1537 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1537 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Freescale QUICC Engine UART device driver
 | |
|  *
 | |
|  * Author: Timur Tabi <timur@freescale.com>
 | |
|  *
 | |
|  * Copyright 2007 Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  * This driver adds support for UART devices via Freescale's QUICC Engine
 | |
|  * found on some Freescale SOCs.
 | |
|  *
 | |
|  * If Soft-UART support is needed but not already present, then this driver
 | |
|  * will request and upload the "Soft-UART" microcode upon probe.  The
 | |
|  * filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X"
 | |
|  * is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC,
 | |
|  * (e.g. "11" for 1.1).
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/serial.h>
 | |
| #include <linux/serial_core.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/tty_flip.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| 
 | |
| #include <linux/fs_uart_pd.h>
 | |
| #include <soc/fsl/qe/ucc_slow.h>
 | |
| 
 | |
| #include <linux/firmware.h>
 | |
| #include <asm/reg.h>
 | |
| 
 | |
| /*
 | |
|  * The GUMR flag for Soft UART.  This would normally be defined in qe.h,
 | |
|  * but Soft-UART is a hack and we want to keep everything related to it in
 | |
|  * this file.
 | |
|  */
 | |
| #define UCC_SLOW_GUMR_H_SUART   	0x00004000      /* Soft-UART */
 | |
| 
 | |
| /*
 | |
|  * soft_uart is 1 if we need to use Soft-UART mode
 | |
|  */
 | |
| static int soft_uart;
 | |
| /*
 | |
|  * firmware_loaded is 1 if the firmware has been loaded, 0 otherwise.
 | |
|  */
 | |
| static int firmware_loaded;
 | |
| 
 | |
| /* Enable this macro to configure all serial ports in internal loopback
 | |
|    mode */
 | |
| /* #define LOOPBACK */
 | |
| 
 | |
| /* The major and minor device numbers are defined in
 | |
|  * http://www.lanana.org/docs/device-list/devices-2.6+.txt.  For the QE
 | |
|  * UART, we have major number 204 and minor numbers 46 - 49, which are the
 | |
|  * same as for the CPM2.  This decision was made because no Freescale part
 | |
|  * has both a CPM and a QE.
 | |
|  */
 | |
| #define SERIAL_QE_MAJOR 204
 | |
| #define SERIAL_QE_MINOR 46
 | |
| 
 | |
| /* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */
 | |
| #define UCC_MAX_UART    4
 | |
| 
 | |
| /* The number of buffer descriptors for receiving characters. */
 | |
| #define RX_NUM_FIFO     4
 | |
| 
 | |
| /* The number of buffer descriptors for transmitting characters. */
 | |
| #define TX_NUM_FIFO     4
 | |
| 
 | |
| /* The maximum size of the character buffer for a single RX BD. */
 | |
| #define RX_BUF_SIZE     32
 | |
| 
 | |
| /* The maximum size of the character buffer for a single TX BD. */
 | |
| #define TX_BUF_SIZE     32
 | |
| 
 | |
| /*
 | |
|  * The number of jiffies to wait after receiving a close command before the
 | |
|  * device is actually closed.  This allows the last few characters to be
 | |
|  * sent over the wire.
