864 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			864 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2013 Broadcom Corporation
 | |
|  * Copyright 2013 Linaro Limited
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation version 2.
 | |
|  *
 | |
|  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 | |
|  * kind, whether express or implied; without even the implied warranty
 | |
|  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/io.h>
 | |
| #include <linux/of_address.h>
 | |
| 
 | |
| #include "clk-kona.h"
 | |
| 
 | |
| /* These are used when a selector or trigger is found to be unneeded */
 | |
| #define selector_clear_exists(sel)	((sel)->width = 0)
 | |
| #define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)
 | |
| 
 | |
| /* Validity checking */
 | |
| 
 | |
| static bool ccu_data_offsets_valid(struct ccu_data *ccu)
 | |
| {
 | |
| 	struct ccu_policy *ccu_policy = &ccu->policy;
 | |
| 	u32 limit;
 | |
| 
 | |
| 	limit = ccu->range - sizeof(u32);
 | |
| 	limit = round_down(limit, sizeof(u32));
 | |
| 	if (ccu_policy_exists(ccu_policy)) {
 | |
| 		if (ccu_policy->enable.offset > limit) {
 | |
| 			pr_err("%s: bad policy enable offset for %s "
 | |
| 					"(%u > %u)\n", __func__,
 | |
| 				ccu->name, ccu_policy->enable.offset, limit);
 | |
| 			return false;
 | |
| 		}
 | |
| 		if (ccu_policy->control.offset > limit) {
 | |
| 			pr_err("%s: bad policy control offset for %s "
 | |
| 					"(%u > %u)\n", __func__,
 | |
| 				ccu->name, ccu_policy->control.offset, limit);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool clk_requires_trigger(struct kona_clk *bcm_clk)
 | |
| {
 | |
| 	struct peri_clk_data *peri = bcm_clk->u.peri;
 | |
| 	struct bcm_clk_sel *sel;
 | |
| 	struct bcm_clk_div *div;
 | |
| 
 | |
| 	if (bcm_clk->type != bcm_clk_peri)
 | |
| 		return false;
 | |
| 
 | |
| 	sel = &peri->sel;
 | |
| 	if (sel->parent_count && selector_exists(sel))
 | |
| 		return true;
 | |
| 
 | |
| 	div = &peri->div;
 | |
| 	if (!divider_exists(div))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Fixed dividers don't need triggers */
 | |
| 	if (!divider_is_fixed(div))
 | |
| 		return true;
 | |
| 
 | |
| 	div = &peri->pre_div;
 | |
| 
 | |
| 	return divider_exists(div) && !divider_is_fixed(div);
 | |
| }
 | |
| 
 | |
| static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
 | |
| {
 | |
| 	struct peri_clk_data *peri;
 | |
| 	struct bcm_clk_policy *policy;
 | |
| 	struct bcm_clk_gate *gate;
 | |
| 	struct bcm_clk_hyst *hyst;
 | |
| 	struct bcm_clk_div *div;
 | |
| 	struct bcm_clk_sel *sel;
 | |
| 	struct bcm_clk_trig *trig;
 | |
| 	const char *name;
 | |
| 	u32 range;
 | |
| 	u32 limit;
 | |
| 
 | |
| 	BUG_ON(bcm_clk->type != bcm_clk_peri);
 | |
| 	peri = bcm_clk->u.peri;
 | |
| 	name = bcm_clk->init_data.name;
 | |
| 	range = bcm_clk->ccu->range;
 | |
| 
 | |
| 	limit = range - sizeof(u32);
 | |
| 	limit = round_down(limit, sizeof(u32));
 | |
| 
 | |
| 	policy = &peri->policy;
 | |
| 	if (policy_exists(policy)) {
 | |
| 		if (policy->offset > limit) {
 | |
| 			pr_err("%s: bad policy offset for %s (%u > %u)\n",
 | |
| 				__func__, name, policy->offset, limit);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	gate = &peri->gate;
 | |
| 	hyst = &peri->hyst;
 | |
| 	if (gate_exists(gate)) {
 | |
| 		if (gate->offset > limit) {
 | |
| 			pr_err("%s: bad gate offset for %s (%u > %u)\n",
 | |
| 				__func__, name, gate->offset, limit);
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		if (hyst_exists(hyst)) {
 | |
| 			if (hyst->offset > limit) {
 | |
| 				pr_err("%s: bad hysteresis offset for %s "
 | |
| 					"(%u > %u)\n", __func__,
 | |
| 					name, hyst->offset, limit);
 | |
| 				return false;
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (hyst_exists(hyst)) {
 | |
| 		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	div = &peri->div;
 | |
| 	if (divider_exists(div)) {
 | |
| 		if (div->u.s.offset > limit) {
 | |
| 			pr_err("%s: bad divider offset for %s (%u > %u)\n",
 | |
