224 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef __KVM_X86_MMU_H
 | |
| #define __KVM_X86_MMU_H
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include "kvm_cache_regs.h"
 | |
| 
 | |
| #define PT64_PT_BITS 9
 | |
| #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
 | |
| #define PT32_PT_BITS 10
 | |
| #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 | |
| 
 | |
| #define PT_WRITABLE_SHIFT 1
 | |
| #define PT_USER_SHIFT 2
 | |
| 
 | |
| #define PT_PRESENT_MASK (1ULL << 0)
 | |
| #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 | |
| #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 | |
| #define PT_PWT_MASK (1ULL << 3)
 | |
| #define PT_PCD_MASK (1ULL << 4)
 | |
| #define PT_ACCESSED_SHIFT 5
 | |
| #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 | |
| #define PT_DIRTY_SHIFT 6
 | |
| #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 | |
| #define PT_PAGE_SIZE_SHIFT 7
 | |
| #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 | |
| #define PT_PAT_MASK (1ULL << 7)
 | |
| #define PT_GLOBAL_MASK (1ULL << 8)
 | |
| #define PT64_NX_SHIFT 63
 | |
| #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 | |
| 
 | |
| #define PT_PAT_SHIFT 7
 | |
| #define PT_DIR_PAT_SHIFT 12
 | |
| #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 | |
| 
 | |
| #define PT32_DIR_PSE36_SIZE 4
 | |
| #define PT32_DIR_PSE36_SHIFT 13
 | |
| #define PT32_DIR_PSE36_MASK \
 | |
| 	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 | |
| 
 | |
| #define PT64_ROOT_5LEVEL 5
 | |
| #define PT64_ROOT_4LEVEL 4
 | |
| #define PT32_ROOT_LEVEL 2
 | |
| #define PT32E_ROOT_LEVEL 3
 | |
| 
 | |
| #define PT_PDPE_LEVEL 3
 | |
| #define PT_DIRECTORY_LEVEL 2
 | |
| #define PT_PAGE_TABLE_LEVEL 1
 | |
| #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
 | |
| 
 | |
| static inline u64 rsvd_bits(int s, int e)
 | |
| {
 | |
| 	if (e < s)
 | |
| 		return 0;
 | |
| 
 | |
| 	return ((1ULL << (e - s + 1)) - 1) << s;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value);
 | |
| 
 | |
| void
 | |
| reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
 | |
| 
 | |
| void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
 | |
| void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
 | |
| void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 | |
| 			     bool accessed_dirty, gpa_t new_eptp);
 | |
| bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
 | |
| int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 | |
| 				u64 fault_address, char *insn, int insn_len);
 | |
| 
 | |
| static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
 | |
| {
 | |
| 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
 | |
| 		return kvm->arch.n_max_mmu_pages -
 | |
| 			kvm->arch.n_used_mmu_pages;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return kvm_mmu_load(vcpu);
 | |
| }
 | |
| 
 | |
| static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
 | |
| {
 | |
| 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
 | |
| 
 | |
| 	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
 | |
| 	       ? cr3 & X86_CR3_PCID_MASK
 | |
| 	       : 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
 | |
| }
 | |
| 
 | |
| static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 		vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa |
 | |
| 					     kvm_get_active_pcid(vcpu));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Currently, we have two sorts of write-protection, a) the first one
 | |
|  * write-protects guest page to sync the guest modification, b) another one is
 | |
|  * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
 | |
|  * between these two sorts are:
 | |
|  * 1) the first case clears SPTE_MMU_WRITEABLE bit.
 | |
|  * 2) the first case requires flushing tlb immediately avoiding corrupting
 | |
|  *    shadow page table between all vcpus so it should be in the protection of
 | |
|  *    mmu-lock. And the another case does not need to flush tlb until returning
 | |
|  *    the dirty bitmap to userspace since it only write-protects the page
 | |
|  *    logged in the bitmap, that means the page in the dirty bitmap is not
 | |
|  *    missed, so it can flush tlb out of mmu-lock.