 | |
|  */
 | |
| #define UCC_WAIT_CLOSING 100
 | |
| 
 | |
| struct ucc_uart_pram {
 | |
| 	struct ucc_slow_pram common;
 | |
| 	u8 res1[8];     	/* reserved */
 | |
| 	__be16 maxidl;  	/* Maximum idle chars */
 | |
| 	__be16 idlc;    	/* temp idle counter */
 | |
| 	__be16 brkcr;   	/* Break count register */
 | |
| 	__be16 parec;   	/* receive parity error counter */
 | |
| 	__be16 frmec;   	/* receive framing error counter */
 | |
| 	__be16 nosec;   	/* receive noise counter */
 | |
| 	__be16 brkec;   	/* receive break condition counter */
 | |
| 	__be16 brkln;   	/* last received break length */
 | |
| 	__be16 uaddr[2];	/* UART address character 1 & 2 */
 | |
| 	__be16 rtemp;   	/* Temp storage */
 | |
| 	__be16 toseq;   	/* Transmit out of sequence char */
 | |
| 	__be16 cchars[8];       /* control characters 1-8 */
 | |
| 	__be16 rccm;    	/* receive control character mask */
 | |
| 	__be16 rccr;    	/* receive control character register */
 | |
| 	__be16 rlbc;    	/* receive last break character */
 | |
| 	__be16 res2;    	/* reserved */
 | |
| 	__be32 res3;    	/* reserved, should be cleared */
 | |
| 	u8 res4;		/* reserved, should be cleared */
 | |
| 	u8 res5[3];     	/* reserved, should be cleared */
 | |
| 	__be32 res6;    	/* reserved, should be cleared */
 | |
| 	__be32 res7;    	/* reserved, should be cleared */
 | |
| 	__be32 res8;    	/* reserved, should be cleared */
 | |
| 	__be32 res9;    	/* reserved, should be cleared */
 | |
| 	__be32 res10;   	/* reserved, should be cleared */
 | |
| 	__be32 res11;   	/* reserved, should be cleared */
 | |
| 	__be32 res12;   	/* reserved, should be cleared */
 | |
| 	__be32 res13;   	/* reserved, should be cleared */
 | |
| /* The rest is for Soft-UART only */
 | |
| 	__be16 supsmr;  	/* 0x90, Shadow UPSMR */
 | |
| 	__be16 res92;   	/* 0x92, reserved, initialize to 0 */
 | |
| 	__be32 rx_state;	/* 0x94, RX state, initialize to 0 */
 | |
| 	__be32 rx_cnt;  	/* 0x98, RX count, initialize to 0 */
 | |
| 	u8 rx_length;   	/* 0x9C, Char length, set to 1+CL+PEN+1+SL */
 | |
| 	u8 rx_bitmark;  	/* 0x9D, reserved, initialize to 0 */
 | |
| 	u8 rx_temp_dlst_qe;     /* 0x9E, reserved, initialize to 0 */
 | |
| 	u8 res14[0xBC - 0x9F];  /* reserved */
 | |
| 	__be32 dump_ptr;	/* 0xBC, Dump pointer */
 | |
| 	__be32 rx_frame_rem;    /* 0xC0, reserved, initialize to 0 */
 | |
| 	u8 rx_frame_rem_size;   /* 0xC4, reserved, initialize to 0 */
 | |
| 	u8 tx_mode;     	/* 0xC5, mode, 0=AHDLC, 1=UART */
 | |
| 	__be16 tx_state;	/* 0xC6, TX state */
 | |
| 	u8 res15[0xD0 - 0xC8];  /* reserved */
 | |
| 	__be32 resD0;   	/* 0xD0, reserved, initialize to 0 */
 | |
| 	u8 resD4;       	/* 0xD4, reserved, initialize to 0 */
 | |
| 	__be16 resD5;   	/* 0xD5, reserved, initialize to 0 */
 | |
| } __attribute__ ((packed));
 | |
| 
 | |
| /* SUPSMR definitions, for Soft-UART only */
 | |
| #define UCC_UART_SUPSMR_SL      	0x8000
 | |
| #define UCC_UART_SUPSMR_RPM_MASK	0x6000
 | |
| #define UCC_UART_SUPSMR_RPM_ODD 	0x0000
 | |
| #define UCC_UART_SUPSMR_RPM_LOW 	0x2000
 | |
| #define UCC_UART_SUPSMR_RPM_EVEN	0x4000