| 				__func__, name, div->u.s.offset, limit);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	div = &peri->pre_div;
 | |
| 	if (divider_exists(div)) {
 | |
| 		if (div->u.s.offset > limit) {
 | |
| 			pr_err("%s: bad pre-divider offset for %s "
 | |
| 					"(%u > %u)\n",
 | |
| 				__func__, name, div->u.s.offset, limit);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sel = &peri->sel;
 | |
| 	if (selector_exists(sel)) {
 | |
| 		if (sel->offset > limit) {
 | |
| 			pr_err("%s: bad selector offset for %s (%u > %u)\n",
 | |
| 				__func__, name, sel->offset, limit);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	trig = &peri->trig;
 | |
| 	if (trigger_exists(trig)) {
 | |
| 		if (trig->offset > limit) {
 | |
| 			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
 | |
| 				__func__, name, trig->offset, limit);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	trig = &peri->pre_trig;
 | |
| 	if (trigger_exists(trig)) {
 | |
| 		if (trig->offset > limit) {
 | |
| 			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
 | |
| 				__func__, name, trig->offset, limit);
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* A bit position must be less than the number of bits in a 32-bit register. */
 | |
| static bool bit_posn_valid(u32 bit_posn, const char *field_name,
 | |
| 			const char *clock_name)
 | |
| {
 | |
| 	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
 | |
| 
 | |
| 	if (bit_posn > limit) {
 | |
| 		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
 | |
| 			field_name, clock_name, bit_posn, limit);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A bitfield must be at least 1 bit wide.  Both the low-order and
 | |
|  * high-order bits must lie within a 32-bit register.  We require
 | |
|  * fields to be less than 32 bits wide, mainly because we use
 | |
|  * shifting to produce field masks, and shifting a full word width
 | |
|  * is not well-defined by the C standard.
 | |
|  */
 | |
| static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
 | |
| 			const char *clock_name)
 | |
| {
 | |
| 	u32 limit = BITS_PER_BYTE * sizeof(u32);
 | |
| 
 | |
| 	if (!width) {
 | |
| 		pr_err("%s: bad %s field width 0 for %s\n", __func__,
 | |
| 			field_name, clock_name);
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (shift + width > limit) {
 | |
| 		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
 | |
| 			field_name, clock_name, shift, width, limit);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
 | |
| {
 | |
| 	struct bcm_lvm_en *enable = &ccu_policy->enable;
 | |
| 	struct bcm_policy_ctl *control;
 | |
| 
 | |
| 	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
 | |
| 		return false;
 | |
| 
 | |
| 	control = &ccu_policy->control;
 | |
| 	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
 | |
| {
 | |
| 	if (!bit_posn_valid(policy->bit, "policy", clock_name))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * All gates, if defined, have a status bit, and for hardware-only
 | |
|  * gates, that's it.  Gates that can be software controlled also
 | |
|  * have an enable bit.  And a gate that can be hardware or software
 | |
|  * controlled will have a hardware/software select bit.
 | |
|  */
 | |
| static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
 | |
| 			const char *clock_name)
 | |
| {
 | |
| 	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
 | |
| 		return false;
 | |
| 
 | |
| 	if (gate_is_sw_controllable(gate)) {
 | |
| 		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
 | |
| 			return false;
 | |
| 
 | |
| 		if (gate_is_hw_controllable(gate)) {
 | |
| 			if (!bit_posn_valid(gate->hw_sw_sel_bit,
 | |
| 						"gate hw/sw select",
 | |
| 						clock_name))
 | |
| 				return false;
 | |
| 		}
 | |
| 	} else {
 | |
| 		BUG_ON(!gate_is_hw_controllable(gate));
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
 | |
| {
 | |
| 	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A selector bitfield must be valid.  Its parent_sel array must
 | |
|  * also be reasonable for the field.
