312 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Scaler library
 | |
|  *
 | |
|  * Copyright (c) 2013 Texas Instruments Inc.
 | |
|  *
 | |
|  * David Griego, <dagriego@biglakesoftware.com>
 | |
|  * Dale Farnsworth, <dale@farnsworth.org>
 | |
|  * Archit Taneja, <archit@ti.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published by
 | |
|  * the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/err.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include "sc.h"
 | |
| #include "sc_coeff.h"
 | |
| 
 | |
| void sc_dump_regs(struct sc_data *sc)
 | |
| {
 | |
| 	struct device *dev = &sc->pdev->dev;
 | |
| 
 | |
| #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, \
 | |
| 	ioread32(sc->base + CFG_##r))
 | |
| 
 | |
| 	dev_dbg(dev, "SC Registers @ %pa:\n", &sc->res->start);
 | |
| 
 | |
| 	DUMPREG(SC0);
 | |
| 	DUMPREG(SC1);
 | |
| 	DUMPREG(SC2);
 | |
| 	DUMPREG(SC3);
 | |
| 	DUMPREG(SC4);
 | |
| 	DUMPREG(SC5);
 | |
| 	DUMPREG(SC6);
 | |
| 	DUMPREG(SC8);
 | |
| 	DUMPREG(SC9);
 | |
| 	DUMPREG(SC10);
 | |
| 	DUMPREG(SC11);
 | |
| 	DUMPREG(SC12);
 | |
| 	DUMPREG(SC13);
 | |
| 	DUMPREG(SC17);
 | |
| 	DUMPREG(SC18);
 | |
| 	DUMPREG(SC19);
 | |
| 	DUMPREG(SC20);
 | |
| 	DUMPREG(SC21);
 | |
| 	DUMPREG(SC22);
 | |
| 	DUMPREG(SC23);
 | |
| 	DUMPREG(SC24);
 | |
| 	DUMPREG(SC25);
 | |
| 
 | |
| #undef DUMPREG
 | |
| }
 | |
| EXPORT_SYMBOL(sc_dump_regs);
 | |
| 
 | |
| /*
 | |
|  * set the horizontal scaler coefficients according to the ratio of output to
 | |
|  * input widths, after accounting for up to two levels of decimation
 | |
|  */
 | |
| void sc_set_hs_coeffs(struct sc_data *sc, void *addr, unsigned int src_w,
 | |
| 		unsigned int dst_w)
 | |
| {
 | |
| 	int sixteenths;
 | |
| 	int idx;
 | |
| 	int i, j;
 | |
| 	u16 *coeff_h = addr;
 | |
| 	const u16 *cp;
 | |
| 
 | |
| 	if (dst_w > src_w) {
 | |
| 		idx = HS_UP_SCALE;
 | |
| 	} else {
 | |
| 		if ((dst_w << 1) < src_w)
 | |
| 			dst_w <<= 1;	/* first level decimation */
 | |
| 		if ((dst_w << 1) < src_w)
 | |
| 			dst_w <<= 1;	/* second level decimation */
 | |
| 
 | |
| 		if (dst_w == src_w) {
 | |
| 			idx = HS_LE_16_16_SCALE;
 | |
| 		} else {
 | |
| 			sixteenths = (dst_w << 4) / src_w;
 | |
| 			if (sixteenths < 8)
 | |
| 				sixteenths = 8;
 | |
| 			idx = HS_LT_9_16_SCALE + sixteenths - 8;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cp = scaler_hs_coeffs[idx];
 | |
| 
 | |
| 	for (i = 0; i < SC_NUM_PHASES * 2; i++) {
 | |
| 		for (j = 0; j < SC_H_NUM_TAPS; j++)
 | |
| 			*coeff_h++ = *cp++;
 | |
| 		/*
 | |
| 		 * for each phase, the scaler expects space for 8 coefficients
 | |
| 		 * in it's memory. For the horizontal scaler, we copy the first
 | |
| 		 * 7 coefficients and skip the last slot to move to the next
 | |
| 		 * row to hold coefficients for the next phase
 | |
| 		 */
 | |
| 		coeff_h += SC_NUM_TAPS_MEM_ALIGN - SC_H_NUM_TAPS;
 | |
| 	}
 | |
| 
 | |
| 	sc->load_coeff_h = true;
 | |
| }
 | |
| EXPORT_SYMBOL(sc_set_hs_coeffs);
 | |
| 
 | |
| /*
 | |
|  * set the vertical scaler coefficients according to the ratio of output to
 | |
|  * input heights
 | |
|  */
 | |
| void sc_set_vs_coeffs(struct sc_data *sc, void *addr, unsigned int src_h,
 | |
| 		unsigned int dst_h)
