1072 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1072 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * This module enables machines with Intel VT-x extensions to run virtual
 | |
|  * machines without emulation or binary translation.
 | |
|  *
 | |
|  * MMU support
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
 | |
|  * so the code in this file is compiled twice, once per pte size.
 | |
|  */
 | |
| 
 | |
| #if PTTYPE == 64
 | |
| 	#define pt_element_t u64
 | |
| 	#define guest_walker guest_walker64
 | |
| 	#define FNAME(name) paging##64_##name
 | |
| 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
 | |
| 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
 | |
| 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
 | |
| 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
 | |
| 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
 | |
| 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
 | |
| 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
 | |
| 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
 | |
| 	#ifdef CONFIG_X86_64
 | |
| 	#define PT_MAX_FULL_LEVELS 4
 | |
| 	#define CMPXCHG cmpxchg
 | |
| 	#else
 | |
| 	#define CMPXCHG cmpxchg64
 | |
| 	#define PT_MAX_FULL_LEVELS 2
 | |
| 	#endif
 | |
| #elif PTTYPE == 32
 | |
| 	#define pt_element_t u32
 | |
| 	#define guest_walker guest_walker32
 | |
| 	#define FNAME(name) paging##32_##name
 | |
| 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
 | |
| 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
 | |
| 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
 | |
| 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
 | |
| 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
 | |
| 	#define PT_MAX_FULL_LEVELS 2
 | |
| 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
 | |
| 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
 | |
| 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
 | |
| 	#define CMPXCHG cmpxchg
 | |
| #elif PTTYPE == PTTYPE_EPT
 | |
| 	#define pt_element_t u64
 | |
| 	#define guest_walker guest_walkerEPT
 | |
| 	#define FNAME(name) ept_##name
 | |
| 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
 | |
| 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
 | |
| 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
 | |
| 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
 | |
| 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
 | |
| 	#define PT_GUEST_DIRTY_SHIFT 9
 | |
| 	#define PT_GUEST_ACCESSED_SHIFT 8
 | |
| 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
 | |
| 	#define CMPXCHG cmpxchg64
 | |
| 	#define PT_MAX_FULL_LEVELS 4
 | |
| #else
 | |
| 	#error Invalid PTTYPE value
 | |
| #endif
 | |
| 
 | |
| #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
 | |
| #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
 | |
| 
 | |
| #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
 | |
| #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
 | |
| 
 | |
| /*
 | |
|  * The guest_walker structure emulates the behavior of the hardware page
 | |
|  * table walker.
 | |
|  */
 | |
| struct guest_walker {
 | |
| 	int level;
 | |
| 	unsigned max_level;
 | |
| 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
 | |
| 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
 | |
| 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
 | |
| 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
 | |
| 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
 | |
| 	bool pte_writable[PT_MAX_FULL_LEVELS];
 | |
| 	unsigned pt_access;
 | |
| 	unsigned pte_access;
 | |
| 	gfn_t gfn;
 | |
| 	struct x86_exception fault;
 | |
| };
 | |
| 
 | |
| static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
 | |
| {
 | |
| 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
 | |
| 					     unsigned gpte)
 | |
| {
 | |
| 	unsigned mask;
 | |
| 
 | |
| 	/* dirty bit is not supported, so no need to track it */
 | |
| 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
 | |
| 		return;
 | |
| 
 | |
| 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
 | |
| 
 | |
| 	mask = (unsigned)~ACC_WRITE_MASK;
 | |
| 	/* Allow write access to dirty gptes */
 | |
| 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
 | |
| 		PT_WRITABLE_MASK;
 | |
| 	*access &= mask;
 | |
| }
 | |
| 
 | |
| static inline int FNAME(is_present_gpte)(unsigned long pte)
