193 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			193 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2016 Linaro Ltd;  <ard.biesheuvel@linaro.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/efi.h>
 | |
| #include <linux/log2.h>
 | |
| #include <asm/efi.h>
 | |
| 
 | |
| #include "efistub.h"
 | |
| 
 | |
| struct efi_rng_protocol {
 | |
| 	efi_status_t (*get_info)(struct efi_rng_protocol *,
 | |
| 				 unsigned long *, efi_guid_t *);
 | |
| 	efi_status_t (*get_rng)(struct efi_rng_protocol *,
 | |
| 				efi_guid_t *, unsigned long, u8 *out);
 | |
| };
 | |
| 
 | |
| efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
 | |
| 				  unsigned long size, u8 *out)
 | |
| {
 | |
| 	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
 | |
| 	efi_status_t status;
 | |
| 	struct efi_rng_protocol *rng;
 | |
| 
 | |
| 	status = efi_call_early(locate_protocol, &rng_proto, NULL,
 | |
| 				(void **)&rng);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	return rng->get_rng(rng, NULL, size, out);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of slots covered by this entry, i.e., the number of
 | |
|  * addresses it covers that are suitably aligned and supply enough room
 | |
|  * for the allocation.
 | |
|  */
 | |
| static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
 | |
| 					 unsigned long size,
 | |
| 					 unsigned long align_shift)
 | |
| {
 | |
| 	unsigned long align = 1UL << align_shift;
 | |
| 	u64 first_slot, last_slot, region_end;
 | |
| 
 | |
| 	if (md->type != EFI_CONVENTIONAL_MEMORY)
 | |
| 		return 0;
 | |
| 
 | |
| 	region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
 | |
| 
 | |
| 	first_slot = round_up(md->phys_addr, align);
 | |
| 	last_slot = round_down(region_end - size + 1, align);
 | |
| 
 | |
| 	if (first_slot > last_slot)
 | |
| 		return 0;
 | |
| 
 | |
| 	return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The UEFI memory descriptors have a virtual address field that is only used
 | |
|  * when installing the virtual mapping using SetVirtualAddressMap(). Since it
 | |
|  * is unused here, we can reuse it to keep track of each descriptor's slot
 | |
|  * count.
 | |
|  */
 | |
| #define MD_NUM_SLOTS(md)	((md)->virt_addr)
 | |
| 
 | |
| efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
 | |
| 			      unsigned long size,
 | |
| 			      unsigned long align,
 | |
| 			      unsigned long *addr,
 | |
| 			      unsigned long random_seed)
 | |
| {
 | |
| 	unsigned long map_size, desc_size, total_slots = 0, target_slot;
 | |
| 	unsigned long buff_size;
 | |
| 	efi_status_t status;
 | |
| 	efi_memory_desc_t *memory_map;
 | |
| 	int map_offset;
 | |
| 	struct efi_boot_memmap map;
 | |
| 
 | |
| 	map.map =	&memory_map;
 | |
| 	map.map_size =	&map_size;
 | |
| 	map.desc_size =	&desc_size;
 | |
| 	map.desc_ver =	NULL;
 | |
| 	map.key_ptr =	NULL;
 | |
| 	map.buff_size =	&buff_size;
 | |
| 
 | |
| 	status = efi_get_memory_map(sys_table_arg, &map);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	if (align < EFI_ALLOC_ALIGN)
 | |
| 		align = EFI_ALLOC_ALIGN;
 | |
| 
 | |
| 	/* count the suitable slots in each memory map entry */
 | |
| 	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
 | |
| 		efi_memory_desc_t *md = (void *)memory_map + map_offset;
 | |
| 		unsigned long slots;
 | |
| 
 | |
| 		slots = get_entry_num_slots(md, size, ilog2(align));
 | |
| 		MD_NUM_SLOTS(md) = slots;
 | |
| 		total_slots += slots;
 | |
| 	}
 | |
| 
 | |
| 	/* find a random number between 0 and total_slots */
 | |
| 	target_slot = (total_slots * (u16)random_seed) >> 16;
 | |
| 
 | |
| 	/*
 | |
| 	 * target_slot is now a value in the range [0, total_slots), and so
 | |
| 	 * it corresponds with exactly one of the suitable slots we recorded
 | |
| 	 * when iterating over the memory map the first time around.
 | |
| 	 *
 | |
| 	 * So iterate over the memory map again, subtracting the number of
 | |
| 	 * slots of each entry at each iteration, until we have found the entry
 | |
| 	 * that covers our chosen slot. Use the residual value of target_slot
 | |
| 	 * to calculate the randomly chosen address, and allocate it directly
 | |
| 	 * using EFI_ALLOCATE_ADDRESS.
 | |
| 	 */
 | |
| 	for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
 | |
| 		efi_memory_desc_t *md = (void *)memory_map + map_offset;
 | |
| 		efi_physical_addr_t target;
 | |
| 		unsigned long pages;
 | |
| 
 | |
| 		if (target_slot >= MD_NUM_SLOTS(md)) {
 | |
| 			target_slot -= MD_NUM_SLOTS(md);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		target = round_up(md->phys_addr, align) + target_slot * align;
 | |
| 		pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
 | |
| 
 | |
| 		status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
 | |
| 					EFI_LOADER_DATA, pages, &target);
 | |
| 		if (status == EFI_SUCCESS)
 | |
| 			*addr = target;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	efi_call_early(free_pool, memory_map);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
 | |
| {
 | |
| 	efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
 | |
| 	efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
 | |
| 	efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
 | |
| 	struct efi_rng_protocol *rng;
 | |
| 	struct linux_efi_random_seed *seed;
 | |
| 	efi_status_t status;
 | |
| 
 | |
| 	status = efi_call_early(locate_protocol, &rng_proto, NULL,
 | |
| 				(void **)&rng);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
 | |
| 				sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
 | |
| 				(void **)&seed);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	status = rng->get_rng(rng, &rng_algo_raw, EFI_RANDOM_SEED_SIZE,
 | |
| 			      seed->bits);
 | |
| 	if (status == EFI_UNSUPPORTED)
 | |
| 		/*
 | |
| 		 * Use whatever algorithm we have available if the raw algorithm
 | |
| 		 * is not implemented.
 | |
| 		 */
 | |
| 		status = rng->get_rng(rng, NULL, EFI_RANDOM_SEED_SIZE,
 | |
| 				      seed->bits);
 | |
| 
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		goto err_freepool;
 | |
| 
 | |
| 	seed->size = EFI_RANDOM_SEED_SIZE;
 | |
| 	status = efi_call_early(install_configuration_table, &rng_table_guid,
 | |
| 				seed);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		goto err_freepool;
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| 
 | |
| err_freepool:
 | |
| 	efi_call_early(free_pool, seed);
 | |
| 	return status;
 | |
| }
 | 
