2245 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2245 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 | |
|  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License, version 2, as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/mman.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <trace/events/kvm.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/kvm_arm.h>
 | |
| #include <asm/kvm_mmu.h>
 | |
| #include <asm/kvm_mmio.h>
 | |
| #include <asm/kvm_asm.h>
 | |
| #include <asm/kvm_emulate.h>
 | |
| #include <asm/virt.h>
 | |
| #include <asm/system_misc.h>
 | |
| 
 | |
| #include "trace.h"
 | |
| 
 | |
| static pgd_t *boot_hyp_pgd;
 | |
| static pgd_t *hyp_pgd;
 | |
| static pgd_t *merged_hyp_pgd;
 | |
| static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
 | |
| 
 | |
| static unsigned long hyp_idmap_start;
 | |
| static unsigned long hyp_idmap_end;
 | |
| static phys_addr_t hyp_idmap_vector;
 | |
| 
 | |
| static unsigned long io_map_base;
 | |
| 
 | |
| #define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
 | |
| #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
 | |
| 
 | |
| #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
 | |
| #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
 | |
| 
 | |
| static bool memslot_is_logging(struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 | |
|  * @kvm:	pointer to kvm structure.
 | |
|  *
 | |
|  * Interface to HYP function to flush all VM TLB entries
 | |
|  */
 | |
| void kvm_flush_remote_tlbs(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
 | |
| }
 | |
| 
 | |
| static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
 | |
| {
 | |
| 	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * D-Cache management functions. They take the page table entries by
 | |
|  * value, as they are flushing the cache using the kernel mapping (or
 | |
|  * kmap on 32bit).
 | |
|  */
 | |
| static void kvm_flush_dcache_pte(pte_t pte)
 | |
| {
 | |
| 	__kvm_flush_dcache_pte(pte);
 | |
| }
 | |
| 
 | |
| static void kvm_flush_dcache_pmd(pmd_t pmd)
 | |
| {
 | |
| 	__kvm_flush_dcache_pmd(pmd);
 | |
| }
 | |
| 
 | |
| static void kvm_flush_dcache_pud(pud_t pud)
 | |
| {
 | |
| 	__kvm_flush_dcache_pud(pud);
 | |
| }
 | |
| 
 | |
| static bool kvm_is_device_pfn(unsigned long pfn)
 | |
| {
 | |
| 	return !pfn_valid(pfn);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * stage2_dissolve_pmd() - clear and flush huge PMD entry
 | |
|  * @kvm:	pointer to kvm structure.
 | |
|  * @addr:	IPA
 | |
|  * @pmd:	pmd pointer for IPA
 | |
|  *
 | |
|  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 | |
|  * pages in the range dirty.
 | |
|  */
 | |
| static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
 | |
| {
 | |
| 	if (!pmd_thp_or_huge(*pmd))
 | |
| 		return;
 | |
| 
 | |
| 	pmd_clear(pmd);
 | |
| 	kvm_tlb_flush_vmid_ipa(kvm, addr);
 | |
| 	put_page(virt_to_page(pmd));
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 | |
| 				  int min, int max)
 | |
| {
 | |
| 	void *page;
 | |
| 
 | |
| 	BUG_ON(max > KVM_NR_MEM_OBJS);
 | |
| 	if (cache->nobjs >= min)
 | |
| 		return 0;
 | |
| 	while (cache->nobjs < max) {
 | |
| 		page = (void *)__get_free_page(PGALLOC_GFP);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 		cache->objects[cache->nobjs++] = page;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	while (mc->nobjs)
 | |
| 		free_page((unsigned long)mc->objects[--mc->nobjs]);
 | |
| }
 | |
| 
 | |
| static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	BUG_ON(!mc || !mc->nobjs);
 | |
| 	p = mc->objects[--mc->nobjs];
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
 | |
| {
 | |
| 	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
 | |
| 	stage2_pgd_clear(pgd);
 | |
| 	kvm_tlb_flush_vmid_ipa(kvm, addr);
 | |
| 	stage2_pud_free(pud_table);
 | |
| 	put_page(virt_to_page(pgd));
 | |
| }
 | |
| 
 | |
| static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
 | |
| {
 | |
| 	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
 | |
| 	VM_BUG_ON(stage2_pud_huge(*pud));
 | |
| 	stage2_pud_clear(pud);
 | |
| 	kvm_tlb_flush_vmid_ipa(kvm, addr);
 | |
| 	stage2_pmd_free(pmd_table);
 | |
| 	put_page(virt_to_page(pud));
 | |
| }
 | |
| 
 | |
| static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
 | |
| {
 | |
| 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
 | |
| 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
 | |
| 	pmd_clear(pmd);
 | |
| 	kvm_tlb_flush_vmid_ipa(kvm, addr);
 | |
| 	pte_free_kernel(NULL, pte_table);
 | |
| 	put_page(virt_to_page(pmd));
 | |
| }
 | |
| 
 | |
| static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
 | |
| {
 | |
| 	WRITE_ONCE(*ptep, new_pte);
 | |
| 	dsb(ishst);
 | |
| }
 | |
| 
 | |
| static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
 | |
| {
 | |
| 	WRITE_ONCE(*pmdp, new_pmd);
 | |
| 	dsb(ishst);
 | |
| }
 | |
| 
 | |
| static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
 | |
| {
 | |
| 	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
 | |
| }
 | |
| 
 | |
| static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
 | |
| {
 | |
| 	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
 | |
| 	dsb(ishst);
 | |
| }
 | |
| 
 | |
| static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
 | |
| {
 | |
| 	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
 | |
| 	dsb(ishst);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmapping vs dcache management:
 | |
|  *
 | |
|  * If a guest maps certain memory pages as uncached, all writes will
 | |
|  * bypass the data cache and go directly to RAM.  However, the CPUs
 | |
|  * can still speculate reads (not writes) and fill cache lines with
 | |
|  * data.
 | |
|  *
 | |
|  * Those cache lines will be *clean* cache lines though, so a
 | |
|  * clean+invalidate operation is equivalent to an invalidate
 | |
|  * operation, because no cache lines are marked dirty.
 | |
|  *
 | |
|  * Those clean cache lines could be filled prior to an uncached write
 | |
|  * by the guest, and the cache coherent IO subsystem would therefore
 | |
|  * end up writing old data to disk.
 | |
|  *
 | |
|  * This is why right after unmapping a page/section and invalidating
 | |
|  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 | |
|  * the IO subsystem will never hit in the cache.
 | |
|  *
 | |
|  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 | |
|  * we then fully enforce cacheability of RAM, no matter what the guest
 | |
|  * does.
 | |
|  */
 | |
| static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
 | |
| 		       phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	phys_addr_t start_addr = addr;
 | |
| 	pte_t *pte, *start_pte;
 | |
| 
 | |
| 	start_pte = pte = pte_offset_kernel(pmd, addr);
 | |
| 	do {
 | |
| 		if (!pte_none(*pte)) {
 | |
| 			pte_t old_pte = *pte;
 | |
| 
 | |
| 			kvm_set_pte(pte, __pte(0));
 | |
| 			kvm_tlb_flush_vmid_ipa(kvm, addr);
 | |
| 
 | |
| 			/* No need to invalidate the cache for device mappings */
 | |
| 			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
 | |
| 				kvm_flush_dcache_pte(old_pte);
 | |
| 
 | |
| 			put_page(virt_to_page(pte));
 | |
| 		}
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 
 | |
| 	if (stage2_pte_table_empty(start_pte))
 | |
| 		clear_stage2_pmd_entry(kvm, pmd, start_addr);
 | |
| }
 | |
| 
 | |
| static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
 | |
| 		       phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	phys_addr_t next, start_addr = addr;
 | |
| 	pmd_t *pmd, *start_pmd;
 | |
| 
 | |
| 	start_pmd = pmd = stage2_pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = stage2_pmd_addr_end(addr, end);
 | |
| 		if (!pmd_none(*pmd)) {
 | |
| 			if (pmd_thp_or_huge(*pmd)) {
 | |
| 				pmd_t old_pmd = *pmd;
 | |
| 
 | |
| 				pmd_clear(pmd);
 | |
| 				kvm_tlb_flush_vmid_ipa(kvm, addr);
 | |
| 
 | |
| 				kvm_flush_dcache_pmd(old_pmd);
 | |
| 
 | |
| 				put_page(virt_to_page(pmd));
 | |
| 			} else {
 | |
| 				unmap_stage2_ptes(kvm, pmd, addr, next);
 | |
| 			}
 | |
| 		}
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 
 | |
| 	if (stage2_pmd_table_empty(start_pmd))
 | |
| 		clear_stage2_pud_entry(kvm, pud, start_addr);
 | |
| }
 | |
| 
 | |
| static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
 | |
| 		       phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	phys_addr_t next, start_addr = addr;
 | |
| 	pud_t *pud, *start_pud;
 | |
| 
 | |
| 	start_pud = pud = stage2_pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = stage2_pud_addr_end(addr, end);
 | |
| 		if (!stage2_pud_none(*pud)) {
 | |
| 			if (stage2_pud_huge(*pud)) {
 | |
| 				pud_t old_pud = *pud;
 | |
| 
 | |
| 				stage2_pud_clear(pud);
 | |
| 				kvm_tlb_flush_vmid_ipa(kvm, addr);
 | |
| 				kvm_flush_dcache_pud(old_pud);
 | |
| 				put_page(virt_to_page(pud));
 | |
| 			} else {
 | |
| 				unmap_stage2_pmds(kvm, pud, addr, next);
 | |
| 			}
 | |
| 		}
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 
 | |
| 	if (stage2_pud_table_empty(start_pud))
 | |
| 		clear_stage2_pgd_entry(kvm, pgd, start_addr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 | |
|  * @kvm:   The VM pointer
 | |
|  * @start: The intermediate physical base address of the range to unmap
 | |
|  * @size:  The size of the area to unmap
 | |
|  *
 | |
|  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 | |
|  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 | |
|  * destroying the VM), otherwise another faulting VCPU may come in and mess
 | |
|  * with things behind our backs.
