1446 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1446 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * Driver for the IFX 6x60 spi modem.
 | |
|  *
 | |
|  * Copyright (C) 2008 Option International
 | |
|  * Copyright (C) 2008 Filip Aben <f.aben@option.com>
 | |
|  *		      Denis Joseph Barrow <d.barow@option.com>
 | |
|  *		      Jan Dumon <j.dumon@option.com>
 | |
|  *
 | |
|  * Copyright (C) 2009, 2010 Intel Corp
 | |
|  * Russ Gorby <russ.gorby@intel.com>
 | |
|  *
 | |
|  * Driver modified by Intel from Option gtm501l_spi.c
 | |
|  *
 | |
|  * Notes
 | |
|  * o	The driver currently assumes a single device only. If you need to
 | |
|  *	change this then look for saved_ifx_dev and add a device lookup
 | |
|  * o	The driver is intended to be big-endian safe but has never been
 | |
|  *	tested that way (no suitable hardware). There are a couple of FIXME
 | |
|  *	notes by areas that may need addressing
 | |
|  * o	Some of the GPIO naming/setup assumptions may need revisiting if
 | |
|  *	you need to use this driver for another platform.
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/termios.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/kfifo.h>
 | |
| #include <linux/tty_flip.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/serial.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/rfkill.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/dmapool.h>
 | |
| #include <linux/gpio.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/spi/ifx_modem.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/reboot.h>
 | |
| 
 | |
| #include "ifx6x60.h"
 | |
| 
 | |
| #define IFX_SPI_MORE_MASK		0x10
 | |
| #define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
 | |
| #define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
 | |
| #define IFX_SPI_MODE			SPI_MODE_1
 | |
| #define IFX_SPI_TTY_ID			0
 | |
| #define IFX_SPI_TIMEOUT_SEC		2
 | |
| #define IFX_SPI_HEADER_0		(-1)
 | |
| #define IFX_SPI_HEADER_F		(-2)
 | |
| 
 | |
| #define PO_POST_DELAY		200
 | |
| #define IFX_MDM_RST_PMU	4
 | |
| 
 | |
| /* forward reference */
 | |
| static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
 | |
| static int ifx_modem_reboot_callback(struct notifier_block *nfb,
 | |
| 				unsigned long event, void *data);
 | |
| static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
 | |
| 
 | |
| /* local variables */
 | |
| static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
 | |
| static struct tty_driver *tty_drv;
 | |
| static struct ifx_spi_device *saved_ifx_dev;
 | |
| static struct lock_class_key ifx_spi_key;
 | |
| 
 | |
| static struct notifier_block ifx_modem_reboot_notifier_block = {
 | |
| 	.notifier_call = ifx_modem_reboot_callback,
 | |
| };
 | |
| 
 | |
| static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
 | |
| {
 | |
| 	gpio_set_value(IFX_MDM_RST_PMU, 1);
 | |
| 	msleep(PO_POST_DELAY);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ifx_modem_reboot_callback(struct notifier_block *nfb,
 | |
| 				 unsigned long event, void *data)
 | |
| {
 | |
| 	if (saved_ifx_dev)
 | |
| 		ifx_modem_power_off(saved_ifx_dev);
 | |
| 	else
 | |
| 		pr_warn("no ifx modem active;\n");
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /* GPIO/GPE settings */
 | |
| 
 | |
| /**
 | |
|  *	mrdy_set_high		-	set MRDY GPIO
 | |
|  *	@ifx: device we are controlling
 | |
|  *
 | |
|  */
 | |
| static inline void mrdy_set_high(struct ifx_spi_device *ifx)
 | |
| {
 | |
| 	gpio_set_value(ifx->gpio.mrdy, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mrdy_set_low		-	clear MRDY GPIO
 | |
|  *	@ifx: device we are controlling
 | |
|  *
 | |
|  */
 | |
| static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 | |
| {
 | |
| 	gpio_set_value(ifx->gpio.mrdy, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_power_state_set
 | |
|  *	@ifx_dev: our SPI device
 | |
|  *	@val: bits to set
 | |
|  *
 | |
|  *	Set bit in power status and signal power system if status becomes non-0
 | |
|  */
 | |
| static void
 | |
| ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * if power status is already non-0, just update, else
 | |
| 	 * tell power system
 | |
| 	 */
 | |
| 	if (!ifx_dev->power_status)
 | |
| 		pm_runtime_get(&ifx_dev->spi_dev->dev);
 | |
| 	ifx_dev->power_status |= val;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_power_state_clear	-	clear power bit
 | |
|  *	@ifx_dev: our SPI device
 | |
|  *	@val: bits to clear
 | |
|  *
 | |
|  *	clear bit in power status and signal power system if status becomes 0
 | |
|  */
 | |
| static void
 | |
| ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 | |
| 
 | |
| 	if (ifx_dev->power_status) {
 | |
| 		ifx_dev->power_status &= ~val;
 | |
| 		if (!ifx_dev->power_status)
 | |
| 			pm_runtime_put(&ifx_dev->spi_dev->dev);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	swap_buf_8
 | |
|  *	@buf: our buffer
 | |
|  *	@len : number of bytes (not words) in the buffer
 | |
|  *	@end: end of buffer
 | |
|  *
 | |
|  *	Swap the contents of a buffer into big endian format
 | |
|  */
 | |
| static inline void swap_buf_8(unsigned char *buf, int len, void *end)
 | |
| {
 | |
| 	/* don't swap buffer if SPI word width is 8 bits */
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	swap_buf_16
 | |
|  *	@buf: our buffer
 | |
|  *	@len : number of bytes (not words) in the buffer
 | |
|  *	@end: end of buffer
 | |
|  *
 | |
|  *	Swap the contents of a buffer into big endian format
 | |
|  */
 | |
| static inline void swap_buf_16(unsigned char *buf, int len, void *end)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	u16 *buf_16 = (u16 *)buf;
 | |
| 	len = ((len + 1) >> 1);
 | |
| 	if ((void *)&buf_16[len] > end) {
 | |
| 		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
 | |
| 		       &buf_16[len], end);
 | |
| 		return;
 | |
| 	}
 | |
| 	for (n = 0; n < len; n++) {
 | |
| 		*buf_16 = cpu_to_be16(*buf_16);
 | |
| 		buf_16++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	swap_buf_32
 | |
|  *	@buf: our buffer
 | |
|  *	@len : number of bytes (not words) in the buffer
 | |
|  *	@end: end of buffer
 | |
|  *
 | |
|  *	Swap the contents of a buffer into big endian format
 | |
|  */
 | |
| static inline void swap_buf_32(unsigned char *buf, int len, void *end)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	u32 *buf_32 = (u32 *)buf;
 | |
| 	len = (len + 3) >> 2;
 | |
| 
 | |
| 	if ((void *)&buf_32[len] > end) {
 | |
| 		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
 | |
| 		       &buf_32[len], end);
 | |
| 		return;
 | |
| 	}
 | |
| 	for (n = 0; n < len; n++) {
 | |
| 		*buf_32 = cpu_to_be32(*buf_32);
 | |
| 		buf_32++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mrdy_assert		-	assert MRDY line
 | |
|  *	@ifx_dev: our SPI device
 | |
|  *
 | |
|  *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 | |
|  *	now.
