1278 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1278 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2013 Broadcom Corporation
 | |
|  * Copyright 2013 Linaro Limited
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation version 2.
 | |
|  *
 | |
|  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 | |
|  * kind, whether express or implied; without even the implied warranty
 | |
|  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include "clk-kona.h"
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/clk.h>
 | |
| 
 | |
| /*
 | |
|  * "Policies" affect the frequencies of bus clocks provided by a
 | |
|  * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
 | |
|  * "Normal", and "Turbo".)  A lower policy number has lower power
 | |
|  * consumption, and policy 2 is the default.
 | |
|  */
 | |
| #define CCU_POLICY_COUNT	4
 | |
| 
 | |
| #define CCU_ACCESS_PASSWORD      0xA5A500
 | |
| #define CLK_GATE_DELAY_LOOP      2000
 | |
| 
 | |
| /* Bitfield operations */
 | |
| 
 | |
| /* Produces a mask of set bits covering a range of a 32-bit value */
 | |
| static inline u32 bitfield_mask(u32 shift, u32 width)
 | |
| {
 | |
| 	return ((1 << width) - 1) << shift;
 | |
| }
 | |
| 
 | |
| /* Extract the value of a bitfield found within a given register value */
 | |
| static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
 | |
| {
 | |
| 	return (reg_val & bitfield_mask(shift, width)) >> shift;
 | |
| }
 | |
| 
 | |
| /* Replace the value of a bitfield found within a given register value */
 | |
| static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
 | |
| {
 | |
| 	u32 mask = bitfield_mask(shift, width);
 | |
| 
 | |
| 	return (reg_val & ~mask) | (val << shift);
 | |
| }
 | |
| 
 | |
| /* Divider and scaling helpers */
 | |
| 
 | |
| /* Convert a divider into the scaled divisor value it represents. */
 | |
| static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
 | |
| {
 | |
| 	return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build a scaled divider value as close as possible to the
 | |
|  * given whole part (div_value) and fractional part (expressed
 | |
|  * in billionths).
 | |
|  */
 | |
| u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
 | |
| {
 | |
| 	u64 combined;
 | |
| 
 | |
| 	BUG_ON(!div_value);
 | |
| 	BUG_ON(billionths >= BILLION);
 | |
| 
 | |
| 	combined = (u64)div_value * BILLION + billionths;
 | |
| 	combined <<= div->u.s.frac_width;
 | |
| 
 | |
| 	return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
 | |
| }
 | |
| 
 | |
| /* The scaled minimum divisor representable by a divider */
 | |
| static inline u64
 | |
| scaled_div_min(struct bcm_clk_div *div)
 | |
| {
 | |
| 	if (divider_is_fixed(div))
 | |
| 		return (u64)div->u.fixed;
 | |
| 
 | |
| 	return scaled_div_value(div, 0);
 | |
| }
 | |
| 
 | |
| /* The scaled maximum divisor representable by a divider */
 | |
| u64 scaled_div_max(struct bcm_clk_div *div)
 | |
| {
 | |
| 	u32 reg_div;
 | |
| 
 | |
| 	if (divider_is_fixed(div))
 | |
| 		return (u64)div->u.fixed;
 | |
| 
 | |
| 	reg_div = ((u32)1 << div->u.s.width) - 1;
 | |
| 
 | |
| 	return scaled_div_value(div, reg_div);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a scaled divisor into its divider representation as
 | |
|  * stored in a divider register field.
 | |
|  */
 | |
| static inline u32
 | |
| divider(struct bcm_clk_div *div, u64 scaled_div)
 | |
| {
 | |
| 	BUG_ON(scaled_div < scaled_div_min(div));
 | |
| 	BUG_ON(scaled_div > scaled_div_max(div));
 | |
| 
 | |
| 	return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
 | |
| }
 | |
| 
 | |
| /* Return a rate scaled for use when dividing by a scaled divisor. */
 | |
| static inline u64
 | |
| scale_rate(struct bcm_clk_div *div, u32 rate)
 | |
| {
 | |
| 	if (divider_is_fixed(div))
 | |
| 		return (u64)rate;
 | |
| 
 | |
| 	return (u64)rate << div->u.s.frac_width;
 | |
| }
 | |
| 
 | |
| /* CCU access */
 | |
| 
 | |
| /* Read a 32-bit register value from a CCU's address space. */
 | |
| static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
 | |
| {
 | |
| 	return readl(ccu->base + reg_offset);
 | |
| }
 | |
| 
 | |
| /* Write a 32-bit register value into a CCU's address space. */
 | |
| static inline void
 | |
| __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
 | |
| {
 | |
| 	writel(reg_val, ccu->base + reg_offset);
 | |
| }
 | |
| 
 | |
| static inline unsigned long ccu_lock(struct ccu_data *ccu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&ccu->lock, flags);
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
 | |
| {
 | |
| 	spin_unlock_irqrestore(&ccu->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable/disable write access to CCU protected registers.  The
 | |
|  * WR_ACCESS register for all CCUs is at offset 0.
