182 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			182 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * irq.c: API for in kernel interrupt controller
 | |
|  * Copyright (c) 2007, Intel Corporation.
 | |
|  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 | |
|  * Place - Suite 330, Boston, MA 02111-1307 USA.
 | |
|  * Authors:
 | |
|  *   Yaozu (Eddie) Dong <Eddie.dong@intel.com>
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/kvm_host.h>
 | |
| 
 | |
| #include "irq.h"
 | |
| #include "i8254.h"
 | |
| #include "x86.h"
 | |
| 
 | |
| /*
 | |
|  * check if there are pending timer events
 | |
|  * to be processed.
 | |
|  */
 | |
| int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (lapic_in_kernel(vcpu))
 | |
| 		return apic_has_pending_timer(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(kvm_cpu_has_pending_timer);
 | |
| 
 | |
| /*
 | |
|  * check if there is a pending userspace external interrupt
 | |
|  */
 | |
| static int pending_userspace_extint(struct kvm_vcpu *v)
 | |
| {
 | |
| 	return v->arch.pending_external_vector != -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check if there is pending interrupt from
 | |
|  * non-APIC source without intack.
 | |
|  */
 | |
| static int kvm_cpu_has_extint(struct kvm_vcpu *v)
 | |
| {
 | |
| 	u8 accept = kvm_apic_accept_pic_intr(v);
 | |
| 
 | |
| 	if (accept) {
 | |
| 		if (irqchip_split(v->kvm))
 | |
| 			return pending_userspace_extint(v);
 | |
| 		else
 | |
| 			return v->kvm->arch.vpic->output;
 | |
| 	} else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check if there is injectable interrupt:
 | |
|  * when virtual interrupt delivery enabled,
 | |
|  * interrupt from apic will handled by hardware,
 | |
|  * we don't need to check it here.
 | |
|  */
 | |
| int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v)
 | |
| {
 | |
| 	/*
 | |
| 	 * FIXME: interrupt.injected represents an interrupt that it's
 | |
| 	 * side-effects have already been applied (e.g. bit from IRR
 | |
| 	 * already moved to ISR). Therefore, it is incorrect to rely
 | |
| 	 * on interrupt.injected to know if there is a pending
 | |
| 	 * interrupt in the user-mode LAPIC.
 | |
| 	 * This leads to nVMX/nSVM not be able to distinguish
 | |
| 	 * if it should exit from L2 to L1 on EXTERNAL_INTERRUPT on
 | |
| 	 * pending interrupt or should re-inject an injected
 | |
| 	 * interrupt.
 | |
| 	 */
 | |
| 	if (!lapic_in_kernel(v))
 | |
| 		return v->arch.interrupt.injected;
 | |
| 
 | |
| 	if (kvm_cpu_has_extint(v))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!is_guest_mode(v) && kvm_vcpu_apicv_active(v))
 | |
| 		return 0;
 | |
| 
 | |
| 	return kvm_apic_has_interrupt(v) != -1; /* LAPIC */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check if there is pending interrupt without
 | |
|  * intack.
 | |
|  */
 | |
| int kvm_cpu_has_interrupt(struct kvm_vcpu *v)
 | |
| {
 | |
| 	/*
 | |
| 	 * FIXME: interrupt.injected represents an interrupt that it's
 | |
| 	 * side-effects have already been applied (e.g. bit from IRR
 | |
| 	 * already moved to ISR). Therefore, it is incorrect to rely
 | |
| 	 * on interrupt.injected to know if there is a pending
 | |
| 	 * interrupt in the user-mode LAPIC.
 | |
| 	 * This leads to nVMX/nSVM not be able to distinguish
 | |
| 	 * if it should exit from L2 to L1 on EXTERNAL_INTERRUPT on
 | |
| 	 * pending interrupt or should re-inject an injected
 | |
| 	 * interrupt.
 | |
| 	 */
 | |
| 	if (!lapic_in_kernel(v))
 | |
| 		return v->arch.interrupt.injected;
 | |
| 
 | |
| 	if (kvm_cpu_has_extint(v))
 | |
| 		return 1;
 | |
| 
 | |
| 	return kvm_apic_has_interrupt(v) != -1;	/* LAPIC */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_cpu_has_interrupt);
 | |
| 
 | |
| /*
 | |
|  * Read pending interrupt(from non-APIC source)
 | |
|  * vector and intack.
 | |
|  */
 | |
| static int kvm_cpu_get_extint(struct kvm_vcpu *v)
 | |
| {
 | |
| 	if (kvm_cpu_has_extint(v)) {
 | |
| 		if (irqchip_split(v->kvm)) {
 | |
| 			int vector = v->arch.pending_external_vector;
 | |
| 
 | |
| 			v->arch.pending_external_vector = -1;
 | |
| 			return vector;
 | |
| 		} else
 | |
| 			return kvm_pic_read_irq(v->kvm); /* PIC */
 | |
| 	} else
 | |
| 		return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read pending interrupt vector and intack.
 | |
|  */
 | |
| int kvm_cpu_get_interrupt(struct kvm_vcpu *v)
 | |
| {
 | |
| 	int vector;
 | |
| 
 | |
| 	if (!lapic_in_kernel(v))
 | |
| 		return v->arch.interrupt.nr;
 | |
| 
 | |
| 	vector = kvm_cpu_get_extint(v);
 | |
| 
 | |
| 	if (vector != -1)
 | |
| 		return vector;			/* PIC */
 | |
| 
 | |
| 	return kvm_get_apic_interrupt(v);	/* APIC */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_cpu_get_interrupt);
 | |
| 
 | |
| void kvm_inject_pending_timer_irqs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (lapic_in_kernel(vcpu))
 | |
| 		kvm_inject_apic_timer_irqs(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_pending_timer_irqs);
 | |
| 
 | |
| void __kvm_migrate_timers(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	__kvm_migrate_apic_timer(vcpu);
 | |
| 	__kvm_migrate_pit_timer(vcpu);
 | |
| }
 | |
| 
 | |
| bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args)
 | |
| {
 | |
| 	bool resample = args->flags & KVM_IRQFD_FLAG_RESAMPLE;
 | |
| 
 | |
| 	return resample ? irqchip_kernel(kvm) : irqchip_in_kernel(kvm);
 | |
| }
 | 