 | |
|  */
 | |
| static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	phys_addr_t addr = start, end = start + size;
 | |
| 	phys_addr_t next;
 | |
| 
 | |
| 	assert_spin_locked(&kvm->mmu_lock);
 | |
| 	WARN_ON(size & ~PAGE_MASK);
 | |
| 
 | |
| 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Make sure the page table is still active, as another thread
 | |
| 		 * could have possibly freed the page table, while we released
 | |
| 		 * the lock.
 | |
| 		 */
 | |
| 		if (!READ_ONCE(kvm->arch.pgd))
 | |
| 			break;
 | |
| 		next = stage2_pgd_addr_end(addr, end);
 | |
| 		if (!stage2_pgd_none(*pgd))
 | |
| 			unmap_stage2_puds(kvm, pgd, addr, next);
 | |
| 		/*
 | |
| 		 * If the range is too large, release the kvm->mmu_lock
 | |
| 		 * to prevent starvation and lockup detector warnings.
 | |
| 		 */
 | |
| 		if (next != end)
 | |
| 			cond_resched_lock(&kvm->mmu_lock);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
 | |
| 			      phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	do {
 | |
| 		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
 | |
| 			kvm_flush_dcache_pte(*pte);
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| }
 | |
| 
 | |
| static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
 | |
| 			      phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	phys_addr_t next;
 | |
| 
 | |
| 	pmd = stage2_pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = stage2_pmd_addr_end(addr, end);
 | |
| 		if (!pmd_none(*pmd)) {
 | |
| 			if (pmd_thp_or_huge(*pmd))
 | |
| 				kvm_flush_dcache_pmd(*pmd);
 | |
| 			else
 | |
| 				stage2_flush_ptes(kvm, pmd, addr, next);
 | |
| 		}
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
 | |
| 			      phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	phys_addr_t next;
 | |
| 
 | |
| 	pud = stage2_pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = stage2_pud_addr_end(addr, end);
 | |
| 		if (!stage2_pud_none(*pud)) {
 | |
| 			if (stage2_pud_huge(*pud))
 | |
| 				kvm_flush_dcache_pud(*pud);
 | |
| 			else
 | |
| 				stage2_flush_pmds(kvm, pud, addr, next);
 | |
| 		}
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void stage2_flush_memslot(struct kvm *kvm,
 | |
| 				 struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 | |
| 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
 | |
| 	phys_addr_t next;
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
 | |
| 	do {
 | |
| 		next = stage2_pgd_addr_end(addr, end);
 | |
| 		if (!stage2_pgd_none(*pgd))
 | |
| 			stage2_flush_puds(kvm, pgd, addr, next);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 | |
|  * @kvm: The struct kvm pointer
 | |
|  *
 | |
|  * Go through the stage 2 page tables and invalidate any cache lines
 | |
|  * backing memory already mapped to the VM.
 | |
|  */
 | |
| static void stage2_flush_vm(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&kvm->srcu);
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	slots = kvm_memslots(kvm);
 | |
| 	kvm_for_each_memslot(memslot, slots)
 | |
| 		stage2_flush_memslot(kvm, memslot);
 | |
| 
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 	srcu_read_unlock(&kvm->srcu, idx);
 | |
| }
 | |
| 
 | |
| static void clear_hyp_pgd_entry(pgd_t *pgd)
 | |
| {
 | |
| 	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
 | |
| 	pgd_clear(pgd);
 | |
| 	pud_free(NULL, pud_table);
 | |
| 	put_page(virt_to_page(pgd));
 | |
| }
 | |
| 
 | |
| static void clear_hyp_pud_entry(pud_t *pud)
 | |
| {
 | |
| 	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
 | |
| 	VM_BUG_ON(pud_huge(*pud));
 | |
| 	pud_clear(pud);
 | |
| 	pmd_free(NULL, pmd_table);
 | |
| 	put_page(virt_to_page(pud));
 | |
| }
 | |
| 
 | |
| static void clear_hyp_pmd_entry(pmd_t *pmd)
 | |
| {
 | |
| 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
 | |
| 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
 | |
| 	pmd_clear(pmd);
 | |
| 	pte_free_kernel(NULL, pte_table);
 | |
| 	put_page(virt_to_page(pmd));
 | |
| }
 | |
| 
 | |
| static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	pte_t *pte, *start_pte;
 | |
| 
 | |
| 	start_pte = pte = pte_offset_kernel(pmd, addr);
 | |
| 	do {
 | |
| 		if (!pte_none(*pte)) {
 | |
| 			kvm_set_pte(pte, __pte(0));
 | |
| 			put_page(virt_to_page(pte));
 | |
| 		}
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 
 | |
| 	if (hyp_pte_table_empty(start_pte))
 | |
| 		clear_hyp_pmd_entry(pmd);
 | |
| }
 | |
| 
 | |
| static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	phys_addr_t next;
 | |
| 	pmd_t *pmd, *start_pmd;
 | |
| 
 | |
| 	start_pmd = pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		/* Hyp doesn't use huge pmds */
 | |
| 		if (!pmd_none(*pmd))
 | |
| 			unmap_hyp_ptes(pmd, addr, next);
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 
 | |
| 	if (hyp_pmd_table_empty(start_pmd))
 | |
| 		clear_hyp_pud_entry(pud);
 | |
| }
 | |
| 
 | |
| static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	phys_addr_t next;
 | |
| 	pud_t *pud, *start_pud;
 | |
| 
 | |
| 	start_pud = pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		/* Hyp doesn't use huge puds */
 | |
| 		if (!pud_none(*pud))
 | |
| 			unmap_hyp_pmds(pud, addr, next);
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 
 | |
| 	if (hyp_pud_table_empty(start_pud))
 | |
| 		clear_hyp_pgd_entry(pgd);
 | |
| }
 | |
| 
 | |
| static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
 | |
| {
 | |
| 	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
 | |
| }
 | |
| 
 | |
| static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
 | |
| 			      phys_addr_t start, u64 size)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	phys_addr_t addr = start, end = start + size;
 | |
| 	phys_addr_t next;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't unmap anything from HYP, except at the hyp tear down.
 | |
| 	 * Hence, we don't have to invalidate the TLBs here.
 | |
| 	 */
 | |
| 	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (!pgd_none(*pgd))
 | |
| 			unmap_hyp_puds(pgd, addr, next);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
 | |
| {
 | |
| 	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
 | |
| }
 | |
| 
 | |
| static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
 | |
| {
 | |
| 	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_hyp_pgds - free Hyp-mode page tables
 | |
|  *
 | |
|  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 | |
|  * therefore contains either mappings in the kernel memory area (above
 | |
|  * PAGE_OFFSET), or device mappings in the idmap range.
 | |
|  *
 | |
|  * boot_hyp_pgd should only map the idmap range, and is only used in
 | |
|  * the extended idmap case.