 | |
| {
 | |
| #if PTTYPE != PTTYPE_EPT
 | |
| 	return pte & PT_PRESENT_MASK;
 | |
| #else
 | |
| 	return pte & 7;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | |
| 			       pt_element_t __user *ptep_user, unsigned index,
 | |
| 			       pt_element_t orig_pte, pt_element_t new_pte)
 | |
| {
 | |
| 	int npages;
 | |
| 	pt_element_t ret;
 | |
| 	pt_element_t *table;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
 | |
| 	/* Check if the user is doing something meaningless. */
 | |
| 	if (unlikely(npages != 1))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	table = kmap_atomic(page);
 | |
| 	ret = CMPXCHG(&table[index], orig_pte, new_pte);
 | |
| 	kunmap_atomic(table);
 | |
| 
 | |
| 	kvm_release_page_dirty(page);
 | |
| 
 | |
| 	return (ret != orig_pte);
 | |
| }
 | |
| 
 | |
| static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp, u64 *spte,
 | |
| 				  u64 gpte)
 | |
| {
 | |
| 	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
 | |
| 		goto no_present;
 | |
| 
 | |
| 	if (!FNAME(is_present_gpte)(gpte))
 | |
| 		goto no_present;
 | |
| 
 | |
| 	/* if accessed bit is not supported prefetch non accessed gpte */
 | |
| 	if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK))
 | |
| 		goto no_present;
 | |
| 
 | |
| 	return false;
 | |
| 
 | |
| no_present:
 | |
| 	drop_spte(vcpu->kvm, spte);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For PTTYPE_EPT, a page table can be executable but not readable
 | |
|  * on supported processors. Therefore, set_spte does not automatically
 | |
|  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
 | |
|  * to signify readability since it isn't used in the EPT case
 | |
|  */
 | |
| static inline unsigned FNAME(gpte_access)(u64 gpte)
 | |
| {
 | |
| 	unsigned access;
 | |
| #if PTTYPE == PTTYPE_EPT
 | |
| 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
 | |
| 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
 | |
| 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
 | |
| #else
 | |
| 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
 | |
| 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
 | |
| 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
 | |
| 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
 | |
| 	access ^= (gpte >> PT64_NX_SHIFT);
 | |
| #endif
 | |
| 
 | |
| 	return access;
 | |
| }
 | |
| 
 | |
| static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
 | |
| 					     struct kvm_mmu *mmu,
 | |
| 					     struct guest_walker *walker,
 | |
| 					     int write_fault)
 | |
| {
 | |
| 	unsigned level, index;
 | |
| 	pt_element_t pte, orig_pte;
 | |
| 	pt_element_t __user *ptep_user;
 | |
| 	gfn_t table_gfn;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* dirty/accessed bits are not supported, so no need to update them */
 | |
| 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (level = walker->max_level; level >= walker->level; --level) {
 | |
| 		pte = orig_pte = walker->ptes[level - 1];
 | |
| 		table_gfn = walker->table_gfn[level - 1];
 | |
| 		ptep_user = walker->ptep_user[level - 1];
 | |
| 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
 | |
| 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
 | |
| 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
 | |
| 			pte |= PT_GUEST_ACCESSED_MASK;
 | |
| 		}
 | |
| 		if (level == walker->level && write_fault &&
 | |
| 				!(pte & PT_GUEST_DIRTY_MASK)) {
 | |
| 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
 | |
| #if PTTYPE == PTTYPE_EPT
 | |
| 			if (kvm_arch_write_log_dirty(vcpu))
 | |
| 				return -EINVAL;
 | |
| #endif
 | |
| 			pte |= PT_GUEST_DIRTY_MASK;
 | |
| 		}
 | |
| 		if (pte == orig_pte)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the slot is read-only, simply do not process the accessed
 | |
| 		 * and dirty bits.  This is the correct thing to do if the slot
 | |
| 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
 | |
| 		 * are only supported if the accessed and dirty bits are already
 | |
| 		 * set in the ROM (so that MMIO writes are never needed).
 | |
| 		 *
 | |
| 		 * Note that NPT does not allow this at all and faults, since
 | |
| 		 * it always wants nested page table entries for the guest
 | |
| 		 * page tables to be writable.  And EPT works but will simply
 | |
| 		 * overwrite the read-only memory to set the accessed and dirty
 | |
| 		 * bits.