 | |
| {
 | |
| 	int sixteenths;
 | |
| 	int idx;
 | |
| 	int i, j;
 | |
| 	u16 *coeff_v = addr;
 | |
| 	const u16 *cp;
 | |
| 
 | |
| 	if (dst_h > src_h) {
 | |
| 		idx = VS_UP_SCALE;
 | |
| 	} else if (dst_h == src_h) {
 | |
| 		idx = VS_1_TO_1_SCALE;
 | |
| 	} else {
 | |
| 		sixteenths = (dst_h << 4) / src_h;
 | |
| 		if (sixteenths < 8)
 | |
| 			sixteenths = 8;
 | |
| 		idx = VS_LT_9_16_SCALE + sixteenths - 8;
 | |
| 	}
 | |
| 
 | |
| 	cp = scaler_vs_coeffs[idx];
 | |
| 
 | |
| 	for (i = 0; i < SC_NUM_PHASES * 2; i++) {
 | |
| 		for (j = 0; j < SC_V_NUM_TAPS; j++)
 | |
| 			*coeff_v++ = *cp++;
 | |
| 		/*
 | |
| 		 * for the vertical scaler, we copy the first 5 coefficients and
 | |
| 		 * skip the last 3 slots to move to the next row to hold
 | |
| 		 * coefficients for the next phase
 | |
| 		 */
 | |
| 		coeff_v += SC_NUM_TAPS_MEM_ALIGN - SC_V_NUM_TAPS;
 | |
| 	}
 | |
| 
 | |
| 	sc->load_coeff_v = true;
 | |
| }
 | |
| EXPORT_SYMBOL(sc_set_vs_coeffs);
 | |
| 
 | |
| void sc_config_scaler(struct sc_data *sc, u32 *sc_reg0, u32 *sc_reg8,
 | |
| 		u32 *sc_reg17, unsigned int src_w, unsigned int src_h,
 | |
| 		unsigned int dst_w, unsigned int dst_h)
 | |
| {
 | |
| 	struct device *dev = &sc->pdev->dev;
 | |
| 	u32 val;
 | |
| 	int dcm_x, dcm_shift;
 | |
| 	bool use_rav;
 | |
| 	unsigned long lltmp;
 | |
| 	u32 lin_acc_inc, lin_acc_inc_u;
 | |
| 	u32 col_acc_offset;
 | |
| 	u16 factor = 0;
 | |
| 	int row_acc_init_rav = 0, row_acc_init_rav_b = 0;
 | |
| 	u32 row_acc_inc = 0, row_acc_offset = 0, row_acc_offset_b = 0;
 | |
| 	/*
 | |
| 	 * location of SC register in payload memory with respect to the first
 | |
| 	 * register in the mmr address data block
 | |
| 	 */
 | |
| 	u32 *sc_reg9 = sc_reg8 + 1;
 | |
| 	u32 *sc_reg12 = sc_reg8 + 4;
 | |
| 	u32 *sc_reg13 = sc_reg8 + 5;
 | |
| 	u32 *sc_reg24 = sc_reg17 + 7;
 | |
| 
 | |
| 	val = sc_reg0[0];
 | |
| 
 | |
| 	/* clear all the features(they may get enabled elsewhere later) */
 | |
| 	val &= ~(CFG_SELFGEN_FID | CFG_TRIM | CFG_ENABLE_SIN2_VER_INTP |
 | |
| 		CFG_INTERLACE_I | CFG_DCM_4X | CFG_DCM_2X | CFG_AUTO_HS |
 | |
| 		CFG_ENABLE_EV | CFG_USE_RAV | CFG_INVT_FID | CFG_SC_BYPASS |
 | |
| 		CFG_INTERLACE_O | CFG_Y_PK_EN | CFG_HP_BYPASS | CFG_LINEAR);
 | |
| 
 | |
| 	if (src_w == dst_w && src_h == dst_h) {
 | |
| 		val |= CFG_SC_BYPASS;
 | |
| 		sc_reg0[0] = val;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* we only support linear scaling for now */
 | |
| 	val |= CFG_LINEAR;
 | |
| 
 | |
| 	/* configure horizontal scaler */
 | |
| 
 | |
| 	/* enable 2X or 4X decimation */
 | |
| 	dcm_x = src_w / dst_w;
 | |
| 	if (dcm_x > 4) {
 | |
| 		val |= CFG_DCM_4X;
 | |
| 		dcm_shift = 2;
 | |
| 	} else if (dcm_x > 2) {
 | |
| 		val |= CFG_DCM_2X;
 | |
| 		dcm_shift = 1;
 | |
| 	} else {
 | |
| 		dcm_shift = 0;
 | |
| 	}
 | |
| 
 | |
| 	lltmp = dst_w - 1;
 | |
| 	lin_acc_inc = div64_u64(((u64)(src_w >> dcm_shift) - 1) << 24, lltmp);
 | |
| 	lin_acc_inc_u = 0;
 | |
| 	col_acc_offset = 0;
 | |
| 
 | |
| 	dev_dbg(dev, "hs config: src_w = %d, dst_w = %d, decimation = %s, lin_acc_inc = %08x\n",
 | |
| 		src_w, dst_w, dcm_shift == 2 ? "4x" :
 | |
| 		(dcm_shift == 1 ? "2x" : "none"), lin_acc_inc);
 | |