 | |
| #define UCC_UART_SUPSMR_RPM_HIGH	0x6000
 | |
| #define UCC_UART_SUPSMR_PEN     	0x1000
 | |
| #define UCC_UART_SUPSMR_TPM_MASK	0x0C00
 | |
| #define UCC_UART_SUPSMR_TPM_ODD 	0x0000
 | |
| #define UCC_UART_SUPSMR_TPM_LOW 	0x0400
 | |
| #define UCC_UART_SUPSMR_TPM_EVEN	0x0800
 | |
| #define UCC_UART_SUPSMR_TPM_HIGH	0x0C00
 | |
| #define UCC_UART_SUPSMR_FRZ     	0x0100
 | |
| #define UCC_UART_SUPSMR_UM_MASK 	0x00c0
 | |
| #define UCC_UART_SUPSMR_UM_NORMAL       0x0000
 | |
| #define UCC_UART_SUPSMR_UM_MAN_MULTI    0x0040
 | |
| #define UCC_UART_SUPSMR_UM_AUTO_MULTI   0x00c0
 | |
| #define UCC_UART_SUPSMR_CL_MASK 	0x0030
 | |
| #define UCC_UART_SUPSMR_CL_8    	0x0030
 | |
| #define UCC_UART_SUPSMR_CL_7    	0x0020
 | |
| #define UCC_UART_SUPSMR_CL_6    	0x0010
 | |
| #define UCC_UART_SUPSMR_CL_5    	0x0000
 | |
| 
 | |
| #define UCC_UART_TX_STATE_AHDLC 	0x00
 | |
| #define UCC_UART_TX_STATE_UART  	0x01
 | |
| #define UCC_UART_TX_STATE_X1    	0x00
 | |
| #define UCC_UART_TX_STATE_X16   	0x80
 | |
| 
 | |
| #define UCC_UART_PRAM_ALIGNMENT 0x100
 | |
| 
 | |
| #define UCC_UART_SIZE_OF_BD     UCC_SLOW_SIZE_OF_BD
 | |
| #define NUM_CONTROL_CHARS       8
 | |
| 
 | |
| /* Private per-port data structure */
 | |
| struct uart_qe_port {
 | |
| 	struct uart_port port;
 | |
| 	struct ucc_slow __iomem *uccp;
 | |
| 	struct ucc_uart_pram __iomem *uccup;
 | |
| 	struct ucc_slow_info us_info;
 | |
| 	struct ucc_slow_private *us_private;
 | |
| 	struct device_node *np;
 | |
| 	unsigned int ucc_num;   /* First ucc is 0, not 1 */
 | |
| 
 | |
| 	u16 rx_nrfifos;
 | |
| 	u16 rx_fifosize;
 | |
| 	u16 tx_nrfifos;
 | |
| 	u16 tx_fifosize;
 | |
| 	int wait_closing;
 | |
| 	u32 flags;
 | |
| 	struct qe_bd *rx_bd_base;
 | |
| 	struct qe_bd *rx_cur;
 | |
| 	struct qe_bd *tx_bd_base;
 | |
| 	struct qe_bd *tx_cur;
 | |
| 	unsigned char *tx_buf;
 | |
| 	unsigned char *rx_buf;
 | |
| 	void *bd_virt;  	/* virtual address of the BD buffers */
 | |
| 	dma_addr_t bd_dma_addr; /* bus address of the BD buffers */
 | |
| 	unsigned int bd_size;   /* size of BD buffer space */
 | |
| };
 | |
| 
 | |
| static struct uart_driver ucc_uart_driver = {
 | |
| 	.owner  	= THIS_MODULE,
 | |
| 	.driver_name    = "ucc_uart",
 | |
| 	.dev_name       = "ttyQE",
 | |
| 	.major  	= SERIAL_QE_MAJOR,
 | |
| 	.minor  	= SERIAL_QE_MINOR,
 | |
| 	.nr     	= UCC_MAX_UART,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Virtual to physical address translation.
 | |
|  *
 | |
|  * Given the virtual address for a character buffer, this function returns
 | |
|  * the physical (DMA) equivalent.
 | |
|  */
 | |
| static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port)
 | |
| {
 | |
| 	if (likely((addr >= qe_port->bd_virt)) &&
 | |
| 	    (addr < (qe_port->bd_virt + qe_port->bd_size)))
 | |
| 		return qe_port->bd_dma_addr + (addr - qe_port->bd_virt);
 | |
| 
 | |
| 	/* something nasty happened */
 | |
| 	printk(KERN_ERR "%s: addr=%p\n", __func__, addr);
 | |
| 	BUG();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Physical to virtual address translation.