 | |
|  */
 | |
| void free_hyp_pgds(void)
 | |
| {
 | |
| 	pgd_t *id_pgd;
 | |
| 
 | |
| 	mutex_lock(&kvm_hyp_pgd_mutex);
 | |
| 
 | |
| 	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
 | |
| 
 | |
| 	if (id_pgd) {
 | |
| 		/* In case we never called hyp_mmu_init() */
 | |
| 		if (!io_map_base)
 | |
| 			io_map_base = hyp_idmap_start;
 | |
| 		unmap_hyp_idmap_range(id_pgd, io_map_base,
 | |
| 				      hyp_idmap_start + PAGE_SIZE - io_map_base);
 | |
| 	}
 | |
| 
 | |
| 	if (boot_hyp_pgd) {
 | |
| 		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
 | |
| 		boot_hyp_pgd = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (hyp_pgd) {
 | |
| 		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
 | |
| 				(uintptr_t)high_memory - PAGE_OFFSET);
 | |
| 
 | |
| 		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
 | |
| 		hyp_pgd = NULL;
 | |
| 	}
 | |
| 	if (merged_hyp_pgd) {
 | |
| 		clear_page(merged_hyp_pgd);
 | |
| 		free_page((unsigned long)merged_hyp_pgd);
 | |
| 		merged_hyp_pgd = NULL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&kvm_hyp_pgd_mutex);
 | |
| }
 | |
| 
 | |
| static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
 | |
| 				    unsigned long end, unsigned long pfn,
 | |
| 				    pgprot_t prot)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	addr = start;
 | |
| 	do {
 | |
| 		pte = pte_offset_kernel(pmd, addr);
 | |
| 		kvm_set_pte(pte, pfn_pte(pfn, prot));
 | |
| 		get_page(virt_to_page(pte));
 | |
| 		pfn++;
 | |
| 	} while (addr += PAGE_SIZE, addr != end);
 | |
| }
 | |
| 
 | |
| static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
 | |
| 				   unsigned long end, unsigned long pfn,
 | |
| 				   pgprot_t prot)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	unsigned long addr, next;
 | |
| 
 | |
| 	addr = start;
 | |
| 	do {
 | |
| 		pmd = pmd_offset(pud, addr);
 | |
| 
 | |
| 		BUG_ON(pmd_sect(*pmd));
 | |
| 
 | |
| 		if (pmd_none(*pmd)) {
 | |
| 			pte = pte_alloc_one_kernel(NULL, addr);
 | |
| 			if (!pte) {
 | |
| 				kvm_err("Cannot allocate Hyp pte\n");
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			kvm_pmd_populate(pmd, pte);
 | |
| 			get_page(virt_to_page(pmd));
 | |
| 		}
 | |
| 
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
 | |
| 		pfn += (next - addr) >> PAGE_SHIFT;
 | |
| 	} while (addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
 | |
| 				   unsigned long end, unsigned long pfn,
 | |
| 				   pgprot_t prot)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long addr, next;
 | |
| 	int ret;
 | |
| 
 | |
| 	addr = start;
 | |
| 	do {
 | |
| 		pud = pud_offset(pgd, addr);
 | |
| 
 | |
| 		if (pud_none_or_clear_bad(pud)) {
 | |
| 			pmd = pmd_alloc_one(NULL, addr);
 | |
| 			if (!pmd) {
 | |
| 				kvm_err("Cannot allocate Hyp pmd\n");
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			kvm_pud_populate(pud, pmd);
 | |
| 			get_page(virt_to_page(pud));
 | |
| 		}
 | |
| 
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		pfn += (next - addr) >> PAGE_SHIFT;
 | |
| 	} while (addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
 | |
| 				 unsigned long start, unsigned long end,
 | |
| 				 unsigned long pfn, pgprot_t prot)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	unsigned long addr, next;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm_hyp_pgd_mutex);
 | |
| 	addr = start & PAGE_MASK;
 | |
| 	end = PAGE_ALIGN(end);
 | |
| 	do {
 | |
| 		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
 | |
| 
 | |
| 		if (pgd_none(*pgd)) {
 | |
| 			pud = pud_alloc_one(NULL, addr);
 | |
| 			if (!pud) {
 | |
| 				kvm_err("Cannot allocate Hyp pud\n");
 | |
| 				err = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			kvm_pgd_populate(pgd, pud);
 | |
| 			get_page(virt_to_page(pgd));
 | |
| 		}
 | |
| 
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		pfn += (next - addr) >> PAGE_SHIFT;
 | |
| 	} while (addr = next, addr != end);
 | |
| out:
 | |
| 	mutex_unlock(&kvm_hyp_pgd_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
 | |
| {
 | |
| 	if (!is_vmalloc_addr(kaddr)) {
 | |
| 		BUG_ON(!virt_addr_valid(kaddr));
 | |
| 		return __pa(kaddr);
 | |
| 	} else {
 | |
| 		return page_to_phys(vmalloc_to_page(kaddr)) +
 | |
| 		       offset_in_page(kaddr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
 | |
|  * @from:	The virtual kernel start address of the range
 | |
|  * @to:		The virtual kernel end address of the range (exclusive)
 | |
|  * @prot:	The protection to be applied to this range
 | |
|  *
 | |
|  * The same virtual address as the kernel virtual address is also used
 | |
|  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 | |
|  * physical pages.
 | |
|  */
 | |
| int create_hyp_mappings(void *from, void *to, pgprot_t prot)
 | |
| {
 | |
| 	phys_addr_t phys_addr;
 | |
| 	unsigned long virt_addr;
 | |
| 	unsigned long start = kern_hyp_va((unsigned long)from);
 | |
| 	unsigned long end = kern_hyp_va((unsigned long)to);
 | |
| 
 | |
| 	if (is_kernel_in_hyp_mode())
 | |
| 		return 0;
 | |
| 
 | |
| 	start = start & PAGE_MASK;
 | |
| 	end = PAGE_ALIGN(end);
 | |
| 
 | |
| 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
 | |
| 		int err;
 | |
| 
 | |
| 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
 | |
| 		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
 | |
| 					    virt_addr, virt_addr + PAGE_SIZE,
 | |
| 					    __phys_to_pfn(phys_addr),
 | |
| 					    prot);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
 | |
| 					unsigned long *haddr, pgprot_t prot)
 | |
| {
 | |
| 	pgd_t *pgd = hyp_pgd;
 | |
| 	unsigned long base;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm_hyp_pgd_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * This assumes that we we have enough space below the idmap
 | |
| 	 * page to allocate our VAs. If not, the check below will
 | |
| 	 * kick. A potential alternative would be to detect that
 | |
| 	 * overflow and switch to an allocation above the idmap.
 | |
| 	 *
 | |
| 	 * The allocated size is always a multiple of PAGE_SIZE.
 | |
| 	 */
 | |
| 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
 | |
| 	base = io_map_base - size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
 | |
| 	 * allocating the new area, as it would indicate we've
 | |
| 	 * overflowed the idmap/IO address range.
 | |
| 	 */
 | |
| 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
 | |
| 		ret = -ENOMEM;
 | |
| 	else
 | |
| 		io_map_base = base;
 | |
| 
 | |
| 	mutex_unlock(&kvm_hyp_pgd_mutex);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (__kvm_cpu_uses_extended_idmap())
 | |
| 		pgd = boot_hyp_pgd;
 | |
| 
 | |
| 	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
 | |
| 				    base, base + size,
 | |
| 				    __phys_to_pfn(phys_addr), prot);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	*haddr = base + offset_in_page(phys_addr);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * create_hyp_io_mappings - Map IO into both kernel and HYP
 | |
|  * @phys_addr:	The physical start address which gets mapped
 | |
|  * @size:	Size of the region being mapped
 | |
|  * @kaddr:	Kernel VA for this mapping
 | |
|  * @haddr:	HYP VA for this mapping
 | |
|  */
 | |
| int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
 | |
| 			   void __iomem **kaddr,
 | |
| 			   void __iomem **haddr)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	*kaddr = ioremap(phys_addr, size);
 | |
| 	if (!*kaddr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (is_kernel_in_hyp_mode()) {
 | |
| 		*haddr = *kaddr;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = __create_hyp_private_mapping(phys_addr, size,
 | |
| 					   &addr, PAGE_HYP_DEVICE);
 | |
| 	if (ret) {
 | |
| 		iounmap(*kaddr);
 | |
| 		*kaddr = NULL;
 | |
| 		*haddr = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	*haddr = (void __iomem *)addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * create_hyp_exec_mappings - Map an executable range into HYP
 | |
|  * @phys_addr:	The physical start address which gets mapped
 | |
|  * @size:	Size of the region being mapped
 | |
|  * @haddr:	HYP VA for this mapping
 | |
|  */
 | |
| int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
 | |
| 			     void **haddr)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(is_kernel_in_hyp_mode());
 | |
| 
 | |
| 	ret = __create_hyp_private_mapping(phys_addr, size,
 | |
| 					   &addr, PAGE_HYP_EXEC);
 | |
| 	if (ret) {
 | |
| 		*haddr = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	*haddr = (void *)addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 | |
|  * @kvm:	The KVM struct pointer for the VM.