 | |
|  */
 | |
| static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
 | |
| 			const char *clock_name)
 | |
| {
 | |
| 	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
 | |
| 		return false;
 | |
| 
 | |
| 	if (sel->parent_count) {
 | |
| 		u32 max_sel;
 | |
| 		u32 limit;
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure the selector field can hold all the
 | |
| 		 * selector values we expect to be able to use.  A
 | |
| 		 * clock only needs to have a selector defined if it
 | |
| 		 * has more than one parent.  And in that case the
 | |
| 		 * highest selector value will be in the last entry
 | |
| 		 * in the array.
 | |
| 		 */
 | |
| 		max_sel = sel->parent_sel[sel->parent_count - 1];
 | |
| 		limit = (1 << sel->width) - 1;
 | |
| 		if (max_sel > limit) {
 | |
| 			pr_err("%s: bad selector for %s "
 | |
| 					"(%u needs > %u bits)\n",
 | |
| 				__func__, clock_name, max_sel,
 | |
| 				sel->width);
 | |
| 			return false;
 | |
| 		}
 | |
| 	} else {
 | |
| 		pr_warn("%s: ignoring selector for %s (no parents)\n",
 | |
| 			__func__, clock_name);
 | |
| 		selector_clear_exists(sel);
 | |
| 		kfree(sel->parent_sel);
 | |
| 		sel->parent_sel = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A fixed divider just needs to be non-zero.  A variable divider
 | |
|  * has to have a valid divider bitfield, and if it has a fraction,
 | |
|  * the width of the fraction must not be no more than the width of
 | |
|  * the divider as a whole.
 | |
|  */
 | |
| static bool div_valid(struct bcm_clk_div *div, const char *field_name,
 | |
| 			const char *clock_name)
 | |
| {
 | |
| 	if (divider_is_fixed(div)) {
 | |
| 		/* Any fixed divider value but 0 is OK */
 | |
| 		if (div->u.fixed == 0) {
 | |
| 			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
 | |
| 				field_name, clock_name);
 | |
| 			return false;
 | |
| 		}
 | |
| 		return true;
 | |
| 	}
 | |
| 	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
 | |
| 				field_name, clock_name))
 | |
| 		return false;
 | |
| 
 | |
| 	if (divider_has_fraction(div))
 | |
| 		if (div->u.s.frac_width > div->u.s.width) {
 | |
| 			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
 | |
| 				__func__, field_name, clock_name,
 | |
| 				div->u.s.frac_width, div->u.s.width);
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If a clock has two dividers, the combined number of fractional
 | |
|  * bits must be representable in a 32-bit unsigned value.  This
 | |
|  * is because we scale up a dividend using both dividers before
 | |
|  * dividing to improve accuracy, and we need to avoid overflow.
 | |
|  */
 | |
| static bool kona_dividers_valid(struct kona_clk *bcm_clk)
 | |
| {
 | |
| 	struct peri_clk_data *peri = bcm_clk->u.peri;
 | |
| 	struct bcm_clk_div *div;
 | |
| 	struct bcm_clk_div *pre_div;
 | |
| 	u32 limit;
 | |
| 
 | |
| 	BUG_ON(bcm_clk->type != bcm_clk_peri);
 | |
| 
 | |
| 	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
 | |
| 		return true;
 | |
| 
 | |
| 	div = &peri->div;
 | |
| 	pre_div = &peri->pre_div;
 | |
| 	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
 | |
| 		return true;
 | |
| 
 | |
| 	limit = BITS_PER_BYTE * sizeof(u32);
 | |
| 
 | |
| 	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* A trigger just needs to represent a valid bit position */
 | |
| static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
 | |
| 			const char *clock_name)
 | |
| {
 | |
| 	return bit_posn_valid(trig->bit, field_name, clock_name);
 | |
| }
 | |
| 
 | |
| /* Determine whether the set of peripheral clock registers are valid. */
 | |
| static bool
 | |
| peri_clk_data_valid(struct kona_clk *bcm_clk)
 | |
| {
 | |
| 	struct peri_clk_data *peri;
 | |
| 	struct bcm_clk_policy *policy;
 | |
| 	struct bcm_clk_gate *gate;
 | |
| 	struct bcm_clk_hyst *hyst;
 | |
| 	struct bcm_clk_sel *sel;
 | |
| 	struct bcm_clk_div *div;
 | |
| 	struct bcm_clk_div *pre_div;
 | |
| 	struct bcm_clk_trig *trig;
 | |
| 	const char *name;
 | |
| 
 | |
| 	BUG_ON(bcm_clk->type != bcm_clk_peri);
 | |
| 
 | |
| 	/*
 | |
| 	 * First validate register offsets.  This is the only place
 | |
| 	 * where we need something from the ccu, so we do these
 | |
| 	 * together.