 | |
|  */
 | |
| static inline void __ccu_write_enable(struct ccu_data *ccu)
 | |
| {
 | |
| 	if (ccu->write_enabled) {
 | |
| 		pr_err("%s: access already enabled for %s\n", __func__,
 | |
| 			ccu->name);
 | |
| 		return;
 | |
| 	}
 | |
| 	ccu->write_enabled = true;
 | |
| 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
 | |
| }
 | |
| 
 | |
| static inline void __ccu_write_disable(struct ccu_data *ccu)
 | |
| {
 | |
| 	if (!ccu->write_enabled) {
 | |
| 		pr_err("%s: access wasn't enabled for %s\n", __func__,
 | |
| 			ccu->name);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	__ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
 | |
| 	ccu->write_enabled = false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Poll a register in a CCU's address space, returning when the
 | |
|  * specified bit in that register's value is set (or clear).  Delay
 | |
|  * a microsecond after each read of the register.  Returns true if
 | |
|  * successful, or false if we gave up trying.
 | |
|  *
 | |
|  * Caller must ensure the CCU lock is held.
 | |
|  */
 | |
| static inline bool
 | |
| __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
 | |
| {
 | |
| 	unsigned int tries;
 | |
| 	u32 bit_mask = 1 << bit;
 | |
| 
 | |
| 	for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
 | |
| 		u32 val;
 | |
| 		bool bit_val;
 | |
| 
 | |
| 		val = __ccu_read(ccu, reg_offset);
 | |
| 		bit_val = (val & bit_mask) != 0;
 | |
| 		if (bit_val == want)
 | |
| 			return true;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
 | |
| 		ccu->name, reg_offset, bit, want ? "set" : "clear");
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Policy operations */
 | |
| 
 | |
| static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
 | |
| {
 | |
| 	struct bcm_policy_ctl *control = &ccu->policy.control;
 | |
| 	u32 offset;
 | |
| 	u32 go_bit;
 | |
| 	u32 mask;
 | |
| 	bool ret;
 | |
| 
 | |
| 	/* If we don't need to control policy for this CCU, we're done. */
 | |
| 	if (!policy_ctl_exists(control))
 | |
| 		return true;
 | |
| 
 | |
| 	offset = control->offset;
 | |
| 	go_bit = control->go_bit;
 | |
| 
 | |
| 	/* Ensure we're not busy before we start */
 | |
| 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 | |
| 	if (!ret) {
 | |
| 		pr_err("%s: ccu %s policy engine wouldn't go idle\n",
 | |
| 			__func__, ccu->name);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's a synchronous request, we'll wait for the voltage
 | |
| 	 * and frequency of the active load to stabilize before
 | |
| 	 * returning.  To do this we select the active load by
 | |
| 	 * setting the ATL bit.
 | |
| 	 *
 | |
| 	 * An asynchronous request instead ramps the voltage in the
 | |
| 	 * background, and when that process stabilizes, the target
 | |
| 	 * load is copied to the active load and the CCU frequency
 | |
| 	 * is switched.  We do this by selecting the target load
 | |
| 	 * (ATL bit clear) and setting the request auto-copy (AC bit
 | |
| 	 * set).
 | |
| 	 *
 | |
| 	 * Note, we do NOT read-modify-write this register.
 | |
| 	 */
 | |
| 	mask = (u32)1 << go_bit;
 | |
| 	if (sync)
 | |
| 		mask |= 1 << control->atl_bit;
 | |
| 	else
 | |
| 		mask |= 1 << control->ac_bit;
 | |
| 	__ccu_write(ccu, offset, mask);
 | |
| 
 | |
| 	/* Wait for indication that operation is complete. */
 | |
| 	ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 | |
| 	if (!ret)
 | |
| 		pr_err("%s: ccu %s policy engine never started\n",
 | |
| 			__func__, ccu->name);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
 | |
| {
 | |
| 	struct bcm_lvm_en *enable = &ccu->policy.enable;
 | |
| 	u32 offset;
 | |
| 	u32 enable_bit;
 | |
| 	bool ret;
 | |
| 
 | |
| 	/* If we don't need to control policy for this CCU, we're done. */
 | |
| 	if (!policy_lvm_en_exists(enable))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Ensure we're not busy before we start */
 | |
| 	offset = enable->offset;
 | |
| 	enable_bit = enable->bit;
 | |
| 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 | |
| 	if (!ret) {
 | |
| 		pr_err("%s: ccu %s policy engine already stopped\n",
 | |
| 			__func__, ccu->name);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Now set the bit to stop the engine (NO read-modify-write) */
 | |
| 	__ccu_write(ccu, offset, (u32)1 << enable_bit);
 | |
| 
 | |
| 	/* Wait for indication that it has stopped. */
 | |
| 	ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 | |
| 	if (!ret)
 | |
| 		pr_err("%s: ccu %s policy engine never stopped\n",
 | |
| 			__func__, ccu->name);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A CCU has four operating conditions ("policies"), and some clocks
 | |
|  * can be disabled or enabled based on which policy is currently in
 | |
|  * effect.  Such clocks have a bit in a "policy mask" register for
 | |
|  * each policy indicating whether the clock is enabled for that
 | |
|  * policy or not.  The bit position for a clock is the same for all
 | |
|  * four registers, and the 32-bit registers are at consecutive
 | |
|  * addresses.
 | |
|  */
 | |
| static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
 | |
| {
 | |
| 	u32 offset;
 | |
| 	u32 mask;
 | |
| 	int i;
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (!policy_exists(policy))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to stop the CCU policy engine to allow update
 | |
| 	 * of our policy bits.
 | |
| 	 */
 | |
| 	if (!__ccu_policy_engine_stop(ccu)) {
 | |
| 		pr_err("%s: unable to stop CCU %s policy engine\n",
 | |
| 			__func__, ccu->name);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For now, if a clock defines its policy bit we just mark
 | |
| 	 * it "enabled" for all four policies.