 | |
|  *
 | |
|  *	FIXME: Can SRDY even go high as we are running this code ?
 | |
|  */
 | |
| static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 | |
| {
 | |
| 	int val = gpio_get_value(ifx_dev->gpio.srdy);
 | |
| 	if (!val) {
 | |
| 		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 | |
| 				      &ifx_dev->flags)) {
 | |
| 			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 | |
| 	mrdy_set_high(ifx_dev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_timeout		-	SPI timeout
 | |
|  *	@arg: our SPI device
 | |
|  *
 | |
|  *	The SPI has timed out: hang up the tty. Users will then see a hangup
 | |
|  *	and error events.
 | |
|  */
 | |
| static void ifx_spi_timeout(struct timer_list *t)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
 | |
| 
 | |
| 	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 | |
| 	tty_port_tty_hangup(&ifx_dev->tty_port, false);
 | |
| 	mrdy_set_low(ifx_dev);
 | |
| 	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 | |
| }
 | |
| 
 | |
| /* char/tty operations */
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_tiocmget	-	get modem lines
 | |
|  *	@tty: our tty device
 | |
|  *	@filp: file handle issuing the request
 | |
|  *
 | |
|  *	Map the signal state into Linux modem flags and report the value
 | |
|  *	in Linux terms
 | |
|  */
 | |
| static int ifx_spi_tiocmget(struct tty_struct *tty)
 | |
| {
 | |
| 	unsigned int value;
 | |
| 	struct ifx_spi_device *ifx_dev = tty->driver_data;
 | |
| 
 | |
| 	value =
 | |
| 	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 | |
| 	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 | |
| 	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 | |
| 	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 | |
| 	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 | |
| 	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_tiocmset	-	set modem bits
 | |
|  *	@tty: the tty structure
 | |
|  *	@set: bits to set
 | |
|  *	@clear: bits to clear
 | |
|  *
 | |
|  *	The IFX6x60 only supports DTR and RTS. Set them accordingly
 | |
|  *	and flag that an update to the modem is needed.
 | |
|  *
 | |
|  *	FIXME: do we need to kick the tranfers when we do this ?
 | |
|  */
 | |
| static int ifx_spi_tiocmset(struct tty_struct *tty,
 | |
| 			    unsigned int set, unsigned int clear)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = tty->driver_data;
 | |
| 
 | |
| 	if (set & TIOCM_RTS)
 | |
| 		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 | |
| 	if (set & TIOCM_DTR)
 | |
| 		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 | |
| 	if (clear & TIOCM_RTS)
 | |
| 		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 | |
| 	if (clear & TIOCM_DTR)
 | |
| 		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 | |
| 
 | |
| 	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_open	-	called on tty open
 | |
|  *	@tty: our tty device
 | |
|  *	@filp: file handle being associated with the tty
 | |
|  *
 | |
|  *	Open the tty interface. We let the tty_port layer do all the work
 | |
|  *	for us.
 | |
|  *
 | |
|  *	FIXME: Remove single device assumption and saved_ifx_dev
 | |
|  */
 | |
| static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 | |
| {
 | |
| 	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_close	-	called when our tty closes
 | |
|  *	@tty: the tty being closed
 | |
|  *	@filp: the file handle being closed
 | |
|  *
 | |
|  *	Perform the close of the tty. We use the tty_port layer to do all
 | |
|  *	our hard work.
 | |
|  */
 | |
| static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = tty->driver_data;
 | |
| 	tty_port_close(&ifx_dev->tty_port, tty, filp);
 | |
| 	/* FIXME: should we do an ifx_spi_reset here ? */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_decode_spi_header	-	decode received header
 | |
|  *	@buffer: the received data
 | |
|  *	@length: decoded length
 | |
|  *	@more: decoded more flag
 | |
|  *	@received_cts: status of cts we received
 | |
|  *
 | |
|  *	Note how received_cts is handled -- if header is all F it is left
 | |
|  *	the same as it was, if header is all 0 it is set to 0 otherwise it is
 | |
|  *	taken from the incoming header.
 | |
|  *
 | |
|  *	FIXME: endianness
 | |
|  */
 | |
| static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 | |
| 			unsigned char *more, unsigned char *received_cts)
 | |
| {
 | |
| 	u16 h1;
 | |
| 	u16 h2;
 | |
| 	u16 *in_buffer = (u16 *)buffer;
 | |
| 
 | |
| 	h1 = *in_buffer;
 | |
| 	h2 = *(in_buffer+1);
 | |
| 
 | |
| 	if (h1 == 0 && h2 == 0) {
 | |
| 		*received_cts = 0;
 | |
| 		*more = 0;
 | |
| 		return IFX_SPI_HEADER_0;
 | |
| 	} else if (h1 == 0xffff && h2 == 0xffff) {
 | |
| 		*more = 0;
 | |
| 		/* spi_slave_cts remains as it was */
 | |
| 		return IFX_SPI_HEADER_F;
 | |
| 	}
 | |
| 
 | |
| 	*length = h1 & 0xfff;	/* upper bits of byte are flags */
 | |
| 	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 | |
| 	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_setup_spi_header	-	set header fields
 | |
|  *	@txbuffer: pointer to start of SPI buffer
 | |
|  *	@tx_count: bytes
 | |
|  *	@more: indicate if more to follow
 | |
|  *
 | |
|  *	Format up an SPI header for a transfer
 | |
|  *
 | |
|  *	FIXME: endianness?