 | |
| 		 */
 | |
| 		if (unlikely(!walker->pte_writable[level - 1]))
 | |
| 			continue;
 | |
| 
 | |
| 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
 | |
| 		walker->ptes[level - 1] = pte;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
 | |
| {
 | |
| 	unsigned pkeys = 0;
 | |
| #if PTTYPE == 64
 | |
| 	pte_t pte = {.pte = gpte};
 | |
| 
 | |
| 	pkeys = pte_flags_pkey(pte_flags(pte));
 | |
| #endif
 | |
| 	return pkeys;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fetch a guest pte for a guest virtual address
 | |
|  */
 | |
| static int FNAME(walk_addr_generic)(struct guest_walker *walker,
 | |
| 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | |
| 				    gva_t addr, u32 access)
 | |
| {
 | |
| 	int ret;
 | |
| 	pt_element_t pte;
 | |
| 	pt_element_t __user *uninitialized_var(ptep_user);
 | |
| 	gfn_t table_gfn;
 | |
| 	u64 pt_access, pte_access;
 | |
| 	unsigned index, accessed_dirty, pte_pkey;
 | |
| 	unsigned nested_access;
 | |
| 	gpa_t pte_gpa;
 | |
| 	bool have_ad;
 | |
| 	int offset;
 | |
| 	u64 walk_nx_mask = 0;
 | |
| 	const int write_fault = access & PFERR_WRITE_MASK;
 | |
| 	const int user_fault  = access & PFERR_USER_MASK;
 | |
| 	const int fetch_fault = access & PFERR_FETCH_MASK;
 | |
| 	u16 errcode = 0;
 | |
| 	gpa_t real_gpa;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	trace_kvm_mmu_pagetable_walk(addr, access);
 | |
| retry_walk:
 | |
| 	walker->level = mmu->root_level;
 | |
| 	pte           = mmu->get_cr3(vcpu);
 | |
| 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
 | |
| 
 | |
| #if PTTYPE == 64
 | |
| 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
 | |
| 	if (walker->level == PT32E_ROOT_LEVEL) {
 | |
| 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
 | |
| 		trace_kvm_mmu_paging_element(pte, walker->level);
 | |
| 		if (!FNAME(is_present_gpte)(pte))
 | |
| 			goto error;
 | |
| 		--walker->level;
 | |
| 	}
 | |
| #endif
 | |
| 	walker->max_level = walker->level;
 | |
| 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
 | |
| 	 * by the MOV to CR instruction are treated as reads and do not cause the
 | |
| 	 * processor to set the dirty flag in any EPT paging-structure entry.
 | |
| 	 */
 | |
| 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
 | |
| 
 | |
| 	pte_access = ~0;
 | |
| 	++walker->level;
 | |
| 
 | |
| 	do {
 | |
| 		gfn_t real_gfn;
 | |
| 		unsigned long host_addr;
 | |
| 
 | |
| 		pt_access = pte_access;
 | |
| 		--walker->level;
 | |
| 
 | |
| 		index = PT_INDEX(addr, walker->level);
 | |
| 		table_gfn = gpte_to_gfn(pte);
 | |
| 		offset    = index * sizeof(pt_element_t);
 | |
| 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
 | |
| 
 | |
| 		BUG_ON(walker->level < 1);
 | |
| 		walker->table_gfn[walker->level - 1] = table_gfn;
 | |
| 		walker->pte_gpa[walker->level - 1] = pte_gpa;
 | |
| 
 | |
| 		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
 | |
| 					      nested_access,
 | |
| 					      &walker->fault);
 | |
| 
 | |
| 		/*
 | |
| 		 * FIXME: This can happen if emulation (for of an INS/OUTS
 | |
| 		 * instruction) triggers a nested page fault.  The exit
 | |
| 		 * qualification / exit info field will incorrectly have
 | |
| 		 * "guest page access" as the nested page fault's cause,
 | |
| 		 * instead of "guest page structure access".  To fix this,
 | |
| 		 * the x86_exception struct should be augmented with enough
 | |
| 		 * information to fix the exit_qualification or exit_info_1
 | |
| 		 * fields.
 | |
| 		 */
 | |
| 		if (unlikely(real_gfn == UNMAPPED_GVA))
 | |
| 			return 0;
 | |
| 
 | |
| 		real_gfn = gpa_to_gfn(real_gfn);
 | |
| 
 | |
| 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
 | |
| 					    &walker->pte_writable[walker->level - 1]);
 | |
| 		if (unlikely(kvm_is_error_hva(host_addr)))
 | |
| 			goto error;
 | |
| 
 | |
| 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
 | |
| 		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
 | |
| 			goto error;
 | |
| 		walker->ptep_user[walker->level - 1] = ptep_user;
 | |
| 
 | |
| 		trace_kvm_mmu_paging_element(pte, walker->level);
 | |
| 
 | |
| 		/*
 | |
| 		 * Inverting the NX it lets us AND it like other
 | |
| 		 * permission bits.