 | |
| 	 */
 | |
| 	offset = policy->offset;
 | |
| 	mask = (u32)1 << policy->bit;
 | |
| 	for (i = 0; i < CCU_POLICY_COUNT; i++) {
 | |
| 		u32 reg_val;
 | |
| 
 | |
| 		reg_val = __ccu_read(ccu, offset);
 | |
| 		reg_val |= mask;
 | |
| 		__ccu_write(ccu, offset, reg_val);
 | |
| 		offset += sizeof(u32);
 | |
| 	}
 | |
| 
 | |
| 	/* We're done updating; fire up the policy engine again. */
 | |
| 	ret = __ccu_policy_engine_start(ccu, true);
 | |
| 	if (!ret)
 | |
| 		pr_err("%s: unable to restart CCU %s policy engine\n",
 | |
| 			__func__, ccu->name);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Gate operations */
 | |
| 
 | |
| /* Determine whether a clock is gated.  CCU lock must be held.  */
 | |
| static bool
 | |
| __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 | |
| {
 | |
| 	u32 bit_mask;
 | |
| 	u32 reg_val;
 | |
| 
 | |
| 	/* If there is no gate we can assume it's enabled. */
 | |
| 	if (!gate_exists(gate))
 | |
| 		return true;
 | |
| 
 | |
| 	bit_mask = 1 << gate->status_bit;
 | |
| 	reg_val = __ccu_read(ccu, gate->offset);
 | |
| 
 | |
| 	return (reg_val & bit_mask) != 0;
 | |
| }
 | |
| 
 | |
| /* Determine whether a clock is gated. */
 | |
| static bool
 | |
| is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 | |
| {
 | |
| 	long flags;
 | |
| 	bool ret;
 | |
| 
 | |
| 	/* Avoid taking the lock if we can */
 | |
| 	if (!gate_exists(gate))
 | |
| 		return true;
 | |
| 
 | |
| 	flags = ccu_lock(ccu);
 | |
| 	ret = __is_clk_gate_enabled(ccu, gate);
 | |
| 	ccu_unlock(ccu, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit our desired gate state to the hardware.
 | |
|  * Returns true if successful, false otherwise.
 | |
|  */
 | |
| static bool
 | |
| __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 | |
| {
 | |
| 	u32 reg_val;
 | |
| 	u32 mask;
 | |
| 	bool enabled = false;
 | |
| 
 | |
| 	BUG_ON(!gate_exists(gate));
 | |
| 	if (!gate_is_sw_controllable(gate))
 | |
| 		return true;		/* Nothing we can change */
 | |
| 
 | |
| 	reg_val = __ccu_read(ccu, gate->offset);
 | |
| 
 | |
| 	/* For a hardware/software gate, set which is in control */
 | |
| 	if (gate_is_hw_controllable(gate)) {
 | |
| 		mask = (u32)1 << gate->hw_sw_sel_bit;
 | |
| 		if (gate_is_sw_managed(gate))
 | |
| 			reg_val |= mask;
 | |
| 		else
 | |
| 			reg_val &= ~mask;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If software is in control, enable or disable the gate.
 | |
| 	 * If hardware is, clear the enabled bit for good measure.
 | |
| 	 * If a software controlled gate can't be disabled, we're
 | |
| 	 * required to write a 0 into the enable bit (but the gate
 | |
| 	 * will be enabled).
 | |
| 	 */
 | |
| 	mask = (u32)1 << gate->en_bit;
 | |
| 	if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
 | |
| 			!gate_is_no_disable(gate))
 | |
| 		reg_val |= mask;
 | |
| 	else
 | |
| 		reg_val &= ~mask;
 | |
| 
 | |
| 	__ccu_write(ccu, gate->offset, reg_val);
 | |
| 
 | |
| 	/* For a hardware controlled gate, we're done */
 | |
| 	if (!gate_is_sw_managed(gate))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Otherwise wait for the gate to be in desired state */
 | |
| 	return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a gate.  Our desired state (hardware/software select,
 | |
|  * and if software, its enable state) is committed to hardware
 | |
|  * without the usual checks to see if it's already set up that way.
 | |
|  * Returns true if successful, false otherwise.
 | |
|  */
 | |
| static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 | |
| {
 | |
| 	if (!gate_exists(gate))
 | |
| 		return true;
 | |
| 	return __gate_commit(ccu, gate);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a gate to enabled or disabled state.  Does nothing if the
 | |
|  * gate is not currently under software control, or if it is already
 | |
|  * in the requested state.  Returns true if successful, false
 | |
|  * otherwise.  CCU lock must be held.
 | |
|  */
 | |
| static bool
 | |
| __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 | |
| 		return true;	/* Nothing to do */
 | |
| 
 | |
| 	if (!enable && gate_is_no_disable(gate)) {
 | |
| 		pr_warn("%s: invalid gate disable request (ignoring)\n",
 | |
| 			__func__);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (enable == gate_is_enabled(gate))
 | |
| 		return true;	/* No change */
 | |
| 
 | |
| 	gate_flip_enabled(gate);
 | |
| 	ret = __gate_commit(ccu, gate);
 | |
| 	if (!ret)
 | |
| 		gate_flip_enabled(gate);	/* Revert the change */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
 | |
| static int clk_gate(struct ccu_data *ccu, const char *name,
 | |
| 			struct bcm_clk_gate *gate, bool enable)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool success;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid taking the lock if we can.  We quietly ignore
 | |
| 	 * requests to change state that don't make sense.