 | |
|  */
 | |
| static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 | |
| 					unsigned char more)
 | |
| {
 | |
| 	*(u16 *)(txbuffer) = tx_count;
 | |
| 	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 | |
| 	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
 | |
|  *	@ifx_dev: our SPI device
 | |
|  *
 | |
|  *	The transmit buffr needs a header and various other bits of
 | |
|  *	information followed by as much data as we can pull from the FIFO
 | |
|  *	and transfer. This function formats up a suitable buffer in the
 | |
|  *	ifx_dev->tx_buffer
 | |
|  *
 | |
|  *	FIXME: performance - should we wake the tty when the queue is half
 | |
|  *			     empty ?
 | |
|  */
 | |
| static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 | |
| {
 | |
| 	int temp_count;
 | |
| 	int queue_length;
 | |
| 	int tx_count;
 | |
| 	unsigned char *tx_buffer;
 | |
| 
 | |
| 	tx_buffer = ifx_dev->tx_buffer;
 | |
| 
 | |
| 	/* make room for required SPI header */
 | |
| 	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 | |
| 	tx_count = IFX_SPI_HEADER_OVERHEAD;
 | |
| 
 | |
| 	/* clear to signal no more data if this turns out to be the
 | |
| 	 * last buffer sent in a sequence */
 | |
| 	ifx_dev->spi_more = 0;
 | |
| 
 | |
| 	/* if modem cts is set, just send empty buffer */
 | |
| 	if (!ifx_dev->spi_slave_cts) {
 | |
| 		/* see if there's tx data */
 | |
| 		queue_length = kfifo_len(&ifx_dev->tx_fifo);
 | |
| 		if (queue_length != 0) {
 | |
| 			/* data to mux -- see if there's room for it */
 | |
| 			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 | |
| 			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 | |
| 					tx_buffer, temp_count,
 | |
| 					&ifx_dev->fifo_lock);
 | |
| 
 | |
| 			/* update buffer pointer and data count in message */
 | |
| 			tx_buffer += temp_count;
 | |
| 			tx_count += temp_count;
 | |
| 			if (temp_count == queue_length)
 | |
| 				/* poke port to get more data */
 | |
| 				tty_port_tty_wakeup(&ifx_dev->tty_port);
 | |
| 			else /* more data in port, use next SPI message */
 | |
| 				ifx_dev->spi_more = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	/* have data and info for header -- set up SPI header in buffer */
 | |
| 	/* spi header needs payload size, not entire buffer size */
 | |
| 	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 | |
| 					tx_count-IFX_SPI_HEADER_OVERHEAD,
 | |
| 					ifx_dev->spi_more);
 | |
| 	/* swap actual data in the buffer */
 | |
| 	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
 | |
| 		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 | |
| 	return tx_count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_write		-	line discipline write
 | |
|  *	@tty: our tty device
 | |
|  *	@buf: pointer to buffer to write (kernel space)
 | |
|  *	@count: size of buffer
 | |
|  *
 | |
|  *	Write the characters we have been given into the FIFO. If the device
 | |
|  *	is not active then activate it, when the SRDY line is asserted back
 | |
|  *	this will commence I/O
 | |
|  */
 | |
| static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 | |
| 			 int count)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = tty->driver_data;
 | |
| 	unsigned char *tmp_buf = (unsigned char *)buf;
 | |
| 	unsigned long flags;
 | |
| 	bool is_fifo_empty;
 | |
| 	int tx_count;
 | |
| 
 | |
| 	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
 | |
| 	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
 | |
| 	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
 | |
| 	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
 | |
| 	if (is_fifo_empty)
 | |
| 		mrdy_assert(ifx_dev);
 | |
| 
 | |
| 	return tx_count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_chars_in_buffer	-	line discipline helper
 | |
|  *	@tty: our tty device
 | |
|  *
 | |
|  *	Report how much data we can accept before we drop bytes. As we use
 | |
|  *	a simple FIFO this is nice and easy.
 | |
|  */
 | |
| static int ifx_spi_write_room(struct tty_struct *tty)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = tty->driver_data;
 | |
| 	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_chars_in_buffer	-	line discipline helper
 | |
|  *	@tty: our tty device
 | |
|  *
 | |
|  *	Report how many characters we have buffered. In our case this is the
 | |
|  *	number of bytes sitting in our transmit FIFO.
 | |
|  */
 | |
| static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = tty->driver_data;
 | |
| 	return kfifo_len(&ifx_dev->tx_fifo);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_port_hangup
 | |
|  *	@port: our tty port
 | |
|  *
 | |
|  *	tty port hang up. Called when tty_hangup processing is invoked either
 | |
|  *	by loss of carrier, or by software (eg vhangup). Serialized against
 | |
|  *	activate/shutdown by the tty layer.
 | |
|  */
 | |
| static void ifx_spi_hangup(struct tty_struct *tty)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = tty->driver_data;
 | |
| 	tty_port_hangup(&ifx_dev->tty_port);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_port_activate
 | |
|  *	@port: our tty port
 | |
|  *
 | |
|  *	tty port activate method - called for first open. Serialized
 | |
|  *	with hangup and shutdown by the tty layer.
 | |
|  */
 | |
| static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev =
 | |
| 		container_of(port, struct ifx_spi_device, tty_port);
 | |
| 
 | |
| 	/* clear any old data; can't do this in 'close' */
 | |
| 	kfifo_reset(&ifx_dev->tx_fifo);
 | |
| 
 | |
| 	/* clear any flag which may be set in port shutdown procedure */
 | |
| 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 | |
| 	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 | |
| 
 | |
| 	/* put port data into this tty */
 | |
| 	tty->driver_data = ifx_dev;
 | |
| 
 | |
| 	/* allows flip string push from int context */
 | |
| 	port->low_latency = 1;
 | |
| 
 | |
| 	/* set flag to allows data transfer */
 | |
| 	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_port_shutdown
 | |
|  *	@port: our tty port
 | |
|  *
 | |
|  *	tty port shutdown method - called for last port close. Serialized
 | |
|  *	with hangup and activate by the tty layer.