 | |
|  *
 | |
|  * So, there is the problem: the first case can meet the corrupted tlb caused
 | |
|  * by another case which write-protects pages but without flush tlb
 | |
|  * immediately. In order to making the first case be aware this problem we let
 | |
|  * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
 | |
|  * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
 | |
|  *
 | |
|  * Anyway, whenever a spte is updated (only permission and status bits are
 | |
|  * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
 | |
|  * readonly, if that happens, we need to flush tlb. Fortunately,
 | |
|  * mmu_spte_update() has already handled it perfectly.
 | |
|  *
 | |
|  * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
 | |
|  * - if we want to see if it has writable tlb entry or if the spte can be
 | |
|  *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
 | |
|  *   case, otherwise
 | |
|  * - if we fix page fault on the spte or do write-protection by dirty logging,
 | |
|  *   check PT_WRITABLE_MASK.
 | |
|  *
 | |
|  * TODO: introduce APIs to split these two cases.
 | |
|  */
 | |
| static inline int is_writable_pte(unsigned long pte)
 | |
| {
 | |
| 	return pte & PT_WRITABLE_MASK;
 | |
| }
 | |
| 
 | |
| static inline bool is_write_protection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a given access (described through the I/D, W/R and U/S bits of a
 | |
|  * page fault error code pfec) causes a permission fault with the given PTE
 | |
|  * access rights (in ACC_* format).
 | |
|  *
 | |
|  * Return zero if the access does not fault; return the page fault error code
 | |
|  * if the access faults.
 | |
|  */
 | |
| static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | |
| 				  unsigned pte_access, unsigned pte_pkey,
 | |
| 				  unsigned pfec)
 | |
| {
 | |
| 	int cpl = kvm_x86_ops->get_cpl(vcpu);
 | |
| 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 | |
| 	 *
 | |
| 	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
 | |
| 	 * (these are implicit supervisor accesses) regardless of the value
 | |
| 	 * of EFLAGS.AC.
 | |
| 	 *
 | |
| 	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
 | |
| 	 * the result in X86_EFLAGS_AC. We then insert it in place of
 | |
| 	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
 | |
| 	 * but it will be one in index if SMAP checks are being overridden.
 | |
| 	 * It is important to keep this branchless.
 | |
| 	 */
 | |
| 	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
 | |
| 	int index = (pfec >> 1) +
 | |
| 		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
 | |
| 	bool fault = (mmu->permissions[index] >> pte_access) & 1;
 | |
| 	u32 errcode = PFERR_PRESENT_MASK;
 | |
| 
 | |
| 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
 | |
| 	if (unlikely(mmu->pkru_mask)) {
 | |
| 		u32 pkru_bits, offset;
 | |
| 
 | |
| 		/*
 | |
| 		* PKRU defines 32 bits, there are 16 domains and 2
 | |
| 		* attribute bits per domain in pkru.  pte_pkey is the
 | |
| 		* index of the protection domain, so pte_pkey * 2 is
 | |
| 		* is the index of the first bit for the domain.
 | |
| 		*/
 | |
| 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
 | |
| 
 | |
| 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
 | |
| 		offset = (pfec & ~1) +
 | |
| 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
 | |
| 
 | |
| 		pkru_bits &= mmu->pkru_mask >> offset;
 | |
| 		errcode |= -pkru_bits & PFERR_PK_MASK;
 | |
| 		fault |= (pkru_bits != 0);
 | |
| 	}
 | |
| 
 | |
| 	return -(u32)fault & errcode;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
 | |
| void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
 | |
| 
 | |
| void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
 | |
| void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
 | |
| bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
 | |
| 				    struct kvm_memory_slot *slot, u64 gfn);
 | |
| int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| int kvm_mmu_post_init_vm(struct kvm *kvm);
 | |
| void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
 | |
| 
 | |
| #endif
 | 