 | |
| 	 */
 | |
| 	if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 | |
| 		return 0;
 | |
| 	if (!enable && gate_is_no_disable(gate))
 | |
| 		return 0;
 | |
| 
 | |
| 	flags = ccu_lock(ccu);
 | |
| 	__ccu_write_enable(ccu);
 | |
| 
 | |
| 	success = __clk_gate(ccu, gate, enable);
 | |
| 
 | |
| 	__ccu_write_disable(ccu);
 | |
| 	ccu_unlock(ccu, flags);
 | |
| 
 | |
| 	if (success)
 | |
| 		return 0;
 | |
| 
 | |
| 	pr_err("%s: failed to %s gate for %s\n", __func__,
 | |
| 		enable ? "enable" : "disable", name);
 | |
| 
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /* Hysteresis operations */
 | |
| 
 | |
| /*
 | |
|  * If a clock gate requires a turn-off delay it will have
 | |
|  * "hysteresis" register bits defined.  The first, if set, enables
 | |
|  * the delay; and if enabled, the second bit determines whether the
 | |
|  * delay is "low" or "high" (1 means high).  For now, if it's
 | |
|  * defined for a clock, we set it.
 | |
|  */
 | |
| static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
 | |
| {
 | |
| 	u32 offset;
 | |
| 	u32 reg_val;
 | |
| 	u32 mask;
 | |
| 
 | |
| 	if (!hyst_exists(hyst))
 | |
| 		return true;
 | |
| 
 | |
| 	offset = hyst->offset;
 | |
| 	mask = (u32)1 << hyst->en_bit;
 | |
| 	mask |= (u32)1 << hyst->val_bit;
 | |
| 
 | |
| 	reg_val = __ccu_read(ccu, offset);
 | |
| 	reg_val |= mask;
 | |
| 	__ccu_write(ccu, offset, reg_val);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Trigger operations */
 | |
| 
 | |
| /*
 | |
|  * Caller must ensure CCU lock is held and access is enabled.
 | |
|  * Returns true if successful, false otherwise.
 | |
|  */
 | |
| static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
 | |
| {
 | |
| 	/* Trigger the clock and wait for it to finish */
 | |
| 	__ccu_write(ccu, trig->offset, 1 << trig->bit);
 | |
| 
 | |
| 	return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
 | |
| }
 | |
| 
 | |
| /* Divider operations */
 | |
| 
 | |
| /* Read a divider value and return the scaled divisor it represents. */
 | |
| static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 reg_val;
 | |
| 	u32 reg_div;
 | |
| 
 | |
| 	if (divider_is_fixed(div))
 | |
| 		return (u64)div->u.fixed;
 | |
| 
 | |
| 	flags = ccu_lock(ccu);
 | |
| 	reg_val = __ccu_read(ccu, div->u.s.offset);
 | |
| 	ccu_unlock(ccu, flags);
 | |
| 
 | |
| 	/* Extract the full divider field from the register value */
 | |
| 	reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
 | |
| 
 | |
| 	/* Return the scaled divisor value it represents */
 | |
| 	return scaled_div_value(div, reg_div);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a divider's scaled divisor value into its recorded form
 | |
|  * and commit it into the hardware divider register.
 | |
|  *
 | |
|  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 | |
|  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 | |
|  */
 | |
| static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 | |
| 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 | |
| {
 | |
| 	bool enabled;
 | |
| 	u32 reg_div;
 | |
| 	u32 reg_val;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(divider_is_fixed(div));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're just initializing the divider, and no initial
 | |
| 	 * state was defined in the device tree, we just find out
 | |
| 	 * what its current value is rather than updating it.
 | |
| 	 */
 | |
| 	if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
 | |
| 		reg_val = __ccu_read(ccu, div->u.s.offset);
 | |
| 		reg_div = bitfield_extract(reg_val, div->u.s.shift,
 | |
| 						div->u.s.width);
 | |
| 		div->u.s.scaled_div = scaled_div_value(div, reg_div);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Convert the scaled divisor to the value we need to record */
 | |
| 	reg_div = divider(div, div->u.s.scaled_div);
 | |
| 
 | |
| 	/* Clock needs to be enabled before changing the rate */
 | |
| 	enabled = __is_clk_gate_enabled(ccu, gate);
 | |
| 	if (!enabled && !__clk_gate(ccu, gate, true)) {
 | |
| 		ret = -ENXIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Replace the divider value and record the result */
 | |
| 	reg_val = __ccu_read(ccu, div->u.s.offset);
 | |
| 	reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
 | |
| 					reg_div);
 | |
| 	__ccu_write(ccu, div->u.s.offset, reg_val);
 | |
| 
 | |
| 	/* If the trigger fails we still want to disable the gate */
 | |
| 	if (!__clk_trigger(ccu, trig))
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	/* Disable the clock again if it was disabled to begin with */
 | |
| 	if (!enabled && !__clk_gate(ccu, gate, false))
 | |
| 		ret = ret ? ret : -ENXIO;	/* return first error */
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a divider by committing our desired state to hardware
 | |
|  * without the usual checks to see if it's already set up that way.
 | |
|  * Returns true if successful, false otherwise.