 | |
|  *
 | |
|  * Allocates only the stage-2 HW PGD level table(s) (can support either full
 | |
|  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 | |
|  * allocated pages.
 | |
|  *
 | |
|  * Note we don't need locking here as this is only called when the VM is
 | |
|  * created, which can only be done once.
 | |
|  */
 | |
| int kvm_alloc_stage2_pgd(struct kvm *kvm)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	if (kvm->arch.pgd != NULL) {
 | |
| 		kvm_err("kvm_arch already initialized?\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate the HW PGD, making sure that each page gets its own refcount */
 | |
| 	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
 | |
| 	if (!pgd)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	kvm->arch.pgd = pgd;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void stage2_unmap_memslot(struct kvm *kvm,
 | |
| 				 struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	hva_t hva = memslot->userspace_addr;
 | |
| 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 | |
| 	phys_addr_t size = PAGE_SIZE * memslot->npages;
 | |
| 	hva_t reg_end = hva + size;
 | |
| 
 | |
| 	/*
 | |
| 	 * A memory region could potentially cover multiple VMAs, and any holes
 | |
| 	 * between them, so iterate over all of them to find out if we should
 | |
| 	 * unmap any of them.
 | |
| 	 *
 | |
| 	 *     +--------------------------------------------+
 | |
| 	 * +---------------+----------------+   +----------------+
 | |
| 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
 | |
| 	 * +---------------+----------------+   +----------------+
 | |
| 	 *     |               memory region                |
 | |
| 	 *     +--------------------------------------------+
 | |
| 	 */
 | |
| 	do {
 | |
| 		struct vm_area_struct *vma = find_vma(current->mm, hva);
 | |
| 		hva_t vm_start, vm_end;
 | |
| 
 | |
| 		if (!vma || vma->vm_start >= reg_end)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Take the intersection of this VMA with the memory region
 | |
| 		 */
 | |
| 		vm_start = max(hva, vma->vm_start);
 | |
| 		vm_end = min(reg_end, vma->vm_end);
 | |
| 
 | |
| 		if (!(vma->vm_flags & VM_PFNMAP)) {
 | |
| 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
 | |
| 			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
 | |
| 		}
 | |
| 		hva = vm_end;
 | |
| 	} while (hva < reg_end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 | |
|  * @kvm: The struct kvm pointer
 | |
|  *
 | |
|  * Go through the memregions and unmap any reguler RAM
 | |
|  * backing memory already mapped to the VM.
 | |
|  */
 | |
| void stage2_unmap_vm(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&kvm->srcu);
 | |
| 	down_read(¤t->mm->mmap_sem);
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	slots = kvm_memslots(kvm);
 | |
| 	kvm_for_each_memslot(memslot, slots)
 | |
| 		stage2_unmap_memslot(kvm, memslot);
 | |
| 
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 	up_read(¤t->mm->mmap_sem);
 | |
| 	srcu_read_unlock(&kvm->srcu, idx);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_free_stage2_pgd - free all stage-2 tables
 | |
|  * @kvm:	The KVM struct pointer for the VM.
 | |
|  *
 | |
|  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 | |
|  * underlying level-2 and level-3 tables before freeing the actual level-1 table
 | |
|  * and setting the struct pointer to NULL.
 | |
|  */
 | |
| void kvm_free_stage2_pgd(struct kvm *kvm)
 | |
| {
 | |
| 	void *pgd = NULL;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	if (kvm->arch.pgd) {
 | |
| 		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
 | |
| 		pgd = READ_ONCE(kvm->arch.pgd);
 | |
| 		kvm->arch.pgd = NULL;
 | |
| 	}
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	/* Free the HW pgd, one page at a time */
 | |
| 	if (pgd)
 | |
| 		free_pages_exact(pgd, S2_PGD_SIZE);
 | |
| }
 | |
| 
 | |
| static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 | |
| 			     phys_addr_t addr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 
 | |
| 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
 | |
| 	if (WARN_ON(stage2_pgd_none(*pgd))) {
 | |
| 		if (!cache)
 | |
| 			return NULL;
 | |
| 		pud = mmu_memory_cache_alloc(cache);
 | |
| 		stage2_pgd_populate(pgd, pud);
 | |
| 		get_page(virt_to_page(pgd));
 | |
| 	}
 | |
| 
 | |
| 	return stage2_pud_offset(pgd, addr);
 | |
| }
 | |
| 
 | |
| static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 | |
| 			     phys_addr_t addr)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	pud = stage2_get_pud(kvm, cache, addr);
 | |
| 	if (!pud)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (stage2_pud_none(*pud)) {
 | |
| 		if (!cache)
 | |
| 			return NULL;
 | |
| 		pmd = mmu_memory_cache_alloc(cache);
 | |
| 		stage2_pud_populate(pud, pmd);
 | |
| 		get_page(virt_to_page(pud));
 | |
| 	}
 | |
| 
 | |
| 	return stage2_pmd_offset(pud, addr);
 | |
| }
 | |
| 
 | |
| static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
 | |
| 			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
 | |
| {
 | |
| 	pmd_t *pmd, old_pmd;
 | |
| 
 | |
| 	pmd = stage2_get_pmd(kvm, cache, addr);
 | |
| 	VM_BUG_ON(!pmd);
 | |
| 
 | |
| 	old_pmd = *pmd;
 | |
| 	if (pmd_present(old_pmd)) {
 | |
| 		/*
 | |
| 		 * Multiple vcpus faulting on the same PMD entry, can
 | |
| 		 * lead to them sequentially updating the PMD with the
 | |
| 		 * same value. Following the break-before-make
 | |
| 		 * (pmd_clear() followed by tlb_flush()) process can
 | |
| 		 * hinder forward progress due to refaults generated
 | |
| 		 * on missing translations.
 | |
| 		 *
 | |
| 		 * Skip updating the page table if the entry is
 | |
| 		 * unchanged.
 | |
| 		 */
 | |
| 		if (pmd_val(old_pmd) == pmd_val(*new_pmd))
 | |
| 			return 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Mapping in huge pages should only happen through a
 | |
| 		 * fault.  If a page is merged into a transparent huge
 | |
| 		 * page, the individual subpages of that huge page
 | |
| 		 * should be unmapped through MMU notifiers before we
 | |
| 		 * get here.
 | |
| 		 *
 | |
| 		 * Merging of CompoundPages is not supported; they
 | |
| 		 * should become splitting first, unmapped, merged,
 | |
| 		 * and mapped back in on-demand.
 | |
| 		 */
 | |
| 		VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
 | |
| 
 | |
| 		pmd_clear(pmd);
 | |
| 		kvm_tlb_flush_vmid_ipa(kvm, addr);
 | |
| 	} else {
 | |
| 		get_page(virt_to_page(pmd));
 | |
| 	}
 | |
| 
 | |
| 	kvm_set_pmd(pmd, *new_pmd);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
 | |
| {
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| 	pmdp = stage2_get_pmd(kvm, NULL, addr);
 | |
| 	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
 | |
| 		return false;
 | |
| 
 | |
| 	if (pmd_thp_or_huge(*pmdp))
 | |
| 		return kvm_s2pmd_exec(pmdp);
 | |
| 
 | |
| 	ptep = pte_offset_kernel(pmdp, addr);
 | |
| 	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
 | |
| 		return false;
 | |
| 
 | |
| 	return kvm_s2pte_exec(ptep);
 | |
| }
 | |
| 
 | |
| static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 | |
| 			  phys_addr_t addr, const pte_t *new_pte,
 | |
| 			  unsigned long flags)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte, old_pte;
 | |
| 	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
 | |
| 	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
 | |
| 
 | |
| 	VM_BUG_ON(logging_active && !cache);
 | |
| 
 | |
| 	/* Create stage-2 page table mapping - Levels 0 and 1 */
 | |
| 	pmd = stage2_get_pmd(kvm, cache, addr);
 | |
| 	if (!pmd) {
 | |
| 		/*
 | |
| 		 * Ignore calls from kvm_set_spte_hva for unallocated
 | |
| 		 * address ranges.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * While dirty page logging - dissolve huge PMD, then continue on to
 | |
| 	 * allocate page.