 | |
| 	 */
 | |
| 	if (!peri_clk_data_offsets_valid(bcm_clk))
 | |
| 		return false;
 | |
| 
 | |
| 	peri = bcm_clk->u.peri;
 | |
| 	name = bcm_clk->init_data.name;
 | |
| 
 | |
| 	policy = &peri->policy;
 | |
| 	if (policy_exists(policy) && !policy_valid(policy, name))
 | |
| 		return false;
 | |
| 
 | |
| 	gate = &peri->gate;
 | |
| 	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
 | |
| 		return false;
 | |
| 
 | |
| 	hyst = &peri->hyst;
 | |
| 	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
 | |
| 		return false;
 | |
| 
 | |
| 	sel = &peri->sel;
 | |
| 	if (selector_exists(sel)) {
 | |
| 		if (!sel_valid(sel, "selector", name))
 | |
| 			return false;
 | |
| 
 | |
| 	} else if (sel->parent_count > 1) {
 | |
| 		pr_err("%s: multiple parents but no selector for %s\n",
 | |
| 			__func__, name);
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	div = &peri->div;
 | |
| 	pre_div = &peri->pre_div;
 | |
| 	if (divider_exists(div)) {
 | |
| 		if (!div_valid(div, "divider", name))
 | |
| 			return false;
 | |
| 
 | |
| 		if (divider_exists(pre_div))
 | |
| 			if (!div_valid(pre_div, "pre-divider", name))
 | |
| 				return false;
 | |
| 	} else if (divider_exists(pre_div)) {
 | |
| 		pr_err("%s: pre-divider but no divider for %s\n", __func__,
 | |
| 			name);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	trig = &peri->trig;
 | |
| 	if (trigger_exists(trig)) {
 | |
| 		if (!trig_valid(trig, "trigger", name))
 | |
| 			return false;
 | |
| 
 | |
| 		if (trigger_exists(&peri->pre_trig)) {
 | |
| 			if (!trig_valid(trig, "pre-trigger", name)) {
 | |
| 				return false;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!clk_requires_trigger(bcm_clk)) {
 | |
| 			pr_warn("%s: ignoring trigger for %s (not needed)\n",
 | |
| 				__func__, name);
 | |
| 			trigger_clear_exists(trig);
 | |
| 		}
 | |
| 	} else if (trigger_exists(&peri->pre_trig)) {
 | |
| 		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
 | |
| 			name);
 | |
| 		return false;
 | |
| 	} else if (clk_requires_trigger(bcm_clk)) {
 | |
| 		pr_err("%s: required trigger missing for %s\n", __func__,
 | |
| 			name);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return kona_dividers_valid(bcm_clk);
 | |
| }
 | |
| 
 | |
| static bool kona_clk_valid(struct kona_clk *bcm_clk)
 | |
| {
 | |
| 	switch (bcm_clk->type) {
 | |
| 	case bcm_clk_peri:
 | |
| 		if (!peri_clk_data_valid(bcm_clk))
 | |
| 			return false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_err("%s: unrecognized clock type (%d)\n", __func__,
 | |
| 			(int)bcm_clk->type);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan an array of parent clock names to determine whether there
 | |
|  * are any entries containing BAD_CLK_NAME.  Such entries are
 | |
|  * placeholders for non-supported clocks.  Keep track of the
 | |
|  * position of each clock name in the original array.