 | |
|  */
 | |
| static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 | |
| 			struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 | |
| {
 | |
| 	if (!divider_exists(div) || divider_is_fixed(div))
 | |
| 		return true;
 | |
| 	return !__div_commit(ccu, gate, div, trig);
 | |
| }
 | |
| 
 | |
| static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 | |
| 			struct bcm_clk_div *div, struct bcm_clk_trig *trig,
 | |
| 			u64 scaled_div)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u64 previous;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(divider_is_fixed(div));
 | |
| 
 | |
| 	previous = div->u.s.scaled_div;
 | |
| 	if (previous == scaled_div)
 | |
| 		return 0;	/* No change */
 | |
| 
 | |
| 	div->u.s.scaled_div = scaled_div;
 | |
| 
 | |
| 	flags = ccu_lock(ccu);
 | |
| 	__ccu_write_enable(ccu);
 | |
| 
 | |
| 	ret = __div_commit(ccu, gate, div, trig);
 | |
| 
 | |
| 	__ccu_write_disable(ccu);
 | |
| 	ccu_unlock(ccu, flags);
 | |
| 
 | |
| 	if (ret)
 | |
| 		div->u.s.scaled_div = previous;		/* Revert the change */
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Common clock rate helpers */
 | |
| 
 | |
| /*
 | |
|  * Implement the common clock framework recalc_rate method, taking
 | |
|  * into account a divider and an optional pre-divider.  The
 | |
|  * pre-divider register pointer may be NULL.
 | |
|  */
 | |
| static unsigned long clk_recalc_rate(struct ccu_data *ccu,
 | |
| 			struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
 | |
| 			unsigned long parent_rate)
 | |
| {
 | |
| 	u64 scaled_parent_rate;
 | |
| 	u64 scaled_div;
 | |
| 	u64 result;
 | |
| 
 | |
| 	if (!divider_exists(div))
 | |
| 		return parent_rate;
 | |
| 
 | |
| 	if (parent_rate > (unsigned long)LONG_MAX)
 | |
| 		return 0;	/* actually this would be a caller bug */
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a pre-divider, divide the scaled parent rate
 | |
| 	 * by the pre-divider value first.  In this case--to improve
 | |
| 	 * accuracy--scale the parent rate by *both* the pre-divider
 | |
| 	 * value and the divider before actually computing the
 | |
| 	 * result of the pre-divider.
 | |
| 	 *
 | |
| 	 * If there's only one divider, just scale the parent rate.
 | |
| 	 */
 | |
| 	if (pre_div && divider_exists(pre_div)) {
 | |
| 		u64 scaled_rate;
 | |
| 
 | |
| 		scaled_rate = scale_rate(pre_div, parent_rate);
 | |
| 		scaled_rate = scale_rate(div, scaled_rate);
 | |
| 		scaled_div = divider_read_scaled(ccu, pre_div);
 | |
| 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 | |
| 							scaled_div);
 | |
| 	} else  {
 | |
| 		scaled_parent_rate = scale_rate(div, parent_rate);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the scaled divisor value, and divide the scaled
 | |
| 	 * parent rate by that to determine this clock's resulting
 | |
| 	 * rate.
 | |
| 	 */
 | |
| 	scaled_div = divider_read_scaled(ccu, div);
 | |
| 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
 | |
| 
 | |
| 	return (unsigned long)result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the output rate produced when a given parent rate is fed
 | |
|  * into two dividers.  The pre-divider can be NULL, and even if it's
 | |
|  * non-null it may be nonexistent.  It's also OK for the divider to
 | |
|  * be nonexistent, and in that case the pre-divider is also ignored.
 | |
|  *
 | |
|  * If scaled_div is non-null, it is used to return the scaled divisor
 | |
|  * value used by the (downstream) divider to produce that rate.
 | |
|  */
 | |
| static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
 | |
| 				struct bcm_clk_div *pre_div,
 | |
| 				unsigned long rate, unsigned long parent_rate,
 | |
| 				u64 *scaled_div)
 | |
| {
 | |
| 	u64 scaled_parent_rate;
 | |
| 	u64 min_scaled_div;
 | |
| 	u64 max_scaled_div;
 | |
| 	u64 best_scaled_div;
 | |
| 	u64 result;
 | |
| 
 | |
| 	BUG_ON(!divider_exists(div));
 | |
| 	BUG_ON(!rate);
 | |
| 	BUG_ON(parent_rate > (u64)LONG_MAX);
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a pre-divider, divide the scaled parent rate
 | |
| 	 * by the pre-divider value first.  In this case--to improve
 | |
| 	 * accuracy--scale the parent rate by *both* the pre-divider
 | |
| 	 * value and the divider before actually computing the
 | |
| 	 * result of the pre-divider.
 | |
| 	 *
 | |
| 	 * If there's only one divider, just scale the parent rate.
 | |
| 	 *
 | |
| 	 * For simplicity we treat the pre-divider as fixed (for now).
 | |
| 	 */
 | |
| 	if (divider_exists(pre_div)) {
 | |
| 		u64 scaled_rate;
 | |
| 		u64 scaled_pre_div;
 | |
| 
 | |
| 		scaled_rate = scale_rate(pre_div, parent_rate);
 | |
| 		scaled_rate = scale_rate(div, scaled_rate);
 | |
| 		scaled_pre_div = divider_read_scaled(ccu, pre_div);
 | |
| 		scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 | |
| 							scaled_pre_div);
 | |
| 	} else {
 | |
| 		scaled_parent_rate = scale_rate(div, parent_rate);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the best possible divider and ensure it is in
 | |
| 	 * range.  A fixed divider can't be changed, so just report
 | |
| 	 * the best we can do.