 | |
| 	 */
 | |
| 	if (logging_active)
 | |
| 		stage2_dissolve_pmd(kvm, addr, pmd);
 | |
| 
 | |
| 	/* Create stage-2 page mappings - Level 2 */
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		if (!cache)
 | |
| 			return 0; /* ignore calls from kvm_set_spte_hva */
 | |
| 		pte = mmu_memory_cache_alloc(cache);
 | |
| 		kvm_pmd_populate(pmd, pte);
 | |
| 		get_page(virt_to_page(pmd));
 | |
| 	}
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 
 | |
| 	if (iomap && pte_present(*pte))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Create 2nd stage page table mapping - Level 3 */
 | |
| 	old_pte = *pte;
 | |
| 	if (pte_present(old_pte)) {
 | |
| 		/* Skip page table update if there is no change */
 | |
| 		if (pte_val(old_pte) == pte_val(*new_pte))
 | |
| 			return 0;
 | |
| 
 | |
| 		kvm_set_pte(pte, __pte(0));
 | |
| 		kvm_tlb_flush_vmid_ipa(kvm, addr);
 | |
| 	} else {
 | |
| 		get_page(virt_to_page(pte));
 | |
| 	}
 | |
| 
 | |
| 	kvm_set_pte(pte, *new_pte);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | |
| static int stage2_ptep_test_and_clear_young(pte_t *pte)
 | |
| {
 | |
| 	if (pte_young(*pte)) {
 | |
| 		*pte = pte_mkold(*pte);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static int stage2_ptep_test_and_clear_young(pte_t *pte)
 | |
| {
 | |
| 	return __ptep_test_and_clear_young(pte);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
 | |
| {
 | |
| 	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_phys_addr_ioremap - map a device range to guest IPA
 | |
|  *
 | |
|  * @kvm:	The KVM pointer
 | |
|  * @guest_ipa:	The IPA at which to insert the mapping
 | |
|  * @pa:		The physical address of the device
 | |
|  * @size:	The size of the mapping
 | |
|  */
 | |
| int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
 | |
| 			  phys_addr_t pa, unsigned long size, bool writable)
 | |
| {
 | |
| 	phys_addr_t addr, end;
 | |
| 	int ret = 0;
 | |
| 	unsigned long pfn;
 | |
| 	struct kvm_mmu_memory_cache cache = { 0, };
 | |
| 
 | |
| 	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
 | |
| 	pfn = __phys_to_pfn(pa);
 | |
| 
 | |
| 	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
 | |
| 		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
 | |
| 
 | |
| 		if (writable)
 | |
| 			pte = kvm_s2pte_mkwrite(pte);
 | |
| 
 | |
| 		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
 | |
| 						KVM_NR_MEM_OBJS);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		spin_lock(&kvm->mmu_lock);
 | |
| 		ret = stage2_set_pte(kvm, &cache, addr, &pte,
 | |
| 						KVM_S2PTE_FLAG_IS_IOMAP);
 | |
| 		spin_unlock(&kvm->mmu_lock);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		pfn++;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mmu_free_memory_cache(&cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
 | |
| {
 | |
| 	kvm_pfn_t pfn = *pfnp;
 | |
| 	gfn_t gfn = *ipap >> PAGE_SHIFT;
 | |
| 	struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * PageTransCompoungMap() returns true for THP and
 | |
| 	 * hugetlbfs. Make sure the adjustment is done only for THP
 | |
| 	 * pages.
 | |
| 	 */
 | |
| 	if (!PageHuge(page) && PageTransCompoundMap(page)) {
 | |
| 		unsigned long mask;
 | |
| 		/*
 | |
| 		 * The address we faulted on is backed by a transparent huge
 | |
| 		 * page.  However, because we map the compound huge page and
 | |
| 		 * not the individual tail page, we need to transfer the
 | |
| 		 * refcount to the head page.  We have to be careful that the
 | |
| 		 * THP doesn't start to split while we are adjusting the
 | |
| 		 * refcounts.
 | |
| 		 *
 | |
| 		 * We are sure this doesn't happen, because mmu_notifier_retry
 | |
| 		 * was successful and we are holding the mmu_lock, so if this
 | |
| 		 * THP is trying to split, it will be blocked in the mmu
 | |
| 		 * notifier before touching any of the pages, specifically
 | |
| 		 * before being able to call __split_huge_page_refcount().
 | |
| 		 *
 | |
| 		 * We can therefore safely transfer the refcount from PG_tail
 | |
| 		 * to PG_head and switch the pfn from a tail page to the head
 | |
| 		 * page accordingly.
 | |
| 		 */
 | |
| 		mask = PTRS_PER_PMD - 1;
 | |
| 		VM_BUG_ON((gfn & mask) != (pfn & mask));
 | |
| 		if (pfn & mask) {
 | |
| 			*ipap &= PMD_MASK;
 | |
| 			kvm_release_pfn_clean(pfn);
 | |
| 			pfn &= ~mask;
 | |
| 			kvm_get_pfn(pfn);
 | |
| 			*pfnp = pfn;
 | |
| 		}
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_vcpu_trap_is_iabt(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	return kvm_vcpu_dabt_iswrite(vcpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * stage2_wp_ptes - write protect PMD range
 | |
|  * @pmd:	pointer to pmd entry
 | |
|  * @addr:	range start address
 | |
|  * @end:	range end address
 | |
|  */
 | |
| static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	do {
 | |
| 		if (!pte_none(*pte)) {
 | |
| 			if (!kvm_s2pte_readonly(pte))
 | |
| 				kvm_set_s2pte_readonly(pte);
 | |
| 		}
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * stage2_wp_pmds - write protect PUD range
 | |
|  * @pud:	pointer to pud entry
 | |
|  * @addr:	range start address
 | |
|  * @end:	range end address
 | |
|  */
 | |
| static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	phys_addr_t next;
 | |
| 
 | |
| 	pmd = stage2_pmd_offset(pud, addr);
 | |
| 
 | |
| 	do {
 | |
| 		next = stage2_pmd_addr_end(addr, end);
 | |
| 		if (!pmd_none(*pmd)) {
 | |
| 			if (pmd_thp_or_huge(*pmd)) {
 | |
| 				if (!kvm_s2pmd_readonly(pmd))
 | |
| 					kvm_set_s2pmd_readonly(pmd);
 | |
| 			} else {
 | |
| 				stage2_wp_ptes(pmd, addr, next);
 | |
| 			}
 | |
| 		}
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   * stage2_wp_puds - write protect PGD range
 | |
|   * @pgd:	pointer to pgd entry
 | |
|   * @addr:	range start address
 | |
|   * @end:	range end address
 | |
|   *
 | |
|   * Process PUD entries, for a huge PUD we cause a panic.
 | |
|   */
 | |
| static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	phys_addr_t next;
 | |
| 
 | |
| 	pud = stage2_pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = stage2_pud_addr_end(addr, end);
 | |
| 		if (!stage2_pud_none(*pud)) {
 | |
| 			/* TODO:PUD not supported, revisit later if supported */
 | |
| 			BUG_ON(stage2_pud_huge(*pud));
 | |
| 			stage2_wp_pmds(pud, addr, next);
 | |
| 		}
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * stage2_wp_range() - write protect stage2 memory region range
 | |
|  * @kvm:	The KVM pointer
 | |
|  * @addr:	Start address of range
 | |
|  * @end:	End address of range
 | |
|  */
 | |
| static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	phys_addr_t next;
 | |
| 
 | |
| 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Release kvm_mmu_lock periodically if the memory region is
 | |
| 		 * large. Otherwise, we may see kernel panics with
 | |
| 		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
 | |
| 		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
 | |
| 		 * will also starve other vCPUs. We have to also make sure
 | |
| 		 * that the page tables are not freed while we released
 | |
| 		 * the lock.
 | |
| 		 */
 | |
| 		cond_resched_lock(&kvm->mmu_lock);
 | |
| 		if (!READ_ONCE(kvm->arch.pgd))
 | |
| 			break;
 | |
| 		next = stage2_pgd_addr_end(addr, end);
 | |
| 		if (stage2_pgd_present(*pgd))
 | |
| 			stage2_wp_puds(pgd, addr, next);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 | |
|  * @kvm:	The KVM pointer
 | |
|  * @slot:	The memory slot to write protect
 | |
|  *
 | |
|  * Called to start logging dirty pages after memory region
 | |
|  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 | |
|  * all present PMD and PTEs are write protected in the memory region.
 | |
|  * Afterwards read of dirty page log can be called.