 | |
|  *
 | |
|  * Given the physical (DMA) address for a character buffer, this function
 | |
|  * returns the virtual equivalent.
 | |
|  */
 | |
| static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port)
 | |
| {
 | |
| 	/* sanity check */
 | |
| 	if (likely((addr >= qe_port->bd_dma_addr) &&
 | |
| 		   (addr < (qe_port->bd_dma_addr + qe_port->bd_size))))
 | |
| 		return qe_port->bd_virt + (addr - qe_port->bd_dma_addr);
 | |
| 
 | |
| 	/* something nasty happened */
 | |
| 	printk(KERN_ERR "%s: addr=%llx\n", __func__, (u64)addr);
 | |
| 	BUG();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if the QE is done transmitting all buffers for this port
 | |
|  *
 | |
|  * This function scans each BD in sequence.  If we find a BD that is not
 | |
|  * ready (READY=1), then we return 0 indicating that the QE is still sending
 | |
|  * data.  If we reach the last BD (WRAP=1), then we know we've scanned
 | |
|  * the entire list, and all BDs are done.
 | |
|  */
 | |
| static unsigned int qe_uart_tx_empty(struct uart_port *port)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 	struct qe_bd *bdp = qe_port->tx_bd_base;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (in_be16(&bdp->status) & BD_SC_READY)
 | |
| 			/* This BD is not done, so return "not done" */
 | |
| 			return 0;
 | |
| 
 | |
| 		if (in_be16(&bdp->status) & BD_SC_WRAP)
 | |
| 			/*
 | |
| 			 * This BD is done and it's the last one, so return
 | |
| 			 * "done"
 | |
| 			 */
 | |
| 			return 1;
 | |
| 
 | |
| 		bdp++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the modem control lines
 | |
|  *
 | |
|  * Although the QE can control the modem control lines (e.g. CTS), we
 | |
|  * don't need that support. This function must exist, however, otherwise
 | |
|  * the kernel will panic.
 | |
|  */
 | |
| void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the current modem control line status
 | |
|  *
 | |
|  * Although the QE can control the modem control lines (e.g. CTS), this
 | |
|  * driver currently doesn't support that, so we always return Carrier
 | |
|  * Detect, Data Set Ready, and Clear To Send.
 | |
|  */
 | |
| static unsigned int qe_uart_get_mctrl(struct uart_port *port)
 | |
| {
 | |
| 	return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Disable the transmit interrupt.
 | |
|  *
 | |
|  * Although this function is called "stop_tx", it does not actually stop
 | |
|  * transmission of data.  Instead, it tells the QE to not generate an
 | |
|  * interrupt when the UCC is finished sending characters.
 | |
|  */
 | |
| static void qe_uart_stop_tx(struct uart_port *port)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 
 | |
| 	clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transmit as many characters to the HW as possible.
 | |
|  *
 | |
|  * This function will attempt to stuff of all the characters from the
 | |
|  * kernel's transmit buffer into TX BDs.
 | |
|  *
 | |
|  * A return value of non-zero indicates that it successfully stuffed all
 | |
|  * characters from the kernel buffer.
 | |
|  *
 | |
|  * A return value of zero indicates that there are still characters in the
 | |
|  * kernel's buffer that have not been transmitted, but there are no more BDs
 | |
|  * available.  This function should be called again after a BD has been made
 | |
|  * available.