 | |
| 	 */
 | |
| 	if (!divider_is_fixed(div)) {
 | |
| 		best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
 | |
| 							rate);
 | |
| 		min_scaled_div = scaled_div_min(div);
 | |
| 		max_scaled_div = scaled_div_max(div);
 | |
| 		if (best_scaled_div > max_scaled_div)
 | |
| 			best_scaled_div = max_scaled_div;
 | |
| 		else if (best_scaled_div < min_scaled_div)
 | |
| 			best_scaled_div = min_scaled_div;
 | |
| 	} else {
 | |
| 		best_scaled_div = divider_read_scaled(ccu, div);
 | |
| 	}
 | |
| 
 | |
| 	/* OK, figure out the resulting rate */
 | |
| 	result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
 | |
| 
 | |
| 	if (scaled_div)
 | |
| 		*scaled_div = best_scaled_div;
 | |
| 
 | |
| 	return (long)result;
 | |
| }
 | |
| 
 | |
| /* Common clock parent helpers */
 | |
| 
 | |
| /*
 | |
|  * For a given parent selector (register field) value, find the
 | |
|  * index into a selector's parent_sel array that contains it.
 | |
|  * Returns the index, or BAD_CLK_INDEX if it's not found.
 | |
|  */
 | |
| static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
 | |
| {
 | |
| 	u8 i;
 | |
| 
 | |
| 	BUG_ON(sel->parent_count > (u32)U8_MAX);
 | |
| 	for (i = 0; i < sel->parent_count; i++)
 | |
| 		if (sel->parent_sel[i] == parent_sel)
 | |
| 			return i;
 | |
| 	return BAD_CLK_INDEX;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fetch the current value of the selector, and translate that into
 | |
|  * its corresponding index in the parent array we registered with
 | |
|  * the clock framework.
 | |
|  *
 | |
|  * Returns parent array index that corresponds with the value found,
 | |
|  * or BAD_CLK_INDEX if the found value is out of range.
 | |
|  */
 | |
| static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 reg_val;
 | |
| 	u32 parent_sel;
 | |
| 	u8 index;
 | |
| 
 | |
| 	/* If there's no selector, there's only one parent */
 | |
| 	if (!selector_exists(sel))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Get the value in the selector register */
 | |
| 	flags = ccu_lock(ccu);
 | |
| 	reg_val = __ccu_read(ccu, sel->offset);
 | |
| 	ccu_unlock(ccu, flags);
 | |
| 
 | |
| 	parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 | |
| 
 | |
| 	/* Look up that selector's parent array index and return it */
 | |
| 	index = parent_index(sel, parent_sel);
 | |
| 	if (index == BAD_CLK_INDEX)
 | |
| 		pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
 | |
| 			__func__, parent_sel, ccu->name, sel->offset);
 | |
| 
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit our desired selector value to the hardware.
 | |
|  *
 | |
|  * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 | |
|  * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 | |
|  */
 | |
| static int
 | |
| __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 | |
| 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 | |
| {
 | |
| 	u32 parent_sel;
 | |
| 	u32 reg_val;
 | |
| 	bool enabled;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(!selector_exists(sel));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're just initializing the selector, and no initial
 | |
| 	 * state was defined in the device tree, we just find out
 | |
| 	 * what its current value is rather than updating it.
 | |
| 	 */
 | |
| 	if (sel->clk_index == BAD_CLK_INDEX) {
 | |
| 		u8 index;
 | |
| 
 | |
| 		reg_val = __ccu_read(ccu, sel->offset);
 | |
| 		parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 | |
| 		index = parent_index(sel, parent_sel);
 | |
| 		if (index == BAD_CLK_INDEX)
 | |
| 			return -EINVAL;
 | |
| 		sel->clk_index = index;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON((u32)sel->clk_index >= sel->parent_count);
 | |
| 	parent_sel = sel->parent_sel[sel->clk_index];
 | |
| 
 | |
| 	/* Clock needs to be enabled before changing the parent */
 | |
| 	enabled = __is_clk_gate_enabled(ccu, gate);
 | |
| 	if (!enabled && !__clk_gate(ccu, gate, true))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	/* Replace the selector value and record the result */
 | |
| 	reg_val = __ccu_read(ccu, sel->offset);
 | |
| 	reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
 | |
| 	__ccu_write(ccu, sel->offset, reg_val);
 | |
| 
 | |
| 	/* If the trigger fails we still want to disable the gate */
 | |
| 	if (!__clk_trigger(ccu, trig))
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	/* Disable the clock again if it was disabled to begin with */
 | |
| 	if (!enabled && !__clk_gate(ccu, gate, false))
 | |
| 		ret = ret ? ret : -ENXIO;	/* return first error */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a selector by committing our desired state to hardware
 | |
|  * without the usual checks to see if it's already set up that way.
 | |
|  * Returns true if successful, false otherwise.
 | |
|  */
 | |
| static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 | |
| 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 | |
| {
 | |
| 	if (!selector_exists(sel))
 | |
| 		return true;
 | |
| 	return !__sel_commit(ccu, gate, sel, trig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write a new value into a selector register to switch to a
 | |
|  * different parent clock.  Returns 0 on success, or an error code
 | |
|  * (from __sel_commit()) otherwise.