 | |
|  */
 | |
| static void ifx_port_shutdown(struct tty_port *port)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev =
 | |
| 		container_of(port, struct ifx_spi_device, tty_port);
 | |
| 
 | |
| 	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 | |
| 	mrdy_set_low(ifx_dev);
 | |
| 	del_timer(&ifx_dev->spi_timer);
 | |
| 	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 | |
| 	tasklet_kill(&ifx_dev->io_work_tasklet);
 | |
| }
 | |
| 
 | |
| static const struct tty_port_operations ifx_tty_port_ops = {
 | |
| 	.activate = ifx_port_activate,
 | |
| 	.shutdown = ifx_port_shutdown,
 | |
| };
 | |
| 
 | |
| static const struct tty_operations ifx_spi_serial_ops = {
 | |
| 	.open = ifx_spi_open,
 | |
| 	.close = ifx_spi_close,
 | |
| 	.write = ifx_spi_write,
 | |
| 	.hangup = ifx_spi_hangup,
 | |
| 	.write_room = ifx_spi_write_room,
 | |
| 	.chars_in_buffer = ifx_spi_chars_in_buffer,
 | |
| 	.tiocmget = ifx_spi_tiocmget,
 | |
| 	.tiocmset = ifx_spi_tiocmset,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_insert_fip_string	-	queue received data
 | |
|  *	@ifx_ser: our SPI device
 | |
|  *	@chars: buffer we have received
 | |
|  *	@size: number of chars reeived
 | |
|  *
 | |
|  *	Queue bytes to the tty assuming the tty side is currently open. If
 | |
|  *	not the discard the data.
 | |
|  */
 | |
| static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 | |
| 				    unsigned char *chars, size_t size)
 | |
| {
 | |
| 	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
 | |
| 	tty_flip_buffer_push(&ifx_dev->tty_port);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_complete	-	SPI transfer completed
 | |
|  *	@ctx: our SPI device
 | |
|  *
 | |
|  *	An SPI transfer has completed. Process any received data and kick off
 | |
|  *	any further transmits we can commence.
 | |
|  */
 | |
| static void ifx_spi_complete(void *ctx)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = ctx;
 | |
| 	int length;
 | |
| 	int actual_length;
 | |
| 	unsigned char more = 0;
 | |
| 	unsigned char cts;
 | |
| 	int local_write_pending = 0;
 | |
| 	int queue_length;
 | |
| 	int srdy;
 | |
| 	int decode_result;
 | |
| 
 | |
| 	mrdy_set_low(ifx_dev);
 | |
| 
 | |
| 	if (!ifx_dev->spi_msg.status) {
 | |
| 		/* check header validity, get comm flags */
 | |
| 		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 | |
| 			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 | |
| 		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 | |
| 				&length, &more, &cts);
 | |
| 		if (decode_result == IFX_SPI_HEADER_0) {
 | |
| 			dev_dbg(&ifx_dev->spi_dev->dev,
 | |
| 				"ignore input: invalid header 0");
 | |
| 			ifx_dev->spi_slave_cts = 0;
 | |
| 			goto complete_exit;
 | |
| 		} else if (decode_result == IFX_SPI_HEADER_F) {
 | |
| 			dev_dbg(&ifx_dev->spi_dev->dev,
 | |
| 				"ignore input: invalid header F");
 | |
| 			goto complete_exit;
 | |
| 		}
 | |
| 
 | |
| 		ifx_dev->spi_slave_cts = cts;
 | |
| 
 | |
| 		actual_length = min((unsigned int)length,
 | |
| 					ifx_dev->spi_msg.actual_length);
 | |
| 		ifx_dev->swap_buf(
 | |
| 			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 | |
| 			 actual_length,
 | |
| 			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 | |
| 		ifx_spi_insert_flip_string(
 | |
| 			ifx_dev,
 | |
| 			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 | |
| 			(size_t)actual_length);
 | |
| 	} else {
 | |
| 		more = 0;
 | |
| 		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 | |
| 		       ifx_dev->spi_msg.status);
 | |
| 	}
 | |
| 
 | |
| complete_exit:
 | |
| 	if (ifx_dev->write_pending) {
 | |
| 		ifx_dev->write_pending = 0;
 | |
| 		local_write_pending = 1;
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 | |
| 
 | |
| 	queue_length = kfifo_len(&ifx_dev->tx_fifo);
 | |
| 	srdy = gpio_get_value(ifx_dev->gpio.srdy);
 | |
| 	if (!srdy)
 | |
| 		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 | |
| 
 | |
| 	/* schedule output if there is more to do */
 | |
| 	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 | |
| 		tasklet_schedule(&ifx_dev->io_work_tasklet);
 | |
| 	else {
 | |
| 		if (more || ifx_dev->spi_more || queue_length > 0 ||
 | |
| 			local_write_pending) {
 | |
| 			if (ifx_dev->spi_slave_cts) {
 | |
| 				if (more)
 | |
| 					mrdy_assert(ifx_dev);
 | |
| 			} else
 | |
| 				mrdy_assert(ifx_dev);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * poke line discipline driver if any for more data
 | |
| 			 * may or may not get more data to write
 | |
| 			 * for now, say not busy
 | |
| 			 */
 | |
| 			ifx_spi_power_state_clear(ifx_dev,
 | |
| 						  IFX_SPI_POWER_DATA_PENDING);
 | |
| 			tty_port_tty_wakeup(&ifx_dev->tty_port);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spio_io		-	I/O tasklet
 | |
|  *	@data: our SPI device
 | |
|  *
 | |
|  *	Queue data for transmission if possible and then kick off the
 | |
|  *	transfer.