 | |
|  */
 | |
| static int qe_uart_tx_pump(struct uart_qe_port *qe_port)
 | |
| {
 | |
| 	struct qe_bd *bdp;
 | |
| 	unsigned char *p;
 | |
| 	unsigned int count;
 | |
| 	struct uart_port *port = &qe_port->port;
 | |
| 	struct circ_buf *xmit = &port->state->xmit;
 | |
| 
 | |
| 	bdp = qe_port->rx_cur;
 | |
| 
 | |
| 	/* Handle xon/xoff */
 | |
| 	if (port->x_char) {
 | |
| 		/* Pick next descriptor and fill from buffer */
 | |
| 		bdp = qe_port->tx_cur;
 | |
| 
 | |
| 		p = qe2cpu_addr(bdp->buf, qe_port);
 | |
| 
 | |
| 		*p++ = port->x_char;
 | |
| 		out_be16(&bdp->length, 1);
 | |
| 		setbits16(&bdp->status, BD_SC_READY);
 | |
| 		/* Get next BD. */
 | |
| 		if (in_be16(&bdp->status) & BD_SC_WRAP)
 | |
| 			bdp = qe_port->tx_bd_base;
 | |
| 		else
 | |
| 			bdp++;
 | |
| 		qe_port->tx_cur = bdp;
 | |
| 
 | |
| 		port->icount.tx++;
 | |
| 		port->x_char = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
 | |
| 		qe_uart_stop_tx(port);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Pick next descriptor and fill from buffer */
 | |
| 	bdp = qe_port->tx_cur;
 | |
| 
 | |
| 	while (!(in_be16(&bdp->status) & BD_SC_READY) &&
 | |
| 	       (xmit->tail != xmit->head)) {
 | |
| 		count = 0;
 | |
| 		p = qe2cpu_addr(bdp->buf, qe_port);
 | |
| 		while (count < qe_port->tx_fifosize) {
 | |
| 			*p++ = xmit->buf[xmit->tail];
 | |
| 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 | |
| 			port->icount.tx++;
 | |
| 			count++;
 | |
| 			if (xmit->head == xmit->tail)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		out_be16(&bdp->length, count);
 | |
| 		setbits16(&bdp->status, BD_SC_READY);
 | |
| 
 | |
| 		/* Get next BD. */
 | |
| 		if (in_be16(&bdp->status) & BD_SC_WRAP)
 | |
| 			bdp = qe_port->tx_bd_base;
 | |
| 		else
 | |
| 			bdp++;
 | |
| 	}
 | |
| 	qe_port->tx_cur = bdp;
 | |
| 
 | |
| 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 | |
| 		uart_write_wakeup(port);
 | |
| 
 | |
| 	if (uart_circ_empty(xmit)) {
 | |
| 		/* The kernel buffer is empty, so turn off TX interrupts.  We
 | |
| 		   don't need to be told when the QE is finished transmitting
 | |
| 		   the data. */
 | |
| 		qe_uart_stop_tx(port);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start transmitting data
 | |
|  *
 | |
|  * This function will start transmitting any available data, if the port
 | |
|  * isn't already transmitting data.
 | |
|  */
 | |
| static void qe_uart_start_tx(struct uart_port *port)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 
 | |
| 	/* If we currently are transmitting, then just return */
 | |
| 	if (in_be16(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX)
 | |
| 		return;
 | |
| 
 | |
| 	/* Otherwise, pump the port and start transmission */
 | |
| 	if (qe_uart_tx_pump(qe_port))
 | |
| 		setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop transmitting data
 | |
|  */
 | |
| static void qe_uart_stop_rx(struct uart_port *port)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 
 | |
| 	clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
 | |
| }
 | |
| 
 | |
| /* Start or stop sending  break signal
 | |
|  *
 | |
|  * This function controls the sending of a break signal.  If break_state=1,
 | |
|  * then we start sending a break signal.  If break_state=0, then we stop
 | |
|  * sending the break signal.
 | |
|  */
 | |
| static void qe_uart_break_ctl(struct uart_port *port, int break_state)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 
 | |
| 	if (break_state)
 | |
| 		ucc_slow_stop_tx(qe_port->us_private);
 | |
| 	else
 | |
| 		ucc_slow_restart_tx(qe_port->us_private);
 | |
| }
 | |
| 
 | |
| /* ISR helper function for receiving character.
