,
 | |
| 			 unsigned int height)
 | |
| {
 | |
| 	struct v4l2_hdmi_colorimetry c = {
 | |
| 		V4L2_COLORSPACE_SRGB,
 | |
| 		V4L2_YCBCR_ENC_DEFAULT,
 | |
| 		V4L2_QUANTIZATION_FULL_RANGE,
 | |
| 		V4L2_XFER_FUNC_SRGB
 | |
| 	};
 | |
| 	bool is_ce = avi->video_code || (hdmi && hdmi->vic);
 | |
| 	bool is_sdtv = height <= 576;
 | |
| 	bool default_is_lim_range_rgb = avi->video_code > 1;
 | |
| 
 | |
| 	switch (avi->colorspace) {
 | |
| 	case HDMI_COLORSPACE_RGB:
 | |
| 		/* RGB pixel encoding */
 | |
| 		switch (avi->colorimetry) {
 | |
| 		case HDMI_COLORIMETRY_EXTENDED:
 | |
| 			switch (avi->extended_colorimetry) {
 | |
| 			case HDMI_EXTENDED_COLORIMETRY_OPRGB:
 | |
| 				c.colorspace = V4L2_COLORSPACE_OPRGB;
 | |
| 				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
 | |
| 				break;
 | |
| 			case HDMI_EXTENDED_COLORIMETRY_BT2020:
 | |
| 				c.colorspace = V4L2_COLORSPACE_BT2020;
 | |
| 				c.xfer_func = V4L2_XFER_FUNC_709;
 | |
| 				break;
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		switch (avi->quantization_range) {
 | |
| 		case HDMI_QUANTIZATION_RANGE_LIMITED:
 | |
| 			c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
 | |
| 			break;
 | |
| 		case HDMI_QUANTIZATION_RANGE_FULL:
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (default_is_lim_range_rgb)
 | |
| 				c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		/* YCbCr pixel encoding */
 | |
| 		c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
 | |
| 		switch (avi->colorimetry) {
 | |
| 		case HDMI_COLORIMETRY_NONE:
 | |
| 			if (!is_ce)
 | |
| 				break;
 | |
| 			if (is_sdtv) {
 | |
| 				c.colorspace = V4L2_COLORSPACE_SMPTE170M;
 | |
| 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
 | |
| 			} else {
 | |
| 				c.colorspace = V4L2_COLORSPACE_REC709;
 | |
| 				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
 | |
| 			}
 | |
| 			c.xfer_func = V4L2_XFER_FUNC_709;
 | |
| 			break;
 | |
| 		case HDMI_COLORIMETRY_ITU_601:
 | |
| 			c.colorspace = V4L2_COLORSPACE_SMPTE170M;
 | |
| 			c.ycbcr_enc = V4L2_YCBCR_ENC_601;
 | |
| 			c.xfer_func = V4L2_XFER_FUNC_709;
 | |
| 			break;
 | |
| 		case HDMI_COLORIMETRY_ITU_709:
 | |
| 			c.colorspace = V4L2_COLORSPACE_REC709;
 | |
| 			c.ycbcr_enc = V4L2_YCBCR_ENC_709;
 | |
| 			c.xfer_func = V4L2_XFER_FUNC_709;
 | |
| 			break;
 | |
| 		case HDMI_COLORIMETRY_EXTENDED:
 | |
| 			switch (avi->extended_colorimetry) {
 | |
| 			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
 | |
| 				c.colorspace = V4L2_COLORSPACE_REC709;
 | |
| 				c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
 | |
| 				c.xfer_func = V4L2_XFER_FUNC_709;
 | |
| 				break;
 | |
| 			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
 | |
| 				c.colorspace = V4L2_COLORSPACE_REC709;
 | |
| 				c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
 | |
| 				c.xfer_func = V4L2_XFER_FUNC_709;
 | |
| 				break;
 | |
| 			case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
 | |
| 				c.colorspace = V4L2_COLORSPACE_SRGB;
 | |
| 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
 | |
| 				c.xfer_func = V4L2_XFER_FUNC_SRGB;
 | |
| 				break;
 | |
| 			case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
 | |
| 				c.colorspace = V4L2_COLORSPACE_OPRGB;
 | |
| 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
 | |
| 				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
 | |
| 				break;
 | |
| 			case HDMI_EXTENDED_COLORIMETRY_BT2020:
 | |
| 				c.colorspace = V4L2_COLORSPACE_BT2020;
 | |
| 				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
 | |
| 				c.xfer_func = V4L2_XFER_FUNC_709;
 | |
| 				break;
 | |
| 			case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
 | |
| 				c.colorspace = V4L2_COLORSPACE_BT2020;
 | |
| 				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
 | |
| 				c.xfer_func = V4L2_XFER_FUNC_709;
 | |
| 				break;
 | |
| 			default: /* fall back to ITU_709 */
 | |
| 				c.colorspace = V4L2_COLORSPACE_REC709;
 | |
| 				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
 | |
| 				c.xfer_func = V4L2_XFER_FUNC_709;
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * YCC Quantization Range signaling is more-or-less broken,
 | |
| 		 * let's just ignore this.
 | |
| 		 */
 | |
| 		break;
 | |
| 	}
 | |
| 	return c;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
 | |
| 
 | |
| /**
 | |
|  * v4l2_get_edid_phys_addr() - find and return the physical address
 | |
|  *
 | |
|  * @edid:	pointer to the EDID data
 | |
|  * @size:	size in bytes of the EDID data
 | |
|  * @offset:	If not %NULL then the location of the physical address
 | |
|  *		bytes in the EDID will be returned here. This is set to 0
 | |
|  *		if there is no physical address found.