 | |
|  */
 | |
| static void ifx_spi_io(unsigned long data)
 | |
| {
 | |
| 	int retval;
 | |
| 	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 | |
| 
 | |
| 	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
 | |
| 		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
 | |
| 		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 | |
| 			ifx_dev->gpio.unack_srdy_int_nb--;
 | |
| 
 | |
| 		ifx_spi_prepare_tx_buffer(ifx_dev);
 | |
| 
 | |
| 		spi_message_init(&ifx_dev->spi_msg);
 | |
| 		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 | |
| 
 | |
| 		ifx_dev->spi_msg.context = ifx_dev;
 | |
| 		ifx_dev->spi_msg.complete = ifx_spi_complete;
 | |
| 
 | |
| 		/* set up our spi transfer */
 | |
| 		/* note len is BYTES, not transfers */
 | |
| 		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 | |
| 		ifx_dev->spi_xfer.cs_change = 0;
 | |
| 		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 | |
| 		/* ifx_dev->spi_xfer.speed_hz = 390625; */
 | |
| 		ifx_dev->spi_xfer.bits_per_word =
 | |
| 			ifx_dev->spi_dev->bits_per_word;
 | |
| 
 | |
| 		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 | |
| 		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 | |
| 
 | |
| 		/*
 | |
| 		 * setup dma pointers
 | |
| 		 */
 | |
| 		if (ifx_dev->use_dma) {
 | |
| 			ifx_dev->spi_msg.is_dma_mapped = 1;
 | |
| 			ifx_dev->tx_dma = ifx_dev->tx_bus;
 | |
| 			ifx_dev->rx_dma = ifx_dev->rx_bus;
 | |
| 			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 | |
| 			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 | |
| 		} else {
 | |
| 			ifx_dev->spi_msg.is_dma_mapped = 0;
 | |
| 			ifx_dev->tx_dma = (dma_addr_t)0;
 | |
| 			ifx_dev->rx_dma = (dma_addr_t)0;
 | |
| 			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 | |
| 			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 | |
| 		}
 | |
| 
 | |
| 		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 | |
| 
 | |
| 		/* Assert MRDY. This may have already been done by the write
 | |
| 		 * routine.
 | |
| 		 */
 | |
| 		mrdy_assert(ifx_dev);
 | |
| 
 | |
| 		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 | |
| 		if (retval) {
 | |
| 			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 | |
| 				  &ifx_dev->flags);
 | |
| 			tasklet_schedule(&ifx_dev->io_work_tasklet);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else
 | |
| 		ifx_dev->write_pending = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_free_port	-	free up the tty side
 | |
|  *	@ifx_dev: IFX device going away
 | |
|  *
 | |
|  *	Unregister and free up a port when the device goes away
 | |
|  */
 | |
| static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 | |
| {
 | |
| 	if (ifx_dev->tty_dev)
 | |
| 		tty_unregister_device(tty_drv, ifx_dev->minor);
 | |
| 	tty_port_destroy(&ifx_dev->tty_port);
 | |
| 	kfifo_free(&ifx_dev->tx_fifo);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_create_port	-	create a new port
 | |
|  *	@ifx_dev: our spi device
 | |
|  *
 | |
|  *	Allocate and initialise the tty port that goes with this interface
 | |
|  *	and add it to the tty layer so that it can be opened.
 | |
|  */
 | |
| static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct tty_port *pport = &ifx_dev->tty_port;
 | |
| 
 | |
| 	spin_lock_init(&ifx_dev->fifo_lock);
 | |
| 	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 | |
| 		&ifx_spi_key, 0);
 | |
| 
 | |
| 	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error_ret;
 | |
| 	}
 | |
| 
 | |
| 	tty_port_init(pport);
 | |
| 	pport->ops = &ifx_tty_port_ops;
 | |
| 	ifx_dev->minor = IFX_SPI_TTY_ID;
 | |
| 	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
 | |
| 			ifx_dev->minor, &ifx_dev->spi_dev->dev);
 | |
| 	if (IS_ERR(ifx_dev->tty_dev)) {
 | |
| 		dev_dbg(&ifx_dev->spi_dev->dev,
 | |
| 			"%s: registering tty device failed", __func__);
 | |
| 		ret = PTR_ERR(ifx_dev->tty_dev);
 | |
| 		goto error_port;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| error_port:
 | |
| 	tty_port_destroy(pport);
 | |
| error_ret:
 | |
| 	ifx_spi_free_port(ifx_dev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_handle_srdy		-	handle SRDY
 | |
|  *	@ifx_dev: device asserting SRDY
 | |
|  *
 | |
|  *	Check our device state and see what we need to kick off when SRDY
 | |
|  *	is asserted. This usually means killing the timer and firing off the
 | |
|  *	I/O processing.
 | |
|  */
 | |
| static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 | |
| {
 | |
| 	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 | |
| 		del_timer(&ifx_dev->spi_timer);
 | |
| 		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 | |
| 	}
 | |
| 
 | |
| 	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 | |
| 
 | |
| 	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 | |
| 		tasklet_schedule(&ifx_dev->io_work_tasklet);
 | |
| 	else
 | |
| 		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_srdy_interrupt	-	SRDY asserted
 | |
|  *	@irq: our IRQ number
 | |
|  *	@dev: our ifx device
 | |
|  *
 | |
|  *	The modem asserted SRDY. Handle the srdy event
 | |
|  */
 | |
| static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = dev;
 | |
| 	ifx_dev->gpio.unack_srdy_int_nb++;
 | |
| 	ifx_spi_handle_srdy(ifx_dev);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_reset_interrupt	-	Modem has changed reset state
 | |
|  *	@irq: interrupt number
 | |
|  *	@dev: our device pointer
 | |
|  *
 | |
|  *	The modem has either entered or left reset state. Check the GPIO
 | |
|  *	line to see which.