 | |
|  *
 | |
|  * This function is called by the ISR to handling receiving characters
 | |
|  */
 | |
| static void qe_uart_int_rx(struct uart_qe_port *qe_port)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned char ch, *cp;
 | |
| 	struct uart_port *port = &qe_port->port;
 | |
| 	struct tty_port *tport = &port->state->port;
 | |
| 	struct qe_bd *bdp;
 | |
| 	u16 status;
 | |
| 	unsigned int flg;
 | |
| 
 | |
| 	/* Just loop through the closed BDs and copy the characters into
 | |
| 	 * the buffer.
 | |
| 	 */
 | |
| 	bdp = qe_port->rx_cur;
 | |
| 	while (1) {
 | |
| 		status = in_be16(&bdp->status);
 | |
| 
 | |
| 		/* If this one is empty, then we assume we've read them all */
 | |
| 		if (status & BD_SC_EMPTY)
 | |
| 			break;
 | |
| 
 | |
| 		/* get number of characters, and check space in RX buffer */
 | |
| 		i = in_be16(&bdp->length);
 | |
| 
 | |
| 		/* If we don't have enough room in RX buffer for the entire BD,
 | |
| 		 * then we try later, which will be the next RX interrupt.
 | |
| 		 */
 | |
| 		if (tty_buffer_request_room(tport, i) < i) {
 | |
| 			dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* get pointer */
 | |
| 		cp = qe2cpu_addr(bdp->buf, qe_port);
 | |
| 
 | |
| 		/* loop through the buffer */
 | |
| 		while (i-- > 0) {
 | |
| 			ch = *cp++;
 | |
| 			port->icount.rx++;
 | |
| 			flg = TTY_NORMAL;
 | |
| 
 | |
| 			if (!i && status &
 | |
| 			    (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV))
 | |
| 				goto handle_error;
 | |
| 			if (uart_handle_sysrq_char(port, ch))
 | |
| 				continue;
 | |
| 
 | |
| error_return:
 | |
| 			tty_insert_flip_char(tport, ch, flg);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		/* This BD is ready to be used again. Clear status. get next */
 | |
| 		clrsetbits_be16(&bdp->status, BD_SC_BR | BD_SC_FR | BD_SC_PR |
 | |
| 			BD_SC_OV | BD_SC_ID, BD_SC_EMPTY);
 | |
| 		if (in_be16(&bdp->status) & BD_SC_WRAP)
 | |
| 			bdp = qe_port->rx_bd_base;
 | |
| 		else
 | |
| 			bdp++;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/* Write back buffer pointer */
 | |
| 	qe_port->rx_cur = bdp;
 | |
| 
 | |
| 	/* Activate BH processing */
 | |
| 	tty_flip_buffer_push(tport);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| 	/* Error processing */
 | |
| 
 | |
| handle_error:
 | |
| 	/* Statistics */
 | |
| 	if (status & BD_SC_BR)
 | |
| 		port->icount.brk++;
 | |
| 	if (status & BD_SC_PR)
 | |
| 		port->icount.parity++;
 | |
| 	if (status & BD_SC_FR)
 | |
| 		port->icount.frame++;
 | |
| 	if (status & BD_SC_OV)
 | |
| 		port->icount.overrun++;
 | |
| 
 | |
| 	/* Mask out ignored conditions */
 | |
| 	status &= port->read_status_mask;
 | |
| 
 | |
| 	/* Handle the remaining ones */
 | |
| 	if (status & BD_SC_BR)
 | |
| 		flg = TTY_BREAK;
 | |
| 	else if (status & BD_SC_PR)
 | |
| 		flg = TTY_PARITY;
 | |
| 	else if (status & BD_SC_FR)
 | |
| 		flg = TTY_FRAME;
 | |
| 
 | |
| 	/* Overrun does not affect the current character ! */
 | |
| 	if (status & BD_SC_OV)
 | |
| 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 | |
| #ifdef SUPPORT_SYSRQ
 | |
| 	port->sysrq = 0;
 | |
| #endif
 | |
| 	goto error_return;
 | |
| }
 | |
| 
 | |
| /* Interrupt handler
 | |
|  *
 | |
|  * This interrupt handler is called after a BD is processed.