 | |
|  *
 | |
|  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 | |
|  * serializing operations for VM memory regions.
 | |
|  */
 | |
| void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
 | |
| {
 | |
| 	struct kvm_memslots *slots = kvm_memslots(kvm);
 | |
| 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
 | |
| 	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
 | |
| 	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	stage2_wp_range(kvm, start, end);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
 | |
|  * @kvm:	The KVM pointer
 | |
|  * @slot:	The memory slot associated with mask
 | |
|  * @gfn_offset:	The gfn offset in memory slot
 | |
|  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 | |
|  *		slot to be write protected
 | |
|  *
 | |
|  * Walks bits set in mask write protects the associated pte's. Caller must
 | |
|  * acquire kvm_mmu_lock.
 | |
|  */
 | |
| static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
 | |
| 		struct kvm_memory_slot *slot,
 | |
| 		gfn_t gfn_offset, unsigned long mask)
 | |
| {
 | |
| 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
 | |
| 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
 | |
| 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
 | |
| 
 | |
| 	stage2_wp_range(kvm, start, end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 | |
|  * dirty pages.
 | |
|  *
 | |
|  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 | |
|  * enable dirty logging for them.
 | |
|  */
 | |
| void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 | |
| 		struct kvm_memory_slot *slot,
 | |
| 		gfn_t gfn_offset, unsigned long mask)
 | |
| {
 | |
| 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
 | |
| }
 | |
| 
 | |
| static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
 | |
| {
 | |
| 	__clean_dcache_guest_page(pfn, size);
 | |
| }
 | |
| 
 | |
| static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
 | |
| {
 | |
| 	__invalidate_icache_guest_page(pfn, size);
 | |
| }
 | |
| 
 | |
| static void kvm_send_hwpoison_signal(unsigned long address,
 | |
| 				     struct vm_area_struct *vma)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	clear_siginfo(&info);
 | |
| 	info.si_signo   = SIGBUS;
 | |
| 	info.si_errno   = 0;
 | |
| 	info.si_code    = BUS_MCEERR_AR;
 | |
| 	info.si_addr    = (void __user *)address;
 | |
| 
 | |
| 	if (is_vm_hugetlb_page(vma))
 | |
| 		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
 | |
| 	else
 | |
| 		info.si_addr_lsb = PAGE_SHIFT;
 | |
| 
 | |
| 	send_sig_info(SIGBUS, &info, current);
 | |
| }
 | |
| 
 | |
| static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
 | |
| 			  struct kvm_memory_slot *memslot, unsigned long hva,
 | |
| 			  unsigned long fault_status)
 | |
| {
 | |
| 	int ret;
 | |
| 	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
 | |
| 	unsigned long mmu_seq;
 | |
| 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	kvm_pfn_t pfn;
 | |
| 	pgprot_t mem_type = PAGE_S2;
 | |
| 	bool logging_active = memslot_is_logging(memslot);
 | |
| 	unsigned long flags = 0;
 | |
| 
 | |
| 	write_fault = kvm_is_write_fault(vcpu);
 | |
| 	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
 | |
| 	VM_BUG_ON(write_fault && exec_fault);
 | |
| 
 | |
| 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
 | |
| 		kvm_err("Unexpected L2 read permission error\n");
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* Let's check if we will get back a huge page backed by hugetlbfs */
 | |
| 	down_read(¤t->mm->mmap_sem);
 | |
| 	vma = find_vma_intersection(current->mm, hva, hva + 1);
 | |
| 	if (unlikely(!vma)) {
 | |
| 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
 | |
| 		up_read(¤t->mm->mmap_sem);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
 | |
| 		hugetlb = true;
 | |
| 		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Pages belonging to memslots that don't have the same
 | |
| 		 * alignment for userspace and IPA cannot be mapped using
 | |
| 		 * block descriptors even if the pages belong to a THP for
 | |
| 		 * the process, because the stage-2 block descriptor will
 | |
| 		 * cover more than a single THP and we loose atomicity for
 | |
| 		 * unmapping, updates, and splits of the THP or other pages
 | |
| 		 * in the stage-2 block range.
 | |
| 		 */
 | |
| 		if ((memslot->userspace_addr & ~PMD_MASK) !=
 | |
| 		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
 | |
| 			force_pte = true;
 | |
| 	}
 | |
| 	up_read(¤t->mm->mmap_sem);
 | |
| 
 | |
| 	/* We need minimum second+third level pages */
 | |
| 	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
 | |
| 				     KVM_NR_MEM_OBJS);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	/*
 | |
| 	 * Ensure the read of mmu_notifier_seq happens before we call
 | |
| 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
 | |
| 	 * the page we just got a reference to gets unmapped before we have a
 | |
| 	 * chance to grab the mmu_lock, which ensure that if the page gets
 | |
| 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
 | |
| 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
 | |
| 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
 | |
| 	if (pfn == KVM_PFN_ERR_HWPOISON) {
 | |
| 		kvm_send_hwpoison_signal(hva, vma);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (is_error_noslot_pfn(pfn))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (kvm_is_device_pfn(pfn)) {
 | |
| 		mem_type = PAGE_S2_DEVICE;
 | |
| 		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
 | |
| 	} else if (logging_active) {
 | |
| 		/*
 | |
| 		 * Faults on pages in a memslot with logging enabled
 | |
| 		 * should not be mapped with huge pages (it introduces churn
 | |
| 		 * and performance degradation), so force a pte mapping.
 | |
| 		 */
 | |
| 		force_pte = true;
 | |
| 		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only actually map the page as writable if this was a write
 | |
| 		 * fault.
 | |
| 		 */
 | |
| 		if (!write_fault)
 | |
| 			writable = false;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	if (mmu_notifier_retry(kvm, mmu_seq))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (!hugetlb && !force_pte)
 | |
| 		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
 | |
| 
 | |
| 	if (hugetlb) {
 | |
| 		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
 | |
| 		new_pmd = pmd_mkhuge(new_pmd);
 | |
| 		if (writable) {
 | |
| 			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
 | |
| 			kvm_set_pfn_dirty(pfn);
 | |
| 		}
 | |
| 
 | |
| 		if (fault_status != FSC_PERM)
 | |
| 			clean_dcache_guest_page(pfn, PMD_SIZE);
 | |
| 
 | |
| 		if (exec_fault) {
 | |
| 			new_pmd = kvm_s2pmd_mkexec(new_pmd);
 | |
| 			invalidate_icache_guest_page(pfn, PMD_SIZE);
 | |
| 		} else if (fault_status == FSC_PERM) {
 | |
| 			/* Preserve execute if XN was already cleared */
 | |
| 			if (stage2_is_exec(kvm, fault_ipa))
 | |
| 				new_pmd = kvm_s2pmd_mkexec(new_pmd);
 | |
| 		}
 | |
| 
 | |
| 		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
 | |
| 	} else {
 | |
| 		pte_t new_pte = pfn_pte(pfn, mem_type);
 | |
| 
 | |
| 		if (writable) {
 | |
| 			new_pte = kvm_s2pte_mkwrite(new_pte);
 | |
| 			kvm_set_pfn_dirty(pfn);
 | |
| 			mark_page_dirty(kvm, gfn);
 | |
| 		}
 | |
| 
 | |
| 		if (fault_status != FSC_PERM)
 | |
| 			clean_dcache_guest_page(pfn, PAGE_SIZE);
 | |
| 
 | |
| 		if (exec_fault) {
 | |
| 			new_pte = kvm_s2pte_mkexec(new_pte);
 | |
| 			invalidate_icache_guest_page(pfn, PAGE_SIZE);
 | |
| 		} else if (fault_status == FSC_PERM) {
 | |
| 			/* Preserve execute if XN was already cleared */
 | |
| 			if (stage2_is_exec(kvm, fault_ipa))
 | |
| 				new_pte = kvm_s2pte_mkexec(new_pte);
 | |
| 		}
 | |
| 
 | |
| 		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 	kvm_set_pfn_accessed(pfn);
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resolve the access fault by making the page young again.
 | |
|  * Note that because the faulting entry is guaranteed not to be
 | |
|  * cached in the TLB, we don't need to invalidate anything.
 | |
|  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 | |
|  * so there is no need for atomic (pte|pmd)_mkyoung operations.