 | |
|  *
 | |
|  * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
 | |
|  */
 | |
| u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
 | |
| 			    unsigned int *offset)
 | |
| {
 | |
| 	unsigned int loc = cec_get_edid_spa_location(edid, size);
 | |
| 
 | |
| 	if (offset)
 | |
| 		*offset = loc;
 | |
| 	if (loc == 0)
 | |
| 		return CEC_PHYS_ADDR_INVALID;
 | |
| 	return (edid[loc] << 8) | edid[loc + 1];
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
 | |
| 
 | |
| /**
 | |
|  * v4l2_set_edid_phys_addr() - find and set the physical address
 | |
|  *
 | |
|  * @edid:	pointer to the EDID data
 | |
|  * @size:	size in bytes of the EDID data
 | |
|  * @phys_addr:	the new physical address
 | |
|  *
 | |
|  * This function finds the location of the physical address in the EDID
 | |
|  * and fills in the given physical address and updates the checksum
 | |
|  * at the end of the EDID block. It does nothing if the EDID doesn't
 | |
|  * contain a physical address.
 | |
|  */
 | |
| void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
 | |
| {
 | |
| 	unsigned int loc = cec_get_edid_spa_location(edid, size);
 | |
| 	u8 sum = 0;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (loc == 0)
 | |
| 		return;
 | |
| 	edid[loc] = phys_addr >> 8;
 | |
| 	edid[loc + 1] = phys_addr & 0xff;
 | |
| 	loc &= ~0x7f;
 | |
| 
 | |
| 	/* update the checksum */
 | |
| 	for (i = loc; i < loc + 127; i++)
 | |
| 		sum += edid[i];
 | |
| 	edid[i] = 256 - sum;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
 | |
| 
 | |
| /**
 | |
|  * v4l2_phys_addr_for_input() - calculate the PA for an input
 | |
|  *
 | |
|  * @phys_addr:	the physical address of the parent
 | |
|  * @input:	the number of the input port, must be between 1 and 15
 | |
|  *
 | |
|  * This function calculates a new physical address based on the input
 | |
|  * port number. For example:
 | |
|  *
 | |
|  * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
 | |
|  *
 | |
|  * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
 | |
|  *
 | |
|  * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
 | |
|  *
 | |
|  * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
 | |
|  *
 | |
|  * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
 | |
|  */
 | |
| u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
 | |
| {
 | |
| 	/* Check if input is sane */
 | |
| 	if (WARN_ON(input == 0 || input > 0xf))
 | |
| 		return CEC_PHYS_ADDR_INVALID;
 | |
| 
 | |
| 	if (phys_addr == 0)
 | |
| 		return input << 12;
 | |
| 
 | |
| 	if ((phys_addr & 0x0fff) == 0)
 | |
| 		return phys_addr | (input << 8);
 | |
| 
 | |
| 	if ((phys_addr & 0x00ff) == 0)
 | |
| 		return phys_addr | (input << 4);
 | |
| 
 | |
| 	if ((phys_addr & 0x000f) == 0)
 | |
| 		return phys_addr | input;
 | |
| 
 | |
| 	/*
 | |
| 	 * All nibbles are used so no valid physical addresses can be assigned
 | |
| 	 * to the input.
 | |
| 	 */
 | |
| 	return CEC_PHYS_ADDR_INVALID;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
 | |
| 
 | |
| /**
 | |
|  * v4l2_phys_addr_validate() - validate a physical address from an EDID
 | |
|  *
 | |
|  * @phys_addr:	the physical address to validate
 | |
|  * @parent:	if not %NULL, then this is filled with the parents PA.
 | |
|  * @port:	if not %NULL, then this is filled with the input port.
 | |
|  *
 | |
|  * This validates a physical address as read from an EDID. If the
 | |
|  * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
 | |
|  * then it will return -EINVAL.
 | |
|  *
 | |
|  * The parent PA is passed into %parent and the input port is passed into
 | |
|  * %port. For example:
 | |
|  *
 | |
|  * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
 | |
|  *
 | |
|  * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
 | |
|  *
 | |
|  * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
 | |
|  *
 | |
|  * PA = f.f.f.f: has parent f.f.f.f and input port 0.
 | |
|  *
 | |
|  * Return: 0 if the PA is valid, -EINVAL if not.
 | |
|  */
 | |
| int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (parent)
 | |
| 		*parent = phys_addr;
 | |
| 	if (port)
 | |
| 		*port = 0;
 | |
| 	if (phys_addr == CEC_PHYS_ADDR_INVALID)
 | |
| 		return 0;
 | |
| 	for (i = 0; i < 16; i += 4)
 | |
| 		if (phys_addr & (0xf << i))
 | |
| 			break;
 | |
| 	if (i == 16)
 | |
| 		return 0;
 | |
| 	if (parent)
 | |
| 		*parent = phys_addr & (0xfff0 << i);
 | |
| 	if (port)
 | |
| 		*port = (phys_addr >> i) & 0xf;
 | |
| 	for (i += 4; i < 16; i += 4)
 | |
| 		if ((phys_addr & (0xf << i)) == 0)
 | |
| 			return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);
 | 