 | |
|  */
 | |
| static irqreturn_t qe_uart_int(int irq, void *data)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port = (struct uart_qe_port *) data;
 | |
| 	struct ucc_slow __iomem *uccp = qe_port->uccp;
 | |
| 	u16 events;
 | |
| 
 | |
| 	/* Clear the interrupts */
 | |
| 	events = in_be16(&uccp->ucce);
 | |
| 	out_be16(&uccp->ucce, events);
 | |
| 
 | |
| 	if (events & UCC_UART_UCCE_BRKE)
 | |
| 		uart_handle_break(&qe_port->port);
 | |
| 
 | |
| 	if (events & UCC_UART_UCCE_RX)
 | |
| 		qe_uart_int_rx(qe_port);
 | |
| 
 | |
| 	if (events & UCC_UART_UCCE_TX)
 | |
| 		qe_uart_tx_pump(qe_port);
 | |
| 
 | |
| 	return events ? IRQ_HANDLED : IRQ_NONE;
 | |
| }
 | |
| 
 | |
| /* Initialize buffer descriptors
 | |
|  *
 | |
|  * This function initializes all of the RX and TX buffer descriptors.
 | |
|  */
 | |
| static void qe_uart_initbd(struct uart_qe_port *qe_port)
 | |
| {
 | |
| 	int i;
 | |
| 	void *bd_virt;
 | |
| 	struct qe_bd *bdp;
 | |
| 
 | |
| 	/* Set the physical address of the host memory buffers in the buffer
 | |
| 	 * descriptors, and the virtual address for us to work with.
 | |
| 	 */
 | |
| 	bd_virt = qe_port->bd_virt;
 | |
| 	bdp = qe_port->rx_bd_base;
 | |
| 	qe_port->rx_cur = qe_port->rx_bd_base;
 | |
| 	for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) {
 | |
| 		out_be16(&bdp->status, BD_SC_EMPTY | BD_SC_INTRPT);
 | |
| 		out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
 | |
| 		out_be16(&bdp->length, 0);
 | |
| 		bd_virt += qe_port->rx_fifosize;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* */
 | |
| 	out_be16(&bdp->status, BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT);
 | |
| 	out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
 | |
| 	out_be16(&bdp->length, 0);
 | |
| 
 | |
| 	/* Set the physical address of the host memory
 | |
| 	 * buffers in the buffer descriptors, and the
 | |
| 	 * virtual address for us to work with.
 | |
| 	 */
 | |
| 	bd_virt = qe_port->bd_virt +
 | |
| 		L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
 | |
| 	qe_port->tx_cur = qe_port->tx_bd_base;
 | |
| 	bdp = qe_port->tx_bd_base;
 | |
| 	for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) {
 | |
| 		out_be16(&bdp->status, BD_SC_INTRPT);
 | |
| 		out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
 | |
| 		out_be16(&bdp->length, 0);
 | |
| 		bd_virt += qe_port->tx_fifosize;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* Loopback requires the preamble bit to be set on the first TX BD */
 | |
| #ifdef LOOPBACK
 | |
| 	setbits16(&qe_port->tx_cur->status, BD_SC_P);
 | |
| #endif
 | |
| 
 | |
| 	out_be16(&bdp->status, BD_SC_WRAP | BD_SC_INTRPT);
 | |
| 	out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
 | |
| 	out_be16(&bdp->length, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a UCC for UART.
 | |
|  *
 | |
|  * This function configures a given UCC to be used as a UART device. Basic
 | |
|  * UCC initialization is handled in qe_uart_request_port().  This function
 | |
|  * does all the UART-specific stuff.