 | |
|  *
 | |
|  * Allocates an array of pointers to to hold the names of all
 | |
|  * non-null entries in the original array, and returns a pointer to
 | |
|  * that array in *names.  This will be used for registering the
 | |
|  * clock with the common clock code.  On successful return,
 | |
|  * *count indicates how many entries are in that names array.
 | |
|  *
 | |
|  * If there is more than one entry in the resulting names array,
 | |
|  * another array is allocated to record the parent selector value
 | |
|  * for each (defined) parent clock.  This is the value that
 | |
|  * represents this parent clock in the clock's source selector
 | |
|  * register.  The position of the clock in the original parent array
 | |
|  * defines that selector value.  The number of entries in this array
 | |
|  * is the same as the number of entries in the parent names array.
 | |
|  *
 | |
|  * The array of selector values is returned.  If the clock has no
 | |
|  * parents, no selector is required and a null pointer is returned.
 | |
|  *
 | |
|  * Returns a null pointer if the clock names array supplied was
 | |
|  * null.  (This is not an error.)
 | |
|  *
 | |
|  * Returns a pointer-coded error if an error occurs.
 | |
|  */
 | |
| static u32 *parent_process(const char *clocks[],
 | |
| 			u32 *count, const char ***names)
 | |
| {
 | |
| 	static const char **parent_names;
 | |
| 	static u32 *parent_sel;
 | |
| 	const char **clock;
 | |
| 	u32 parent_count;
 | |
| 	u32 bad_count = 0;
 | |
| 	u32 orig_count;
 | |
| 	u32 i;
 | |
| 	u32 j;
 | |
| 
 | |
| 	*count = 0;	/* In case of early return */
 | |
| 	*names = NULL;
 | |
| 	if (!clocks)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Count the number of names in the null-terminated array,
 | |
| 	 * and find out how many of those are actually clock names.
 | |
| 	 */
 | |
| 	for (clock = clocks; *clock; clock++)
 | |
| 		if (*clock == BAD_CLK_NAME)
 | |
| 			bad_count++;
 | |
| 	orig_count = (u32)(clock - clocks);
 | |
| 	parent_count = orig_count - bad_count;
 | |
| 
 | |
| 	/* If all clocks are unsupported, we treat it as no clock */
 | |
| 	if (!parent_count)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Avoid exceeding our parent clock limit */
 | |
| 	if (parent_count > PARENT_COUNT_MAX) {
 | |
| 		pr_err("%s: too many parents (%u > %u)\n", __func__,
 | |
| 			parent_count, PARENT_COUNT_MAX);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There is one parent name for each defined parent clock.
 | |
| 	 * We also maintain an array containing the selector value
 | |
| 	 * for each defined clock.  If there's only one clock, the
 | |
| 	 * selector is not required, but we allocate space for the
 | |
| 	 * array anyway to keep things simple.
 | |
| 	 */
 | |
| 	parent_names = kmalloc_array(parent_count, sizeof(*parent_names),
 | |
| 			       GFP_KERNEL);
 | |
| 	if (!parent_names)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/* There is at least one parent, so allocate a selector array */
 | |
| 	parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel),
 | |
| 				   GFP_KERNEL);
 | |
| 	if (!parent_sel) {
 | |
| 		kfree(parent_names);
 | |
| 
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	/* Now fill in the parent names and selector arrays */
 | |
| 	for (i = 0, j = 0; i < orig_count; i++) {
 | |
| 		if (clocks[i] != BAD_CLK_NAME) {
 | |
| 			parent_names[j] = clocks[i];
 | |
| 			parent_sel[j] = i;
 | |
| 			j++;
 | |
| 		}
 | |
| 	}
 | |
| 	*names = parent_names;
 | |
| 	*count = parent_count;
 | |
| 
 | |
| 	return parent_sel;
 | |
| }
 | |
| 
 | |
| static int
 | |
| clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
 | |
| 		struct clk_init_data *init_data)
 | |
| {
 | |
| 	const char **parent_names = NULL;
 | |
| 	u32 parent_count = 0;
 | |
| 	u32 *parent_sel;
 | |
| 
 | |
| 	/*
 | |
| 	 * If a peripheral clock has multiple parents, the value
 | |
| 	 * used by the hardware to select that parent is represented
 | |
| 	 * by the parent clock's position in the "clocks" list.  Some
 | |
| 	 * values don't have defined or supported clocks; these will
 | |
| 	 * have BAD_CLK_NAME entries in the parents[] array.  The
 | |
| 	 * list is terminated by a NULL entry.