 | |
|  *
 | |
|  *	FIXME: review locking on MR_INPROGRESS versus
 | |
|  *	parallel unsolicited reset/solicited reset
 | |
|  */
 | |
| static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = dev;
 | |
| 	int val = gpio_get_value(ifx_dev->gpio.reset_out);
 | |
| 	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 | |
| 
 | |
| 	if (val == 0) {
 | |
| 		/* entered reset */
 | |
| 		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 | |
| 		if (!solreset) {
 | |
| 			/* unsolicited reset  */
 | |
| 			tty_port_tty_hangup(&ifx_dev->tty_port, false);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* exited reset */
 | |
| 		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 | |
| 		if (solreset) {
 | |
| 			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 | |
| 			wake_up(&ifx_dev->mdm_reset_wait);
 | |
| 		}
 | |
| 	}
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_free_device - free device
 | |
|  *	@ifx_dev: device to free
 | |
|  *
 | |
|  *	Free the IFX device
 | |
|  */
 | |
| static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 | |
| {
 | |
| 	ifx_spi_free_port(ifx_dev);
 | |
| 	dma_free_coherent(&ifx_dev->spi_dev->dev,
 | |
| 				IFX_SPI_TRANSFER_SIZE,
 | |
| 				ifx_dev->tx_buffer,
 | |
| 				ifx_dev->tx_bus);
 | |
| 	dma_free_coherent(&ifx_dev->spi_dev->dev,
 | |
| 				IFX_SPI_TRANSFER_SIZE,
 | |
| 				ifx_dev->rx_buffer,
 | |
| 				ifx_dev->rx_bus);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_reset	-	reset modem
 | |
|  *	@ifx_dev: modem to reset
 | |
|  *
 | |
|  *	Perform a reset on the modem
 | |
|  */
 | |
| static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 | |
| {
 | |
| 	int ret;
 | |
| 	/*
 | |
| 	 * set up modem power, reset
 | |
| 	 *
 | |
| 	 * delays are required on some platforms for the modem
 | |
| 	 * to reset properly
 | |
| 	 */
 | |
| 	set_bit(MR_START, &ifx_dev->mdm_reset_state);
 | |
| 	gpio_set_value(ifx_dev->gpio.po, 0);
 | |
| 	gpio_set_value(ifx_dev->gpio.reset, 0);
 | |
| 	msleep(25);
 | |
| 	gpio_set_value(ifx_dev->gpio.reset, 1);
 | |
| 	msleep(1);
 | |
| 	gpio_set_value(ifx_dev->gpio.po, 1);
 | |
| 	msleep(1);
 | |
| 	gpio_set_value(ifx_dev->gpio.po, 0);
 | |
| 	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 | |
| 				 test_bit(MR_COMPLETE,
 | |
| 					  &ifx_dev->mdm_reset_state),
 | |
| 				 IFX_RESET_TIMEOUT);
 | |
| 	if (!ret)
 | |
| 		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 | |
| 			 ifx_dev->mdm_reset_state);
 | |
| 
 | |
| 	ifx_dev->mdm_reset_state = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_spi_probe	-	probe callback
 | |
|  *	@spi: our possible matching SPI device
 | |
|  *
 | |
|  *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
 | |
|  *	GPIO setup.
 | |
|  *
 | |
|  *	FIXME:
 | |
|  *	-	Support for multiple devices
 | |
|  *	-	Split out MID specific GPIO handling eventually
 | |
|  */
 | |
| 
 | |
| static int ifx_spi_spi_probe(struct spi_device *spi)
 | |
| {
 | |
| 	int ret;
 | |
| 	int srdy;
 | |
| 	struct ifx_modem_platform_data *pl_data;
 | |
| 	struct ifx_spi_device *ifx_dev;
 | |
| 
 | |
| 	if (saved_ifx_dev) {
 | |
| 		dev_dbg(&spi->dev, "ignoring subsequent detection");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pl_data = dev_get_platdata(&spi->dev);
 | |
| 	if (!pl_data) {
 | |
| 		dev_err(&spi->dev, "missing platform data!");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* initialize structure to hold our device variables */
 | |
| 	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
 | |
| 	if (!ifx_dev) {
 | |
| 		dev_err(&spi->dev, "spi device allocation failed");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	saved_ifx_dev = ifx_dev;
 | |
| 	ifx_dev->spi_dev = spi;
 | |
| 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 | |
| 	spin_lock_init(&ifx_dev->write_lock);
 | |
| 	spin_lock_init(&ifx_dev->power_lock);
 | |
| 	ifx_dev->power_status = 0;
 | |
| 	timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
 | |
| 	ifx_dev->modem = pl_data->modem_type;
 | |
| 	ifx_dev->use_dma = pl_data->use_dma;
 | |
| 	ifx_dev->max_hz = pl_data->max_hz;
 | |
| 	/* initialize spi mode, etc */
 | |
| 	spi->max_speed_hz = ifx_dev->max_hz;
 | |
| 	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
 | |
| 	spi->bits_per_word = spi_bpw;
 | |
| 	ret = spi_setup(spi);
 | |
| 	if (ret) {
 | |
| 		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
 | |
| 		kfree(ifx_dev);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* init swap_buf function according to word width configuration */
 | |
| 	if (spi->bits_per_word == 32)
 | |
| 		ifx_dev->swap_buf = swap_buf_32;
 | |
| 	else if (spi->bits_per_word == 16)
 | |
| 		ifx_dev->swap_buf = swap_buf_16;
 | |
| 	else
 | |
| 		ifx_dev->swap_buf = swap_buf_8;
 | |
| 
 | |
| 	/* ensure SPI protocol flags are initialized to enable transfer */
 | |
| 	ifx_dev->spi_more = 0;
 | |
| 	ifx_dev->spi_slave_cts = 0;
 | |
| 
 | |
| 	/*initialize transfer and dma buffers */
 | |
| 	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
 | |
| 				IFX_SPI_TRANSFER_SIZE,
 | |
| 				&ifx_dev->tx_bus,
 | |
| 				GFP_KERNEL);
 | |
| 	if (!ifx_dev->tx_buffer) {
 | |
| 		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error_ret;
 | |
| 	}
 | |
| 	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
 | |
| 				IFX_SPI_TRANSFER_SIZE,
 | |
| 				&ifx_dev->rx_bus,
 | |
| 				GFP_KERNEL);
 | |
| 	if (!ifx_dev->rx_buffer) {
 | |
| 		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error_ret;
 | |
| 	}
 | |
| 
 | |
| 	/* initialize waitq for modem reset */
 | |
| 	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
 | |
| 
 | |
| 	spi_set_drvdata(spi, ifx_dev);
 | |
| 	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
 | |
| 						(unsigned long)ifx_dev);
 | |
| 
 | |
| 	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
 | |
| 
 | |
| 	/* create our tty port */
 | |
| 	ret = ifx_spi_create_port(ifx_dev);
 | |
| 	if (ret != 0) {
 | |
| 		dev_err(&spi->dev, "create default tty port failed");
 | |
| 		goto error_ret;
 | |
| 	}
 | |