 | |
|  */
 | |
| static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	kvm_pfn_t pfn;
 | |
| 	bool pfn_valid = false;
 | |
| 
 | |
| 	trace_kvm_access_fault(fault_ipa);
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
 | |
| 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
 | |
| 		goto out;
 | |
| 
 | |
| 	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
 | |
| 		*pmd = pmd_mkyoung(*pmd);
 | |
| 		pfn = pmd_pfn(*pmd);
 | |
| 		pfn_valid = true;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, fault_ipa);
 | |
| 	if (pte_none(*pte))		/* Nothing there either */
 | |
| 		goto out;
 | |
| 
 | |
| 	*pte = pte_mkyoung(*pte);	/* Just a page... */
 | |
| 	pfn = pte_pfn(*pte);
 | |
| 	pfn_valid = true;
 | |
| out:
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	if (pfn_valid)
 | |
| 		kvm_set_pfn_accessed(pfn);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_guest_abort - handles all 2nd stage aborts
 | |
|  * @vcpu:	the VCPU pointer
 | |
|  * @run:	the kvm_run structure
 | |
|  *
 | |
|  * Any abort that gets to the host is almost guaranteed to be caused by a
 | |
|  * missing second stage translation table entry, which can mean that either the
 | |
|  * guest simply needs more memory and we must allocate an appropriate page or it
 | |
|  * can mean that the guest tried to access I/O memory, which is emulated by user
 | |
|  * space. The distinction is based on the IPA causing the fault and whether this
 | |
|  * memory region has been registered as standard RAM by user space.
 | |
|  */
 | |
| int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	unsigned long fault_status;
 | |
| 	phys_addr_t fault_ipa;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	unsigned long hva;
 | |
| 	bool is_iabt, write_fault, writable;
 | |
| 	gfn_t gfn;
 | |
| 	int ret, idx;
 | |
| 
 | |
| 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
 | |
| 
 | |
| 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
 | |
| 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
 | |
| 
 | |
| 	/* Synchronous External Abort? */
 | |
| 	if (kvm_vcpu_dabt_isextabt(vcpu)) {
 | |
| 		/*
 | |
| 		 * For RAS the host kernel may handle this abort.
 | |
| 		 * There is no need to pass the error into the guest.
 | |
| 		 */
 | |
| 		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (unlikely(!is_iabt)) {
 | |
| 			kvm_inject_vabt(vcpu);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
 | |
| 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
 | |
| 
 | |
| 	/* Check the stage-2 fault is trans. fault or write fault */
 | |
| 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
 | |
| 	    fault_status != FSC_ACCESS) {
 | |
| 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
 | |
| 			kvm_vcpu_trap_get_class(vcpu),
 | |
| 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
 | |
| 			(unsigned long)kvm_vcpu_get_hsr(vcpu));
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 
 | |
| 	gfn = fault_ipa >> PAGE_SHIFT;
 | |
| 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
 | |
| 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
 | |
| 	write_fault = kvm_is_write_fault(vcpu);
 | |
| 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
 | |
| 		if (is_iabt) {
 | |
| 			/* Prefetch Abort on I/O address */
 | |
| 			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
 | |
| 			ret = 1;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Check for a cache maintenance operation. Since we
 | |
| 		 * ended-up here, we know it is outside of any memory
 | |
| 		 * slot. But we can't find out if that is for a device,
 | |
| 		 * or if the guest is just being stupid. The only thing
 | |
| 		 * we know for sure is that this range cannot be cached.
 | |
| 		 *
 | |
| 		 * So let's assume that the guest is just being
 | |
| 		 * cautious, and skip the instruction.
 | |
| 		 */
 | |
| 		if (kvm_vcpu_dabt_is_cm(vcpu)) {
 | |
| 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 | |
| 			ret = 1;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The IPA is reported as [MAX:12], so we need to
 | |
| 		 * complement it with the bottom 12 bits from the
 | |
| 		 * faulting VA. This is always 12 bits, irrespective
 | |
| 		 * of the page size.
 | |
| 		 */
 | |
| 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
 | |
| 		ret = io_mem_abort(vcpu, run, fault_ipa);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Userspace should not be able to register out-of-bounds IPAs */
 | |
| 	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
 | |
| 
 | |
| 	if (fault_status == FSC_ACCESS) {
 | |
| 		handle_access_fault(vcpu, fault_ipa);
 | |
| 		ret = 1;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
 | |
| 	if (ret == 0)
 | |
| 		ret = 1;
 | |
| out_unlock:
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int handle_hva_to_gpa(struct kvm *kvm,
 | |
| 			     unsigned long start,
 | |
| 			     unsigned long end,
 | |
| 			     int (*handler)(struct kvm *kvm,
 | |
| 					    gpa_t gpa, u64 size,
 | |
| 					    void *data),
 | |
| 			     void *data)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	slots = kvm_memslots(kvm);
 | |
| 
 | |
| 	/* we only care about the pages that the guest sees */
 | |
| 	kvm_for_each_memslot(memslot, slots) {
 | |
| 		unsigned long hva_start, hva_end;
 | |
| 		gfn_t gpa;
 | |
| 
 | |
| 		hva_start = max(start, memslot->userspace_addr);
 | |
| 		hva_end = min(end, memslot->userspace_addr +
 | |
| 					(memslot->npages << PAGE_SHIFT));
 | |
| 		if (hva_start >= hva_end)
 | |
| 			continue;
 | |
| 
 | |
| 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
 | |
| 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
 | |
| {
 | |
| 	unmap_stage2_range(kvm, gpa, size);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_unmap_hva_range(struct kvm *kvm,
 | |
| 			unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (!kvm->arch.pgd)
 | |
| 		return 0;
 | |
| 
 | |
| 	trace_kvm_unmap_hva_range(start, end);
 | |
| 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
 | |
| {
 | |
| 	pte_t *pte = (pte_t *)data;
 | |
| 
 | |
| 	WARN_ON(size != PAGE_SIZE);
 | |
| 	/*
 | |
| 	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
 | |
| 	 * flag clear because MMU notifiers will have unmapped a huge PMD before
 | |
| 	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
 | |
| 	 * therefore stage2_set_pte() never needs to clear out a huge PMD
 | |
| 	 * through this calling path.
 | |
| 	 */
 | |
| 	stage2_set_pte(kvm, NULL, gpa, pte, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 | |
| {
 | |
| 	unsigned long end = hva + PAGE_SIZE;
 | |
| 	kvm_pfn_t pfn = pte_pfn(pte);
 | |
| 	pte_t stage2_pte;
 | |
| 
 | |
| 	if (!kvm->arch.pgd)
 | |
| 		return;
 | |
| 
 | |
| 	trace_kvm_set_spte_hva(hva);
 | |
| 
 | |
| 	/*
 | |
| 	 * We've moved a page around, probably through CoW, so let's treat it
 | |
| 	 * just like a translation fault and clean the cache to the PoC.
 | |
| 	 */
 | |
| 	clean_dcache_guest_page(pfn, PAGE_SIZE);
 | |
| 	stage2_pte = pfn_pte(pfn, PAGE_S2);
 | |
| 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
 | |
| }
 | |
| 
 | |
| static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
 | |
| 	pmd = stage2_get_pmd(kvm, NULL, gpa);
 | |
| 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
 | |
| 		return stage2_pmdp_test_and_clear_young(pmd);
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, gpa);
 | |
| 	if (pte_none(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	return stage2_ptep_test_and_clear_young(pte);
 | |
| }
 | |
| 
 | |
| static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
 | |
| 	pmd = stage2_get_pmd(kvm, NULL, gpa);
 | |
| 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
 | |
| 		return pmd_young(*pmd);
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, gpa);
 | |
| 	if (!pte_none(*pte))		/* Just a page... */
 | |
| 		return pte_young(*pte);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (!kvm->arch.pgd)
 | |
| 		return 0;
 | |
| 	trace_kvm_age_hva(start, end);
 | |
| 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
 | |
| }
 | |
| 
 | |
| int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
 | |
| {
 | |
| 	if (!kvm->arch.pgd)
 | |
| 		return 0;
 | |
| 	trace_kvm_test_age_hva(hva);
 | |
| 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
 | |
| }
 | |
| 
 | |
| phys_addr_t kvm_mmu_get_httbr(void)
 | |
| {
 | |
| 	if (__kvm_cpu_uses_extended_idmap())
 | |
| 		return virt_to_phys(merged_hyp_pgd);
 | |
| 	else
 | |
| 		return virt_to_phys(hyp_pgd);
 | |
| }
 | |
| 
 | |
| phys_addr_t kvm_get_idmap_vector(void)
 | |
| {
 | |
| 	return hyp_idmap_vector;
 | |
| }
 | |
| 
 | |
| static int kvm_map_idmap_text(pgd_t *pgd)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* Create the idmap in the boot page tables */
 | |
| 	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
 | |
| 				      hyp_idmap_start, hyp_idmap_end,
 | |
| 				      __phys_to_pfn(hyp_idmap_start),
 | |
| 				      PAGE_HYP_EXEC);
 | |
| 	if (err)
 | |
| 		kvm_err("Failed to idmap %lx-%lx\n",
 | |
| 			hyp_idmap_start, hyp_idmap_end);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
 | |
| 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
 | |
| 	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
 | |
| 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
 | |
| 	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
 | |
| 
 | |
| 	/*
 | |
| 	 * We rely on the linker script to ensure at build time that the HYP
 | |
| 	 * init code does not cross a page boundary.