 | |
| 	 *
 | |
| 	 * We need to supply (only) the names of defined parent
 | |
| 	 * clocks when registering a clock though, so we use an
 | |
| 	 * array of parent selector values to map between the
 | |
| 	 * indexes the common clock code uses and the selector
 | |
| 	 * values we need.
 | |
| 	 */
 | |
| 	parent_sel = parent_process(clocks, &parent_count, &parent_names);
 | |
| 	if (IS_ERR(parent_sel)) {
 | |
| 		int ret = PTR_ERR(parent_sel);
 | |
| 
 | |
| 		pr_err("%s: error processing parent clocks for %s (%d)\n",
 | |
| 			__func__, init_data->name, ret);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	init_data->parent_names = parent_names;
 | |
| 	init_data->num_parents = parent_count;
 | |
| 
 | |
| 	sel->parent_count = parent_count;
 | |
| 	sel->parent_sel = parent_sel;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void clk_sel_teardown(struct bcm_clk_sel *sel,
 | |
| 		struct clk_init_data *init_data)
 | |
| {
 | |
| 	kfree(sel->parent_sel);
 | |
| 	sel->parent_sel = NULL;
 | |
| 	sel->parent_count = 0;
 | |
| 
 | |
| 	init_data->num_parents = 0;
 | |
| 	kfree(init_data->parent_names);
 | |
| 	init_data->parent_names = NULL;
 | |
| }
 | |
| 
 | |
| static void peri_clk_teardown(struct peri_clk_data *data,
 | |
| 				struct clk_init_data *init_data)
 | |
| {
 | |
| 	clk_sel_teardown(&data->sel, init_data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller is responsible for freeing the parent_names[] and
 | |
|  * parent_sel[] arrays in the peripheral clock's "data" structure
 | |
|  * that can be assigned if the clock has one or more parent clocks
 | |
|  * associated with it.
 | |
|  */
 | |
| static int
 | |
| peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
 | |
| {
 | |
| 	init_data->flags = CLK_IGNORE_UNUSED;
 | |
| 
 | |
| 	return clk_sel_setup(data->clocks, &data->sel, init_data);
 | |
| }
 | |
| 
 | |
| static void bcm_clk_teardown(struct kona_clk *bcm_clk)
 | |
| {
 | |
| 	switch (bcm_clk->type) {
 | |
| 	case bcm_clk_peri:
 | |
| 		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	bcm_clk->u.data = NULL;
 | |
| 	bcm_clk->type = bcm_clk_none;
 | |
| }
 | |
| 
 | |
| static void kona_clk_teardown(struct clk_hw *hw)
 | |
| {
 | |
| 	struct kona_clk *bcm_clk;
 | |
| 
 | |
| 	if (!hw)
 | |
| 		return;
 | |
| 
 | |
| 	clk_hw_unregister(hw);
 | |
| 
 | |
| 	bcm_clk = to_kona_clk(hw);
 | |
| 	bcm_clk_teardown(bcm_clk);
 | |
| }
 | |
| 
 | |
| static int kona_clk_setup(struct kona_clk *bcm_clk)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct clk_init_data *init_data = &bcm_clk->init_data;
 | |
| 
 | |
| 	switch (bcm_clk->type) {
 | |
| 	case bcm_clk_peri:
 | |
| 		ret = peri_clk_setup(bcm_clk->u.data, init_data);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_err("%s: clock type %d invalid for %s\n", __func__,
 | |
| 			(int)bcm_clk->type, init_data->name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure everything makes sense before we set it up */
 | |
| 	if (!kona_clk_valid(bcm_clk)) {
 | |
| 		pr_err("%s: clock data invalid for %s\n", __func__,
 | |
| 			init_data->name);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_teardown;
 | |
| 	}
 | |
| 
 | |
| 	bcm_clk->hw.init = init_data;
 | |
| 	ret = clk_hw_register(NULL, &bcm_clk->hw);
 | |
| 	if (ret) {
 | |
| 		pr_err("%s: error registering clock %s (%d)\n", __func__,
 | |
| 			init_data->name, ret);
 | |
| 		goto out_teardown;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| out_teardown:
 | |