 | |
|  */
 | |
| static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 | |
| 			struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
 | |
| 			u8 index)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u8 previous;
 | |
| 	int ret;
 | |
| 
 | |
| 	previous = sel->clk_index;
 | |
| 	if (previous == index)
 | |
| 		return 0;	/* No change */
 | |
| 
 | |
| 	sel->clk_index = index;
 | |
| 
 | |
| 	flags = ccu_lock(ccu);
 | |
| 	__ccu_write_enable(ccu);
 | |
| 
 | |
| 	ret = __sel_commit(ccu, gate, sel, trig);
 | |
| 
 | |
| 	__ccu_write_disable(ccu);
 | |
| 	ccu_unlock(ccu, flags);
 | |
| 
 | |
| 	if (ret)
 | |
| 		sel->clk_index = previous;	/* Revert the change */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Clock operations */
 | |
| 
 | |
| static int kona_peri_clk_enable(struct clk_hw *hw)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk = to_kona_clk(hw);
 | |
| 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 | |
| 
 | |
| 	return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
 | |
| }
 | |
| 
 | |
| static void kona_peri_clk_disable(struct clk_hw *hw)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk = to_kona_clk(hw);
 | |
| 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 | |
| 
 | |
| 	(void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
 | |
| }
 | |
| 
 | |
| static int kona_peri_clk_is_enabled(struct clk_hw *hw)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk = to_kona_clk(hw);
 | |
| 	struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 | |
| 
 | |
| 	return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
 | |
| 			unsigned long parent_rate)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk = to_kona_clk(hw);
 | |
| 	struct peri_clk_data *data = bcm_clk->u.peri;
 | |
| 
 | |
| 	return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
 | |
| 				parent_rate);
 | |
| }
 | |
| 
 | |
| static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 | |
| 			unsigned long *parent_rate)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk = to_kona_clk(hw);
 | |
| 	struct bcm_clk_div *div = &bcm_clk->u.peri->div;
 | |
| 
 | |
| 	if (!divider_exists(div))
 | |
| 		return clk_hw_get_rate(hw);
 | |
| 
 | |
| 	/* Quietly avoid a zero rate */
 | |
| 	return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
 | |
| 				rate ? rate : 1, *parent_rate, NULL);
 | |
| }
 | |
| 
 | |
| static int kona_peri_clk_determine_rate(struct clk_hw *hw,
 | |
| 					struct clk_rate_request *req)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk = to_kona_clk(hw);
 | |
| 	struct clk_hw *current_parent;
 | |
| 	unsigned long parent_rate;
 | |
| 	unsigned long best_delta;
 | |
| 	unsigned long best_rate;
 | |
| 	u32 parent_count;
 | |
| 	long rate;
 | |
| 	u32 which;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is no other parent to choose, use the current one.
 | |
| 	 * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
 | |
| 	parent_count = (u32)bcm_clk->init_data.num_parents;
 | |
| 	if (parent_count < 2) {
 | |
| 		rate = kona_peri_clk_round_rate(hw, req->rate,
 | |
| 						&req->best_parent_rate);
 | |
| 		if (rate < 0)
 | |
| 			return rate;
 | |
| 
 | |
| 		req->rate = rate;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Unless we can do better, stick with current parent */
 | |
| 	current_parent = clk_hw_get_parent(hw);
 | |
| 	parent_rate = clk_hw_get_rate(current_parent);
 | |
| 	best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
 | |
| 	best_delta = abs(best_rate - req->rate);
 | |
| 
 | |
| 	/* Check whether any other parent clock can produce a better result */
 | |
| 	for (which = 0; which < parent_count; which++) {
 | |
| 		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
 | |
| 		unsigned long delta;
 | |
| 		unsigned long other_rate;
 | |
| 
 | |
| 		BUG_ON(!parent);
 | |
| 		if (parent == current_parent)
 | |
| 			continue;
 | |
| 
 | |
| 		/* We don't support CLK_SET_RATE_PARENT */
 | |
| 		parent_rate = clk_hw_get_rate(parent);
 | |
| 		other_rate = kona_peri_clk_round_rate(hw, req->rate,
 | |
| 						      &parent_rate);
 | |
| 		delta = abs(other_rate - req->rate);
 | |
| 		if (delta < best_delta) {
 | |
| 			best_delta = delta;
 | |
| 			best_rate = other_rate;
 | |
| 			req->best_parent_hw = parent;
 | |
| 			req->best_parent_rate = parent_rate;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	req->rate = best_rate;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk = to_kona_clk(hw);
 | |
| 	struct peri_clk_data *data = bcm_clk->u.peri;
 | |
| 	struct bcm_clk_sel *sel = &data->sel;
 | |
| 	struct bcm_clk_trig *trig;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(index >= sel->parent_count);
 | |
| 
 | |
| 	/* If there's only one parent we don't require a selector */
 | |
| 	if (!selector_exists(sel))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The regular trigger is used by default, but if there's a
 | |
| 	 * pre-trigger we want to use that instead.
 | |
| 	 */
 | |
| 	trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
 | |
| 					       : &data->trig;
 | |
| 
 | |
| 	ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
 | |
| 	if (ret == -ENXIO) {
 | |
| 		pr_err("%s: gating failure for %s\n", __func__,
 | |
| 			bcm_clk->init_data.name);
 | |
| 		ret = -EIO;	/* Don't proliferate weird errors */
 | |
| 	} else if (ret == -EIO) {
 | |
| 		pr_err("%s: %strigger failed for %s\n", __func__,
 | |
| 			trig == &data->pre_trig ? "pre-" : "",
 | |
| 			bcm_clk->init_data.name);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk = to_kona_clk(hw);
 | |
| 	struct peri_clk_data *data = bcm_clk->u.peri;
 | |
| 	u8 index;
 | |
| 
 | |
| 	index = selector_read_index(bcm_clk->ccu, &data->sel);
 | |
| 
 | |
| 	/* Not all callers would handle an out-of-range value gracefully */
 | |
| 	return index == BAD_CLK_INDEX ? 0 : index;
 | |
| }
 | |
| 
 | |
| static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 | |
| 			unsigned long parent_rate)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk = to_kona_clk(hw);
 | |
| 	struct peri_clk_data *data = bcm_clk->u.peri;
 | |
| 	struct bcm_clk_div *div = &data->div;
 | |
| 	u64 scaled_div = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (parent_rate > (unsigned long)LONG_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (rate == clk_hw_get_rate(hw))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!divider_exists(div))
 | |
| 		return rate == parent_rate ? 0 : -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * A fixed divider can't be changed.  (Nor can a fixed
 | |
| 	 * pre-divider be, but for now we never actually try to
 | |
| 	 * change that.)  Tolerate a request for a no-op change.