 | |
| 		 */
 | |
| 		pte_access = pt_access & (pte ^ walk_nx_mask);
 | |
| 
 | |
| 		if (unlikely(!FNAME(is_present_gpte)(pte)))
 | |
| 			goto error;
 | |
| 
 | |
| 		if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
 | |
| 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		walker->ptes[walker->level - 1] = pte;
 | |
| 	} while (!is_last_gpte(mmu, walker->level, pte));
 | |
| 
 | |
| 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
 | |
| 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
 | |
| 
 | |
| 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
 | |
| 	walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
 | |
| 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
 | |
| 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
 | |
| 	if (unlikely(errcode))
 | |
| 		goto error;
 | |
| 
 | |
| 	gfn = gpte_to_gfn_lvl(pte, walker->level);
 | |
| 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
 | |
| 		gfn += pse36_gfn_delta(pte);
 | |
| 
 | |
| 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
 | |
| 	if (real_gpa == UNMAPPED_GVA)
 | |
| 		return 0;
 | |
| 
 | |
| 	walker->gfn = real_gpa >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (!write_fault)
 | |
| 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
 | |
| 	else
 | |
| 		/*
 | |
| 		 * On a write fault, fold the dirty bit into accessed_dirty.
 | |
| 		 * For modes without A/D bits support accessed_dirty will be
 | |
| 		 * always clear.
 | |
| 		 */
 | |
| 		accessed_dirty &= pte >>
 | |
| 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
 | |
| 
 | |
| 	if (unlikely(!accessed_dirty)) {
 | |
| 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
 | |
| 		if (unlikely(ret < 0))
 | |
| 			goto error;
 | |
| 		else if (ret)
 | |
| 			goto retry_walk;
 | |
| 	}
 | |
| 
 | |
| 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
 | |
| 		 __func__, (u64)pte, walker->pte_access, walker->pt_access);
 | |
| 	return 1;
 | |
| 
 | |
| error:
 | |
| 	errcode |= write_fault | user_fault;
 | |
| 	if (fetch_fault && (mmu->nx ||
 | |
| 			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
 | |
| 		errcode |= PFERR_FETCH_MASK;
 | |
| 
 | |
| 	walker->fault.vector = PF_VECTOR;
 | |
| 	walker->fault.error_code_valid = true;
 | |
| 	walker->fault.error_code = errcode;
 | |
| 
 | |
| #if PTTYPE == PTTYPE_EPT
 | |
| 	/*
 | |
| 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
 | |
| 	 * misconfiguration requires to be injected. The detection is
 | |
| 	 * done by is_rsvd_bits_set() above.
 | |
| 	 *
 | |
| 	 * We set up the value of exit_qualification to inject:
 | |
| 	 * [2:0] - Derive from the access bits. The exit_qualification might be
 | |
| 	 *         out of date if it is serving an EPT misconfiguration.
 | |
| 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
 | |
| 	 * [7:8] - Derived from [7:8] of real exit_qualification
 | |
| 	 *
 | |
| 	 * The other bits are set to 0.
 | |
| 	 */
 | |
| 	if (!(errcode & PFERR_RSVD_MASK)) {
 | |
| 		vcpu->arch.exit_qualification &= 0x180;
 | |
| 		if (write_fault)
 | |
| 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
 | |
| 		if (user_fault)
 | |
| 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
 | |
| 		if (fetch_fault)
 | |
| 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
 | |
| 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
 | |
| 	}
 | |
| #endif
 | |
| 	walker->fault.address = addr;
 | |
| 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	trace_kvm_mmu_walker_error(walker->fault.error_code);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int FNAME(walk_addr)(struct guest_walker *walker,
 | |
| 			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
 | |
| {
 | |
| 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
 | |
| 					access);
 | |
| }
 | |
| 
 | |
| #if PTTYPE != PTTYPE_EPT
 | |
| static int FNAME(walk_addr_nested)(struct guest_walker *walker,
 | |
| 				   struct kvm_vcpu *vcpu, gva_t addr,
 | |
| 				   u32 access)
 | |
| {
 | |
| 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
 | |
| 					addr, access);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool
 | |
| FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
 | |
| {
 | |
| 	unsigned pte_access;
 | |
| 	gfn_t gfn;
 | |
| 	kvm_pfn_t pfn;
 | |
| 
 | |
| 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
 | |
| 		return false;
 | |
| 
 | |
| 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
 | |
| 
 | |
| 	gfn = gpte_to_gfn(gpte);
 | |
| 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
 | |
| 	FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
 | |
| 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
 | |
| 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
 | |
| 	if (is_error_pfn(pfn))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * we call mmu_set_spte() with host_writable = true because