| 	bcm_clk_teardown(bcm_clk);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ccu_clks_teardown(struct ccu_data *ccu)
 | |
| {
 | |
| 	u32 i;
 | |
| 
 | |
| 	for (i = 0; i < ccu->clk_num; i++)
 | |
| 		kona_clk_teardown(&ccu->kona_clks[i].hw);
 | |
| }
 | |
| 
 | |
| static void kona_ccu_teardown(struct ccu_data *ccu)
 | |
| {
 | |
| 	if (!ccu->base)
 | |
| 		return;
 | |
| 
 | |
| 	of_clk_del_provider(ccu->node);	/* safe if never added */
 | |
| 	ccu_clks_teardown(ccu);
 | |
| 	of_node_put(ccu->node);
 | |
| 	ccu->node = NULL;
 | |
| 	iounmap(ccu->base);
 | |
| 	ccu->base = NULL;
 | |
| }
 | |
| 
 | |
| static bool ccu_data_valid(struct ccu_data *ccu)
 | |
| {
 | |
| 	struct ccu_policy *ccu_policy;
 | |
| 
 | |
| 	if (!ccu_data_offsets_valid(ccu))
 | |
| 		return false;
 | |
| 
 | |
| 	ccu_policy = &ccu->policy;
 | |
| 	if (ccu_policy_exists(ccu_policy))
 | |
| 		if (!ccu_policy_valid(ccu_policy, ccu->name))
 | |
| 			return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct clk_hw *
 | |
| of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data)
 | |
| {
 | |
| 	struct ccu_data *ccu = data;
 | |
| 	unsigned int idx = clkspec->args[0];
 | |
| 
 | |
| 	if (idx >= ccu->clk_num) {
 | |
| 		pr_err("%s: invalid index %u\n", __func__, idx);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	return &ccu->kona_clks[idx].hw;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up a CCU.  Call the provided ccu_clks_setup callback to
 | |
|  * initialize the array of clocks provided by the CCU.
 | |
|  */
 | |
| void __init kona_dt_ccu_setup(struct ccu_data *ccu,
 | |
| 			struct device_node *node)
 | |
| {
 | |
| 	struct resource res = { 0 };
 | |
| 	resource_size_t range;
 | |
| 	unsigned int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = of_address_to_resource(node, 0, &res);
 | |
| 	if (ret) {
 | |
| 		pr_err("%s: no valid CCU registers found for %s\n", __func__,
 | |
| 			node->name);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	range = resource_size(&res);
 | |
| 	if (range > (resource_size_t)U32_MAX) {
 | |
| 		pr_err("%s: address range too large for %s\n", __func__,
 | |
| 			node->name);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	ccu->range = (u32)range;
 | |
| 
 | |
| 	if (!ccu_data_valid(ccu)) {
 | |
| 		pr_err("%s: ccu data not valid for %s\n", __func__, node->name);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	ccu->base = ioremap(res.start, ccu->range);
 | |
| 	if (!ccu->base) {
 | |
| 		pr_err("%s: unable to map CCU registers for %s\n", __func__,
 | |
| 			node->name);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 	ccu->node = of_node_get(node);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up each defined kona clock and save the result in
 | |
| 	 * the clock framework clock array (in ccu->data).  Then
 | |
| 	 * register as a provider for these clocks.
 | |
| 	 */
 | |
| 	for (i = 0; i < ccu->clk_num; i++) {
 | |
| 		if (!ccu->kona_clks[i].ccu)
 | |
| 			continue;
 | |
| 		kona_clk_setup(&ccu->kona_clks[i]);
 | |
| 	}
 | |
| 
 | |
| 	ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu);
 | |
| 	if (ret) {
 | |
| 		pr_err("%s: error adding ccu %s as provider (%d)\n", __func__,
 | |
| 				node->name, ret);
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	if (!kona_ccu_init(ccu))
 | |
| 		pr_err("Broadcom %s initialization had errors\n", node->name);
 | |
| 
 | |
| 	return;
 | |
| out_err:
 | |
| 	kona_ccu_teardown(ccu);
 | |
| 	pr_err("Broadcom %s setup aborted\n", node->name);
 | |
| }
 | 