 | |
| 	 */
 | |
| 	if (divider_is_fixed(&data->div))
 | |
| 		return rate == parent_rate ? 0 : -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the scaled divisor value needed to achieve a clock
 | |
| 	 * rate as close as possible to what was requested, given
 | |
| 	 * the parent clock rate supplied.
 | |
| 	 */
 | |
| 	(void)round_rate(bcm_clk->ccu, div, &data->pre_div,
 | |
| 				rate ? rate : 1, parent_rate, &scaled_div);
 | |
| 
 | |
| 	/*
 | |
| 	 * We aren't updating any pre-divider at this point, so
 | |
| 	 * we'll use the regular trigger.
 | |
| 	 */
 | |
| 	ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
 | |
| 				&data->trig, scaled_div);
 | |
| 	if (ret == -ENXIO) {
 | |
| 		pr_err("%s: gating failure for %s\n", __func__,
 | |
| 			bcm_clk->init_data.name);
 | |
| 		ret = -EIO;	/* Don't proliferate weird errors */
 | |
| 	} else if (ret == -EIO) {
 | |
| 		pr_err("%s: trigger failed for %s\n", __func__,
 | |
| 			bcm_clk->init_data.name);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct clk_ops kona_peri_clk_ops = {
 | |
| 	.enable = kona_peri_clk_enable,
 | |
| 	.disable = kona_peri_clk_disable,
 | |
| 	.is_enabled = kona_peri_clk_is_enabled,
 | |
| 	.recalc_rate = kona_peri_clk_recalc_rate,
 | |
| 	.determine_rate = kona_peri_clk_determine_rate,
 | |
| 	.set_parent = kona_peri_clk_set_parent,
 | |
| 	.get_parent = kona_peri_clk_get_parent,
 | |
| 	.set_rate = kona_peri_clk_set_rate,
 | |
| };
 | |
| 
 | |
| /* Put a peripheral clock into its initial state */
 | |
| static bool __peri_clk_init(struct kona_clk *bcm_clk)
 | |
| {
 | |
| 	struct ccu_data *ccu = bcm_clk->ccu;
 | |
| 	struct peri_clk_data *peri = bcm_clk->u.peri;
 | |
| 	const char *name = bcm_clk->init_data.name;
 | |
| 	struct bcm_clk_trig *trig;
 | |
| 
 | |
| 	BUG_ON(bcm_clk->type != bcm_clk_peri);
 | |
| 
 | |
| 	if (!policy_init(ccu, &peri->policy)) {
 | |
| 		pr_err("%s: error initializing policy for %s\n",
 | |
| 			__func__, name);
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (!gate_init(ccu, &peri->gate)) {
 | |
| 		pr_err("%s: error initializing gate for %s\n", __func__, name);
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (!hyst_init(ccu, &peri->hyst)) {
 | |
| 		pr_err("%s: error initializing hyst for %s\n", __func__, name);
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
 | |
| 		pr_err("%s: error initializing divider for %s\n", __func__,
 | |
| 			name);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For the pre-divider and selector, the pre-trigger is used
 | |
| 	 * if it's present, otherwise we just use the regular trigger.
 | |
| 	 */
 | |
| 	trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
 | |
| 					       : &peri->trig;
 | |
| 
 | |
| 	if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
 | |
| 		pr_err("%s: error initializing pre-divider for %s\n", __func__,
 | |
| 			name);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
 | |
| 		pr_err("%s: error initializing selector for %s\n", __func__,
 | |
| 			name);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool __kona_clk_init(struct kona_clk *bcm_clk)
 | |
| {
 | |
| 	switch (bcm_clk->type) {
 | |
| 	case bcm_clk_peri:
 | |
| 		return __peri_clk_init(bcm_clk);
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Set a CCU and all its clocks into their desired initial state */
 | |
| bool __init kona_ccu_init(struct ccu_data *ccu)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned int which;
 | |
| 	struct kona_clk *kona_clks = ccu->kona_clks;
 | |
| 	bool success = true;
 | |
| 
 | |
| 	flags = ccu_lock(ccu);
 | |
| 	__ccu_write_enable(ccu);
 | |
| 
 | |
| 	for (which = 0; which < ccu->clk_num; which++) {
 | |
| 		struct kona_clk *bcm_clk = &kona_clks[which];
 | |
| 
 | |
| 		if (!bcm_clk->ccu)
 | |
| 			continue;
 | |
| 
 | |
| 		success &= __kona_clk_init(bcm_clk);
 | |
| 	}
 | |
| 
 | |
| 	__ccu_write_disable(ccu);
 | |
| 	ccu_unlock(ccu, flags);
 | |
| 	return success;
 | |
| }
 | 