 | |
| 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
 | |
| 	 */
 | |
| 	mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
 | |
| 		     true, true);
 | |
| 
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 			      u64 *spte, const void *pte)
 | |
| {
 | |
| 	pt_element_t gpte = *(const pt_element_t *)pte;
 | |
| 
 | |
| 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
 | |
| }
 | |
| 
 | |
| static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
 | |
| 				struct guest_walker *gw, int level)
 | |
| {
 | |
| 	pt_element_t curr_pte;
 | |
| 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
 | |
| 	u64 mask;
 | |
| 	int r, index;
 | |
| 
 | |
| 	if (level == PT_PAGE_TABLE_LEVEL) {
 | |
| 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
 | |
| 		base_gpa = pte_gpa & ~mask;
 | |
| 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
 | |
| 
 | |
| 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
 | |
| 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
 | |
| 		curr_pte = gw->prefetch_ptes[index];
 | |
| 	} else
 | |
| 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
 | |
| 				  &curr_pte, sizeof(curr_pte));
 | |
| 
 | |
| 	return r || curr_pte != gw->ptes[level - 1];
 | |
| }
 | |
| 
 | |
| static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
 | |
| 				u64 *sptep)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	pt_element_t *gptep = gw->prefetch_ptes;
 | |
| 	u64 *spte;
 | |
| 	int i;
 | |
| 
 | |
| 	sp = page_header(__pa(sptep));
 | |
| 
 | |
| 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
 | |
| 		return;
 | |
| 
 | |
| 	if (sp->role.direct)
 | |
| 		return __direct_pte_prefetch(vcpu, sp, sptep);
 | |
| 
 | |
| 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
 | |
| 	spte = sp->spt + i;
 | |
| 
 | |
| 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
 | |
| 		if (spte == sptep)
 | |
| 			continue;
 | |
| 
 | |
| 		if (is_shadow_present_pte(*spte))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fetch a shadow pte for a specific level in the paging hierarchy.
 | |
|  * If the guest tries to write a write-protected page, we need to
 | |
|  * emulate this operation, return 1 to indicate this case.
 | |
|  */
 | |
| static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
 | |
| 			 struct guest_walker *gw,
 | |
| 			 int write_fault, int hlevel,
 | |
| 			 kvm_pfn_t pfn, bool map_writable, bool prefault,
 | |
| 			 bool lpage_disallowed)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp = NULL;
 | |
| 	struct kvm_shadow_walk_iterator it;
 | |
| 	unsigned direct_access, access = gw->pt_access;
 | |
| 	int top_level, ret;
 | |
| 	gfn_t gfn, base_gfn;
 | |
| 
 | |
| 	direct_access = gw->pte_access;
 | |
| 
 | |
| 	top_level = vcpu->arch.mmu.root_level;
 | |
| 	if (top_level == PT32E_ROOT_LEVEL)
 | |
| 		top_level = PT32_ROOT_LEVEL;
 | |
| 	/*
 | |
| 	 * Verify that the top-level gpte is still there.  Since the page
 | |
| 	 * is a root page, it is either write protected (and cannot be
 | |
| 	 * changed from now on) or it is invalid (in which case, we don't
 | |
| 	 * really care if it changes underneath us after this point).
 | |
| 	 */
 | |
| 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
 | |
| 		goto out_gpte_changed;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 		goto out_gpte_changed;
 | |
| 
 | |
| 	for (shadow_walk_init(&it, vcpu, addr);
 | |
| 	     shadow_walk_okay(&it) && it.level > gw->level;
 | |
| 	     shadow_walk_next(&it)) {
 | |
| 		gfn_t table_gfn;
 | |
| 
 | |
| 		clear_sp_write_flooding_count(it.sptep);
 | |
| 		drop_large_spte(vcpu, it.sptep);
 | |
| 
 | |
| 		sp = NULL;
 | |
| 		if (!is_shadow_present_pte(*it.sptep)) {
 | |
| 			table_gfn = gw->table_gfn[it.level - 2];
 | |
| 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
 | |
| 					      false, access);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Verify that the gpte in the page we've just write
 | |
| 		 * protected is still there.
 | |
| 		 */
 | |
| 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
 | |
| 			goto out_gpte_changed;
 | |
| 
 | |
| 		if (sp)
 | |
| 			link_shadow_page(vcpu, it.sptep, sp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * FNAME(page_fault) might have clobbered the bottom bits of
 | |
| 	 * gw->gfn, restore them from the virtual address.
 | |
| 	 */
 | |
| 	gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
 | |
| 	base_gfn = gfn;
 | |
| 
 | |
| 	trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
 | |
| 
 | |
| 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
 | |
| 		clear_sp_write_flooding_count(it.sptep);
 | |
| 
 | |
| 		/*
 | |
| 		 * We cannot overwrite existing page tables with an NX
 | |
| 		 * large page, as the leaf could be executable.