| 
 | |
| 	ifx_dev->gpio.reset = pl_data->rst_pmu;
 | |
| 	ifx_dev->gpio.po = pl_data->pwr_on;
 | |
| 	ifx_dev->gpio.mrdy = pl_data->mrdy;
 | |
| 	ifx_dev->gpio.srdy = pl_data->srdy;
 | |
| 	ifx_dev->gpio.reset_out = pl_data->rst_out;
 | |
| 
 | |
| 	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
 | |
| 		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
 | |
| 		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
 | |
| 
 | |
| 	/* Configure gpios */
 | |
| 	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
 | |
| 			ifx_dev->gpio.reset);
 | |
| 		goto error_ret;
 | |
| 	}
 | |
| 	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
 | |
| 	ret += gpio_export(ifx_dev->gpio.reset, 1);
 | |
| 	if (ret) {
 | |
| 		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
 | |
| 			ifx_dev->gpio.reset);
 | |
| 		ret = -EBUSY;
 | |
| 		goto error_ret2;
 | |
| 	}
 | |
| 
 | |
| 	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
 | |
| 	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
 | |
| 	ret += gpio_export(ifx_dev->gpio.po, 1);
 | |
| 	if (ret) {
 | |
| 		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
 | |
| 			ifx_dev->gpio.po);
 | |
| 		ret = -EBUSY;
 | |
| 		goto error_ret3;
 | |
| 	}
 | |
| 
 | |
| 	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
 | |
| 			ifx_dev->gpio.mrdy);
 | |
| 		goto error_ret3;
 | |
| 	}
 | |
| 	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
 | |
| 	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
 | |
| 	if (ret) {
 | |
| 		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
 | |
| 			ifx_dev->gpio.mrdy);
 | |
| 		ret = -EBUSY;
 | |
| 		goto error_ret4;
 | |
| 	}
 | |
| 
 | |
| 	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
 | |
| 			ifx_dev->gpio.srdy);
 | |
| 		ret = -EBUSY;
 | |
| 		goto error_ret4;
 | |
| 	}
 | |
| 	ret += gpio_export(ifx_dev->gpio.srdy, 1);
 | |
| 	ret += gpio_direction_input(ifx_dev->gpio.srdy);
 | |
| 	if (ret) {
 | |
| 		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
 | |
| 			ifx_dev->gpio.srdy);
 | |
| 		ret = -EBUSY;
 | |
| 		goto error_ret5;
 | |
| 	}
 | |
| 
 | |
| 	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
 | |
| 			ifx_dev->gpio.reset_out);
 | |
| 		goto error_ret5;
 | |
| 	}
 | |
| 	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
 | |
| 	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
 | |
| 	if (ret) {
 | |
| 		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
 | |
| 			ifx_dev->gpio.reset_out);
 | |
| 		ret = -EBUSY;
 | |
| 		goto error_ret6;
 | |
| 	}
 | |
| 
 | |
| 	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
 | |
| 			  ifx_spi_reset_interrupt,
 | |
| 			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
 | |
| 			  ifx_dev);
 | |
| 	if (ret) {
 | |
| 		dev_err(&spi->dev, "Unable to get irq %x\n",
 | |
| 			gpio_to_irq(ifx_dev->gpio.reset_out));
 | |
| 		goto error_ret6;
 | |
| 	}
 | |
| 
 | |
| 	ret = ifx_spi_reset(ifx_dev);
 | |
| 
 | |
| 	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
 | |
| 			  ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
 | |
| 			  ifx_dev);
 | |
| 	if (ret) {
 | |
| 		dev_err(&spi->dev, "Unable to get irq %x",
 | |
| 			gpio_to_irq(ifx_dev->gpio.srdy));
 | |
| 		goto error_ret7;
 | |
| 	}
 | |
| 
 | |
| 	/* set pm runtime power state and register with power system */
 | |
| 	pm_runtime_set_active(&spi->dev);
 | |
| 	pm_runtime_enable(&spi->dev);
 | |
| 
 | |
| 	/* handle case that modem is already signaling SRDY */
 | |
| 	/* no outgoing tty open at this point, this just satisfies the
 | |
| 	 * modem's read and should reset communication properly
 | |
| 	 */
 | |
| 	srdy = gpio_get_value(ifx_dev->gpio.srdy);
 | |
| 
 | |
| 	if (srdy) {
 | |
| 		mrdy_assert(ifx_dev);
 | |
| 		ifx_spi_handle_srdy(ifx_dev);
 | |
| 	} else
 | |
| 		mrdy_set_low(ifx_dev);
 | |
| 	return 0;
 | |
| 
 | |
| error_ret7:
 | |
| 	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
 | |
| error_ret6:
 | |
| 	gpio_free(ifx_dev->gpio.srdy);
 | |
| error_ret5:
 | |
| 	gpio_free(ifx_dev->gpio.mrdy);
 | |
| error_ret4:
 | |
| 	gpio_free(ifx_dev->gpio.reset);
 | |
| error_ret3:
 | |
| 	gpio_free(ifx_dev->gpio.po);
 | |
| error_ret2:
 | |
| 	gpio_free(ifx_dev->gpio.reset_out);
 | |
| error_ret:
 | |
| 	ifx_spi_free_device(ifx_dev);
 | |
| 	saved_ifx_dev = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_spi_remove	-	SPI device was removed
 | |
|  *	@spi: SPI device
 | |
|  *
 | |
|  *	FIXME: We should be shutting the device down here not in
 | |
|  *	the module unload path.
 | |
|  */
 | |
| 
 | |
| static int ifx_spi_spi_remove(struct spi_device *spi)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
 | |
| 	/* stop activity */
 | |
| 	tasklet_kill(&ifx_dev->io_work_tasklet);
 | |
| 
 | |
| 	pm_runtime_disable(&spi->dev);
 | |
| 
 | |
| 	/* free irq */
 | |
| 	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
 | |
| 	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
 | |
| 
 | |
| 	gpio_free(ifx_dev->gpio.srdy);
 | |
| 	gpio_free(ifx_dev->gpio.mrdy);
 | |
| 	gpio_free(ifx_dev->gpio.reset);
 | |
| 	gpio_free(ifx_dev->gpio.po);
 | |
| 	gpio_free(ifx_dev->gpio.reset_out);
 | |
| 
 | |
| 	/* free allocations */
 | |
| 	ifx_spi_free_device(ifx_dev);
 | |
| 
 | |
| 	saved_ifx_dev = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_spi_shutdown	-	called on SPI shutdown
 | |
|  *	@spi: SPI device
 | |
|  *
 | |
|  *	No action needs to be taken here
 | |
|  */
 | |
| 
 | |
| static void ifx_spi_spi_shutdown(struct spi_device *spi)
 | |
| {
 | |
| 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
 | |
| 
 | |
| 	ifx_modem_power_off(ifx_dev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * various suspends and resumes have nothing to do
 | |
|  * no hardware to save state for
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_pm_suspend	-	suspend modem on system suspend
 | |
|  *	@dev: device being suspended
 | |
|  *
 | |
|  *	Suspend the modem. No action needed on Intel MID platforms, may
 | |
|  *	need extending for other systems.