 | |
| 	 */
 | |
| 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
 | |
| 
 | |
| 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
 | |
| 	kvm_debug("HYP VA range: %lx:%lx\n",
 | |
| 		  kern_hyp_va(PAGE_OFFSET),
 | |
| 		  kern_hyp_va((unsigned long)high_memory - 1));
 | |
| 
 | |
| 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
 | |
| 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
 | |
| 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
 | |
| 		/*
 | |
| 		 * The idmap page is intersecting with the VA space,
 | |
| 		 * it is not safe to continue further.
 | |
| 		 */
 | |
| 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
 | |
| 	if (!hyp_pgd) {
 | |
| 		kvm_err("Hyp mode PGD not allocated\n");
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (__kvm_cpu_uses_extended_idmap()) {
 | |
| 		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
 | |
| 							 hyp_pgd_order);
 | |
| 		if (!boot_hyp_pgd) {
 | |
| 			kvm_err("Hyp boot PGD not allocated\n");
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		err = kvm_map_idmap_text(boot_hyp_pgd);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 		if (!merged_hyp_pgd) {
 | |
| 			kvm_err("Failed to allocate extra HYP pgd\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
 | |
| 				    hyp_idmap_start);
 | |
| 	} else {
 | |
| 		err = kvm_map_idmap_text(hyp_pgd);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	io_map_base = hyp_idmap_start;
 | |
| 	return 0;
 | |
| out:
 | |
| 	free_hyp_pgds();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void kvm_arch_commit_memory_region(struct kvm *kvm,
 | |
| 				   const struct kvm_userspace_memory_region *mem,
 | |
| 				   const struct kvm_memory_slot *old,
 | |
| 				   const struct kvm_memory_slot *new,
 | |
| 				   enum kvm_mr_change change)
 | |
| {
 | |
| 	/*
 | |
| 	 * At this point memslot has been committed and there is an
 | |
| 	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
 | |
| 	 * memory slot is write protected.
 | |
| 	 */
 | |
| 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
 | |
| 		kvm_mmu_wp_memory_region(kvm, mem->slot);
 | |
| }
 | |
| 
 | |
| int kvm_arch_prepare_memory_region(struct kvm *kvm,
 | |
| 				   struct kvm_memory_slot *memslot,
 | |
| 				   const struct kvm_userspace_memory_region *mem,
 | |
| 				   enum kvm_mr_change change)
 | |
| {
 | |
| 	hva_t hva = mem->userspace_addr;
 | |
| 	hva_t reg_end = hva + mem->memory_size;
 | |
| 	bool writable = !(mem->flags & KVM_MEM_READONLY);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
 | |
| 			change != KVM_MR_FLAGS_ONLY)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent userspace from creating a memory region outside of the IPA
 | |
| 	 * space addressable by the KVM guest IPA space.
 | |
| 	 */
 | |
| 	if (memslot->base_gfn + memslot->npages >=
 | |
| 	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	down_read(¤t->mm->mmap_sem);
 | |
| 	/*
 | |
| 	 * A memory region could potentially cover multiple VMAs, and any holes
 | |
| 	 * between them, so iterate over all of them to find out if we can map
 | |
| 	 * any of them right now.
 | |
| 	 *
 | |
| 	 *     +--------------------------------------------+
 | |
| 	 * +---------------+----------------+   +----------------+
 | |
| 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
 | |
| 	 * +---------------+----------------+   +----------------+
 | |
| 	 *     |               memory region                |
 | |
| 	 *     +--------------------------------------------+
 | |
| 	 */
 | |
| 	do {
 | |
| 		struct vm_area_struct *vma = find_vma(current->mm, hva);
 | |
| 		hva_t vm_start, vm_end;
 | |
| 
 | |
| 		if (!vma || vma->vm_start >= reg_end)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Mapping a read-only VMA is only allowed if the
 | |
| 		 * memory region is configured as read-only.
 | |
| 		 */
 | |
| 		if (writable && !(vma->vm_flags & VM_WRITE)) {
 | |
| 			ret = -EPERM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Take the intersection of this VMA with the memory region
 | |
| 		 */
 | |
| 		vm_start = max(hva, vma->vm_start);
 | |
| 		vm_end = min(reg_end, vma->vm_end);
 | |
| 
 | |
| 		if (vma->vm_flags & VM_PFNMAP) {
 | |
| 			gpa_t gpa = mem->guest_phys_addr +
 | |
| 				    (vm_start - mem->userspace_addr);
 | |
| 			phys_addr_t pa;
 | |
| 
 | |
| 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
 | |
| 			pa += vm_start - vma->vm_start;
 | |
| 
 | |
| 			/* IO region dirty page logging not allowed */
 | |
| 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 | |
| 				ret = -EINVAL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
 | |
| 						    vm_end - vm_start,
 | |
| 						    writable);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		hva = vm_end;
 | |
| 	} while (hva < reg_end);
 | |
| 
 | |
| 	if (change == KVM_MR_FLAGS_ONLY)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	if (ret)
 | |
| 		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
 | |
| 	else
 | |
| 		stage2_flush_memslot(kvm, memslot);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| out:
 | |
| 	up_read(¤t->mm->mmap_sem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 | |
| 			   struct kvm_memory_slot *dont)
 | |
| {
 | |
| }
 | |
| 
 | |
| int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 | |
| 			    unsigned long npages)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
 | |
| {
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_shadow_all(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_free_stage2_pgd(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 | |
| 				   struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
 | |
| 	phys_addr_t size = slot->npages << PAGE_SHIFT;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	unmap_stage2_range(kvm, gpa, size);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 | |
|  *
 | |
|  * Main problems:
 | |
|  * - S/W ops are local to a CPU (not broadcast)
 | |
|  * - We have line migration behind our back (speculation)
 | |
|  * - System caches don't support S/W at all (damn!)
 | |
|  *
 | |
|  * In the face of the above, the best we can do is to try and convert
 | |
|  * S/W ops to VA ops. Because the guest is not allowed to infer the
 | |
|  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 | |
|  * which is a rather good thing for us.
 | |
|  *
 | |
|  * Also, it is only used when turning caches on/off ("The expected
 | |
|  * usage of the cache maintenance instructions that operate by set/way
 | |
|  * is associated with the cache maintenance instructions associated
 | |
|  * with the powerdown and powerup of caches, if this is required by
 | |
|  * the implementation.").
 | |
|  *
 | |
|  * We use the following policy:
 | |
|  *
 | |
|  * - If we trap a S/W operation, we enable VM trapping to detect
 | |
|  *   caches being turned on/off, and do a full clean.
 | |
|  *
 | |
|  * - We flush the caches on both caches being turned on and off.
 | |
|  *
 | |
|  * - Once the caches are enabled, we stop trapping VM ops.
 | |
|  */
 | |
| void kvm_set_way_flush(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long hcr = *vcpu_hcr(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is the first time we do a S/W operation
 | |
| 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
 | |
| 	 * VM trapping.
 | |
| 	 *
 | |
| 	 * Otherwise, rely on the VM trapping to wait for the MMU +
 | |
| 	 * Caches to be turned off. At that point, we'll be able to
 | |
| 	 * clean the caches again.
 | |
| 	 */
 | |
| 	if (!(hcr & HCR_TVM)) {
 | |
| 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
 | |
| 					vcpu_has_cache_enabled(vcpu));
 | |
| 		stage2_flush_vm(vcpu->kvm);
 | |
| 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
 | |
| {
 | |
| 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If switching the MMU+caches on, need to invalidate the caches.
 | |
| 	 * If switching it off, need to clean the caches.
 | |
| 	 * Clean + invalidate does the trick always.
 | |
| 	 */
 | |
| 	if (now_enabled != was_enabled)
 | |
| 		stage2_flush_vm(vcpu->kvm);
 | |
| 
 | |
| 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
 | |
| 	if (now_enabled)
 | |
| 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
 | |
| 
 | |
| 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
 | |
| }
 | 