 | |
| 		 */
 | |
| 		disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
 | |
| 
 | |
| 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
 | |
| 		if (it.level == hlevel)
 | |
| 			break;
 | |
| 
 | |
| 		validate_direct_spte(vcpu, it.sptep, direct_access);
 | |
| 
 | |
| 		drop_large_spte(vcpu, it.sptep);
 | |
| 
 | |
| 		if (!is_shadow_present_pte(*it.sptep)) {
 | |
| 			sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
 | |
| 					      it.level - 1, true, direct_access);
 | |
| 			link_shadow_page(vcpu, it.sptep, sp);
 | |
| 			if (lpage_disallowed)
 | |
| 				account_huge_nx_page(vcpu->kvm, sp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
 | |
| 			   it.level, base_gfn, pfn, prefault, map_writable);
 | |
| 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
 | |
| 	++vcpu->stat.pf_fixed;
 | |
| 	return ret;
 | |
| 
 | |
| out_gpte_changed:
 | |
| 	return RET_PF_RETRY;
 | |
| }
 | |
| 
 | |
|  /*
 | |
|  * To see whether the mapped gfn can write its page table in the current
 | |
|  * mapping.
 | |
|  *
 | |
|  * It is the helper function of FNAME(page_fault). When guest uses large page
 | |
|  * size to map the writable gfn which is used as current page table, we should
 | |
|  * force kvm to use small page size to map it because new shadow page will be
 | |
|  * created when kvm establishes shadow page table that stop kvm using large
 | |
|  * page size. Do it early can avoid unnecessary #PF and emulation.
 | |
|  *
 | |
|  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
 | |
|  * currently used as its page table.
 | |
|  *
 | |
|  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
 | |
|  * since the PDPT is always shadowed, that means, we can not use large page
 | |
|  * size to map the gfn which is used as PDPT.
 | |
|  */
 | |
| static bool
 | |
| FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
 | |
| 			      struct guest_walker *walker, int user_fault,
 | |
| 			      bool *write_fault_to_shadow_pgtable)
 | |
| {
 | |
| 	int level;
 | |
| 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
 | |
| 	bool self_changed = false;
 | |
| 
 | |
| 	if (!(walker->pte_access & ACC_WRITE_MASK ||
 | |
| 	      (!is_write_protection(vcpu) && !user_fault)))
 | |
| 		return false;
 | |
| 
 | |
| 	for (level = walker->level; level <= walker->max_level; level++) {
 | |
| 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
 | |
| 
 | |
| 		self_changed |= !(gfn & mask);
 | |
| 		*write_fault_to_shadow_pgtable |= !gfn;
 | |
| 	}
 | |
| 
 | |
| 	return self_changed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Page fault handler.  There are several causes for a page fault:
 | |
|  *   - there is no shadow pte for the guest pte
 | |
|  *   - write access through a shadow pte marked read only so that we can set
 | |
|  *     the dirty bit
 | |
|  *   - write access to a shadow pte marked read only so we can update the page
 | |
|  *     dirty bitmap, when userspace requests it
 | |
|  *   - mmio access; in this case we will never install a present shadow pte
 | |
|  *   - normal guest page fault due to the guest pte marked not present, not
 | |
|  *     writable, or not executable
 | |
|  *
 | |
|  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
 | |
|  *           a negative value on error.
 | |
|  */
 | |
| static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
 | |
| 			     bool prefault)
 | |
| {
 | |
| 	int write_fault = error_code & PFERR_WRITE_MASK;
 | |
| 	int user_fault = error_code & PFERR_USER_MASK;
 | |
| 	struct guest_walker walker;
 | |
| 	int r;
 | |
| 	kvm_pfn_t pfn;
 | |
| 	int level = PT_PAGE_TABLE_LEVEL;
 | |
| 	unsigned long mmu_seq;
 | |
| 	bool map_writable, is_self_change_mapping;
 | |
| 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
 | |
| 				is_nx_huge_page_enabled();
 | |
| 	bool force_pt_level = lpage_disallowed;
 | |
| 
 | |
| 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	/*
 | |
| 	 * If PFEC.RSVD is set, this is a shadow page fault.
 | |
| 	 * The bit needs to be cleared before walking guest page tables.
 | |
| 	 */
 | |
| 	error_code &= ~PFERR_RSVD_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Look up the guest pte for the faulting address.
 | |
| 	 */
 | |
| 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
 | |
| 
 | |
| 	/*
 | |
| 	 * The page is not mapped by the guest.  Let the guest handle it.