| 
 | |
| 	/* configure vertical scaler */
 | |
| 
 | |
| 	/* use RAV for vertical scaler if vertical downscaling is > 4x */
 | |
| 	if (dst_h < (src_h >> 2)) {
 | |
| 		use_rav = true;
 | |
| 		val |= CFG_USE_RAV;
 | |
| 	} else {
 | |
| 		use_rav = false;
 | |
| 	}
 | |
| 
 | |
| 	if (use_rav) {
 | |
| 		/* use RAV */
 | |
| 		factor = (u16) ((dst_h << 10) / src_h);
 | |
| 
 | |
| 		row_acc_init_rav = factor + ((1 + factor) >> 1);
 | |
| 		if (row_acc_init_rav >= 1024)
 | |
| 			row_acc_init_rav -= 1024;
 | |
| 
 | |
| 		row_acc_init_rav_b = row_acc_init_rav +
 | |
| 				(1 + (row_acc_init_rav >> 1)) -
 | |
| 				(1024 >> 1);
 | |
| 
 | |
| 		if (row_acc_init_rav_b < 0) {
 | |
| 			row_acc_init_rav_b += row_acc_init_rav;
 | |
| 			row_acc_init_rav *= 2;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(dev, "vs config(RAV): src_h = %d, dst_h = %d, factor = %d, acc_init = %08x, acc_init_b = %08x\n",
 | |
| 			src_h, dst_h, factor, row_acc_init_rav,
 | |
| 			row_acc_init_rav_b);
 | |
| 	} else {
 | |
| 		/* use polyphase */
 | |
| 		row_acc_inc = ((src_h - 1) << 16) / (dst_h - 1);
 | |
| 		row_acc_offset = 0;
 | |
| 		row_acc_offset_b = 0;
 | |
| 
 | |
| 		dev_dbg(dev, "vs config(POLY): src_h = %d, dst_h = %d,row_acc_inc = %08x\n",
 | |
| 			src_h, dst_h, row_acc_inc);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	sc_reg0[0] = val;
 | |
| 	sc_reg0[1] = row_acc_inc;
 | |
| 	sc_reg0[2] = row_acc_offset;
 | |
| 	sc_reg0[3] = row_acc_offset_b;
 | |
| 
 | |
| 	sc_reg0[4] = ((lin_acc_inc_u & CFG_LIN_ACC_INC_U_MASK) <<
 | |
| 			CFG_LIN_ACC_INC_U_SHIFT) | (dst_w << CFG_TAR_W_SHIFT) |
 | |
| 			(dst_h << CFG_TAR_H_SHIFT);
 | |
| 
 | |
| 	sc_reg0[5] = (src_w << CFG_SRC_W_SHIFT) | (src_h << CFG_SRC_H_SHIFT);
 | |
| 
 | |
| 	sc_reg0[6] = (row_acc_init_rav_b << CFG_ROW_ACC_INIT_RAV_B_SHIFT) |
 | |
| 		(row_acc_init_rav << CFG_ROW_ACC_INIT_RAV_SHIFT);
 | |
| 
 | |
| 	*sc_reg9 = lin_acc_inc;
 | |
| 
 | |
| 	*sc_reg12 = col_acc_offset << CFG_COL_ACC_OFFSET_SHIFT;
 | |
| 
 | |
| 	*sc_reg13 = factor;
 | |
| 
 | |
| 	*sc_reg24 = (src_w << CFG_ORG_W_SHIFT) | (src_h << CFG_ORG_H_SHIFT);
 | |
| }
 | |
| EXPORT_SYMBOL(sc_config_scaler);
 | |
| 
 | |
| struct sc_data *sc_create(struct platform_device *pdev, const char *res_name)
 | |
| {
 | |
| 	struct sc_data *sc;
 | |
| 
 | |
| 	dev_dbg(&pdev->dev, "sc_create\n");
 | |
| 
 | |
| 	sc = devm_kzalloc(&pdev->dev, sizeof(*sc), GFP_KERNEL);
 | |
| 	if (!sc) {
 | |
| 		dev_err(&pdev->dev, "couldn't alloc sc_data\n");
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	sc->pdev = pdev;
 | |
| 
 | |
| 	sc->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
 | |
| 	if (!sc->res) {
 | |
| 		dev_err(&pdev->dev, "missing '%s' platform resources data\n",
 | |
| 			res_name);
 | |
| 		return ERR_PTR(-ENODEV);
 | |
| 	}
 | |
| 
 | |
| 	sc->base = devm_ioremap_resource(&pdev->dev, sc->res);
 | |
| 	if (IS_ERR(sc->base)) {
 | |
| 		dev_err(&pdev->dev, "failed to ioremap\n");
 | |
| 		return ERR_CAST(sc->base);
 | |
| 	}
 | |
| 
 | |
| 	return sc;
 | |
| }
 | |
| EXPORT_SYMBOL(sc_create);
 | |
| 
 | |
| MODULE_DESCRIPTION("TI VIP/VPE Scaler");
 | |
| MODULE_AUTHOR("Texas Instruments Inc.");
 | |
| MODULE_LICENSE("GPL v2");
 | 