 | |
|  */
 | |
| static int ifx_spi_pm_suspend(struct device *dev)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_pm_resume	-	resume modem on system resume
 | |
|  *	@dev: device being suspended
 | |
|  *
 | |
|  *	Allow the modem to resume. No action needed.
 | |
|  *
 | |
|  *	FIXME: do we need to reset anything here ?
 | |
|  */
 | |
| static int ifx_spi_pm_resume(struct device *dev)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_pm_runtime_resume	-	suspend modem
 | |
|  *	@dev: device being suspended
 | |
|  *
 | |
|  *	Allow the modem to resume. No action needed.
 | |
|  */
 | |
| static int ifx_spi_pm_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_pm_runtime_suspend	-	suspend modem
 | |
|  *	@dev: device being suspended
 | |
|  *
 | |
|  *	Allow the modem to suspend and thus suspend to continue up the
 | |
|  *	device tree.
 | |
|  */
 | |
| static int ifx_spi_pm_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_pm_runtime_idle		-	check if modem idle
 | |
|  *	@dev: our device
 | |
|  *
 | |
|  *	Check conditions and queue runtime suspend if idle.
 | |
|  */
 | |
| static int ifx_spi_pm_runtime_idle(struct device *dev)
 | |
| {
 | |
| 	struct spi_device *spi = to_spi_device(dev);
 | |
| 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
 | |
| 
 | |
| 	if (!ifx_dev->power_status)
 | |
| 		pm_runtime_suspend(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct dev_pm_ops ifx_spi_pm = {
 | |
| 	.resume = ifx_spi_pm_resume,
 | |
| 	.suspend = ifx_spi_pm_suspend,
 | |
| 	.runtime_resume = ifx_spi_pm_runtime_resume,
 | |
| 	.runtime_suspend = ifx_spi_pm_runtime_suspend,
 | |
| 	.runtime_idle = ifx_spi_pm_runtime_idle
 | |
| };
 | |
| 
 | |
| static const struct spi_device_id ifx_id_table[] = {
 | |
| 	{"ifx6160", 0},
 | |
| 	{"ifx6260", 0},
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(spi, ifx_id_table);
 | |
| 
 | |
| /* spi operations */
 | |
| static struct spi_driver ifx_spi_driver = {
 | |
| 	.driver = {
 | |
| 		.name = DRVNAME,
 | |
| 		.pm = &ifx_spi_pm,
 | |
| 	},
 | |
| 	.probe = ifx_spi_spi_probe,
 | |
| 	.shutdown = ifx_spi_spi_shutdown,
 | |
| 	.remove = ifx_spi_spi_remove,
 | |
| 	.id_table = ifx_id_table
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_exit	-	module exit
 | |
|  *
 | |
|  *	Unload the module.
 | |
|  */
 | |
| 
 | |
| static void __exit ifx_spi_exit(void)
 | |
| {
 | |
| 	/* unregister */
 | |
| 	spi_unregister_driver(&ifx_spi_driver);
 | |
| 	tty_unregister_driver(tty_drv);
 | |
| 	put_tty_driver(tty_drv);
 | |
| 	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ifx_spi_init		-	module entry point
 | |
|  *
 | |
|  *	Initialise the SPI and tty interfaces for the IFX SPI driver
 | |
|  *	We need to initialize upper-edge spi driver after the tty
 | |
|  *	driver because otherwise the spi probe will race
 | |
|  */
 | |
| 
 | |
| static int __init ifx_spi_init(void)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| 	tty_drv = alloc_tty_driver(1);
 | |
| 	if (!tty_drv) {
 | |
| 		pr_err("%s: alloc_tty_driver failed", DRVNAME);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	tty_drv->driver_name = DRVNAME;
 | |
| 	tty_drv->name = TTYNAME;
 | |
| 	tty_drv->minor_start = IFX_SPI_TTY_ID;
 | |
| 	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
 | |
| 	tty_drv->subtype = SERIAL_TYPE_NORMAL;
 | |
| 	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
 | |
| 	tty_drv->init_termios = tty_std_termios;
 | |
| 
 | |
| 	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
 | |
| 
 | |
| 	result = tty_register_driver(tty_drv);
 | |
| 	if (result) {
 | |
| 		pr_err("%s: tty_register_driver failed(%d)",
 | |
| 			DRVNAME, result);
 | |
| 		goto err_free_tty;
 | |
| 	}
 | |
| 
 | |
| 	result = spi_register_driver(&ifx_spi_driver);
 | |
| 	if (result) {
 | |
| 		pr_err("%s: spi_register_driver failed(%d)",
 | |
| 			DRVNAME, result);
 | |
| 		goto err_unreg_tty;
 | |
| 	}
 | |
| 
 | |
| 	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
 | |
| 	if (result) {
 | |
| 		pr_err("%s: register ifx modem reboot notifier failed(%d)",
 | |
| 			DRVNAME, result);
 | |
| 		goto err_unreg_spi;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| err_unreg_spi:
 | |
| 	spi_unregister_driver(&ifx_spi_driver);
 | |
| err_unreg_tty:
 | |
| 	tty_unregister_driver(tty_drv);
 | |
| err_free_tty:
 | |
| 	put_tty_driver(tty_drv);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| module_init(ifx_spi_init);
 | |
| module_exit(ifx_spi_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Intel");
 | |
| MODULE_DESCRIPTION("IFX6x60 spi driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_INFO(Version, "0.1-IFX6x60");
 | 