 | |
| 	 */
 | |
| 	if (!r) {
 | |
| 		pgprintk("%s: guest page fault\n", __func__);
 | |
| 		if (!prefault)
 | |
| 			inject_page_fault(vcpu, &walker.fault);
 | |
| 
 | |
| 		return RET_PF_RETRY;
 | |
| 	}
 | |
| 
 | |
| 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
 | |
| 		shadow_page_table_clear_flood(vcpu, addr);
 | |
| 		return RET_PF_EMULATE;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.write_fault_to_shadow_pgtable = false;
 | |
| 
 | |
| 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
 | |
| 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
 | |
| 
 | |
| 	if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
 | |
| 		level = mapping_level(vcpu, walker.gfn, &force_pt_level);
 | |
| 		if (likely(!force_pt_level)) {
 | |
| 			level = min(walker.level, level);
 | |
| 			walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
 | |
| 		}
 | |
| 	} else
 | |
| 		force_pt_level = true;
 | |
| 
 | |
| 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
 | |
| 			 &map_writable))
 | |
| 		return RET_PF_RETRY;
 | |
| 
 | |
| 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
 | |
| 		return r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not change pte_access if the pfn is a mmio page, otherwise
 | |
| 	 * we will cache the incorrect access into mmio spte.
 | |
| 	 */
 | |
| 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
 | |
| 	     !is_write_protection(vcpu) && !user_fault &&
 | |
| 	      !is_noslot_pfn(pfn)) {
 | |
| 		walker.pte_access |= ACC_WRITE_MASK;
 | |
| 		walker.pte_access &= ~ACC_USER_MASK;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we converted a user page to a kernel page,
 | |
| 		 * so that the kernel can write to it when cr0.wp=0,
 | |
| 		 * then we should prevent the kernel from executing it
 | |
| 		 * if SMEP is enabled.
 | |
| 		 */
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
 | |
| 			walker.pte_access &= ~ACC_EXEC_MASK;
 | |
| 	}
 | |
| 
 | |
| 	r = RET_PF_RETRY;
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
 | |
| 	if (make_mmu_pages_available(vcpu) < 0)
 | |
| 		goto out_unlock;
 | |
| 	if (!force_pt_level)
 | |
| 		transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level);
 | |
| 	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
 | |
| 			 level, pfn, map_writable, prefault, lpage_disallowed);
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	int offset = 0;
 | |
| 
 | |
| 	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
 | |
| 
 | |
| 	if (PTTYPE == 32)
 | |
| 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
 | |
| 
 | |
| 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
 | |
| }
 | |
| 
 | |
| static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int level;
 | |
| 	u64 *sptep;
 | |
| 
 | |
| 	vcpu_clear_mmio_info(vcpu, gva);
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to check return value here, rmap_can_add() can
 | |
| 	 * help us to skip pte prefetch later.
 | |
| 	 */
 | |
| 	mmu_topup_memory_caches(vcpu);
 | |
| 
 | |
| 	if (!VALID_PAGE(root_hpa)) {
 | |
| 		WARN_ON(1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
 | |
| 		level = iterator.level;
 | |
| 		sptep = iterator.sptep;
 | |
| 
 | |
| 		sp = page_header(__pa(sptep));
 | |
| 		if (is_last_spte(*sptep, level)) {
 | |
| 			pt_element_t gpte;
 | |
| 			gpa_t pte_gpa;
 | |
| 
 | |
| 			if (!sp->unsync)
 | |
| 				break;
 | |
| 
 | |
| 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
 | |
| 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
 | |
| 
 | |
| 			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
 | |
| 				kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 
 | |
| 			if (!rmap_can_add(vcpu))
 | |
| 				break;
 | |
| 
 | |
| 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
 | |
| 						       sizeof(pt_element_t)))
 | |
| 				break;
 | |
| 
 | |
| 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
 | |
| 		}
 | |
| 
 | |
| 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
 | |
| 			       struct x86_exception *exception)
 | |
| {
 | |
| 	struct guest_walker walker;
 | |
| 	gpa_t gpa = UNMAPPED_GVA;
 | |
| 	int r;
 | |
| 
 | |
| 	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
 | |
| 
 | |
| 	if (r) {
 | |
| 		gpa = gfn_to_gpa(walker.gfn);
 | |
| 		gpa |= vaddr & ~PAGE_MASK;
 | |
| 	} else if (exception)
 | |
| 		*exception = walker.fault;
 | |
| 
 | |
| 	return gpa;
 | |
| }
 | |
| 
 | |
| #if PTTYPE != PTTYPE_EPT
 | |
| static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
 | |
| 				      u32 access,
 | |
| 				      struct x86_exception *exception)
 | |
| {
 | |
| 	struct guest_walker walker;
 | |
| 	gpa_t gpa = UNMAPPED_GVA;
 | |
| 	int r;
 | |
| 
 | |
| 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
 | |
| 
 | |
| 	if (r) {
 | |
| 		gpa = gfn_to_gpa(walker.gfn);
 | |
| 		gpa |= vaddr & ~PAGE_MASK;
 | |
| 	} else if (exception)
 | |
| 		*exception = walker.fault;
 | |
| 
 | |
| 	return gpa;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Using the cached information from sp->gfns is safe because:
 | |
|  * - The spte has a reference to the struct page, so the pfn for a given gfn
 | |
|  *   can't change unless all sptes pointing to it are nuked first.
 | |
|  *
 | |
|  * Note:
 | |
|  *   We should flush all tlbs if spte is dropped even though guest is
 | |
|  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
 | |
|  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
 | |
|  *   used by guest then tlbs are not flushed, so guest is allowed to access the
 | |
|  *   freed pages.
 | |
|  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
 | |
|  */
 | |
| static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	int i, nr_present = 0;
 | |
| 	bool host_writable;
 | |
| 	gpa_t first_pte_gpa;
 | |
| 	int set_spte_ret = 0;
 | |
| 
 | |
| 	/* direct kvm_mmu_page can not be unsync. */
 | |
| 	BUG_ON(sp->role.direct);
 | |
| 
 | |
| 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
 | |
| 		unsigned pte_access;
 | |
| 		pt_element_t gpte;
 | |
| 		gpa_t pte_gpa;
 | |
| 		gfn_t gfn;
 | |
| 
 | |
| 		if (!sp->spt[i])
 | |
| 			continue;
 | |
| 
 | |
| 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
 | |
| 
 | |
| 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
 | |
| 					       sizeof(pt_element_t)))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
 | |
| 			/*
 | |
| 			 * Update spte before increasing tlbs_dirty to make
 | |
| 			 * sure no tlb flush is lost after spte is zapped; see
 | |
| 			 * the comments in kvm_flush_remote_tlbs().
 | |
| 			 */
 | |
| 			smp_wmb();
 | |
| 			vcpu->kvm->tlbs_dirty++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		gfn = gpte_to_gfn(gpte);
 | |
| 		pte_access = sp->role.access;
 | |
| 		pte_access &= FNAME(gpte_access)(gpte);
 | |
| 		FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
 | |
| 
 | |
| 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
 | |
| 		      &nr_present))
 | |
| 			continue;
 | |
| 
 | |
| 		if (gfn != sp->gfns[i]) {
 | |
| 			drop_spte(vcpu->kvm, &sp->spt[i]);
 | |
| 			/*
 | |
| 			 * The same as above where we are doing
 | |
| 			 * prefetch_invalid_gpte().
 | |
| 			 */
 | |
| 			smp_wmb();
 | |
| 			vcpu->kvm->tlbs_dirty++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		nr_present++;
 | |
| 
 | |
| 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
 | |
| 
 | |
| 		set_spte_ret |= set_spte(vcpu, &sp->spt[i],
 | |
| 					 pte_access, PT_PAGE_TABLE_LEVEL,
 | |
| 					 gfn, spte_to_pfn(sp->spt[i]),
 | |
| 					 true, false, host_writable);
 | |
| 	}
 | |
| 
 | |
| 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
 | |
| 		kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 
 | |
| 	return nr_present;
 | |
| }
 | |
| 
 | |
| #undef pt_element_t
 | |
| #undef guest_walker
 | |
| #undef FNAME
 | |
| #undef PT_BASE_ADDR_MASK
 | |
| #undef PT_INDEX
 | |
| #undef PT_LVL_ADDR_MASK
 | |
| #undef PT_LVL_OFFSET_MASK
 | |
| #undef PT_LEVEL_BITS
 | |
| #undef PT_MAX_FULL_LEVELS
 | |
| #undef gpte_to_gfn
 | |
| #undef gpte_to_gfn_lvl
 | |
| #undef CMPXCHG
 | |
| #undef PT_GUEST_ACCESSED_MASK
 | |
| #undef PT_GUEST_DIRTY_MASK
 | |
| #undef PT_GUEST_DIRTY_SHIFT
 | |
| #undef PT_GUEST_ACCESSED_SHIFT
 | |
| #undef PT_HAVE_ACCESSED_DIRTY
 | 