 | |
|  */
 | |
| static void qe_uart_init_ucc(struct uart_qe_port *qe_port)
 | |
| {
 | |
| 	u32 cecr_subblock;
 | |
| 	struct ucc_slow __iomem *uccp = qe_port->uccp;
 | |
| 	struct ucc_uart_pram *uccup = qe_port->uccup;
 | |
| 
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* First, disable TX and RX in the UCC */
 | |
| 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
 | |
| 
 | |
| 	/* Program the UCC UART parameter RAM */
 | |
| 	out_8(&uccup->common.rbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
 | |
| 	out_8(&uccup->common.tbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
 | |
| 	out_be16(&uccup->common.mrblr, qe_port->rx_fifosize);
 | |
| 	out_be16(&uccup->maxidl, 0x10);
 | |
| 	out_be16(&uccup->brkcr, 1);
 | |
| 	out_be16(&uccup->parec, 0);
 | |
| 	out_be16(&uccup->frmec, 0);
 | |
| 	out_be16(&uccup->nosec, 0);
 | |
| 	out_be16(&uccup->brkec, 0);
 | |
| 	out_be16(&uccup->uaddr[0], 0);
 | |
| 	out_be16(&uccup->uaddr[1], 0);
 | |
| 	out_be16(&uccup->toseq, 0);
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		out_be16(&uccup->cchars[i], 0xC000);
 | |
| 	out_be16(&uccup->rccm, 0xc0ff);
 | |
| 
 | |
| 	/* Configure the GUMR registers for UART */
 | |
| 	if (soft_uart) {
 | |
| 		/* Soft-UART requires a 1X multiplier for TX */
 | |
| 		clrsetbits_be32(&uccp->gumr_l,
 | |
| 			UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
 | |
| 			UCC_SLOW_GUMR_L_RDCR_MASK,
 | |
| 			UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 |
 | |
| 			UCC_SLOW_GUMR_L_RDCR_16);
 | |
| 
 | |
| 		clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW,
 | |
| 			UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX);
 | |
| 	} else {
 | |
| 		clrsetbits_be32(&uccp->gumr_l,
 | |
| 			UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
 | |
| 			UCC_SLOW_GUMR_L_RDCR_MASK,
 | |
| 			UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 |
 | |
| 			UCC_SLOW_GUMR_L_RDCR_16);
 | |
| 
 | |
| 		clrsetbits_be32(&uccp->gumr_h,
 | |
| 			UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX,
 | |
| 			UCC_SLOW_GUMR_H_RFW);
 | |
| 	}
 | |
| 
 | |
| #ifdef LOOPBACK
 | |
| 	clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
 | |
| 		UCC_SLOW_GUMR_L_DIAG_LOOP);
 | |
| 	clrsetbits_be32(&uccp->gumr_h,
 | |
| 		UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN,
 | |
| 		UCC_SLOW_GUMR_H_CDS);
 | |
| #endif
 | |
| 
 | |
| 	/* Disable rx interrupts  and clear all pending events.  */
 | |
| 	out_be16(&uccp->uccm, 0);
 | |
| 	out_be16(&uccp->ucce, 0xffff);
 | |
| 	out_be16(&uccp->udsr, 0x7e7e);
 | |
| 
 | |
| 	/* Initialize UPSMR */
 | |
| 	out_be16(&uccp->upsmr, 0);
 | |
| 
 | |
| 	if (soft_uart) {
 | |
| 		out_be16(&uccup->supsmr, 0x30);
 | |
| 		out_be16(&uccup->res92, 0);
 | |
| 		out_be32(&uccup->rx_state, 0);
 | |
| 		out_be32(&uccup->rx_cnt, 0);
 | |
| 		out_8(&uccup->rx_bitmark, 0);
 | |
| 		out_8(&uccup->rx_length, 10);
 | |
| 		out_be32(&uccup->dump_ptr, 0x4000);
 | |
| 		out_8(&uccup->rx_temp_dlst_qe, 0);
 | |
| 		out_be32(&uccup->rx_frame_rem, 0);
 | |
| 		out_8(&uccup->rx_frame_rem_size, 0);
 | |
| 		/* Soft-UART requires TX to be 1X */
 | |
| 		out_8(&uccup->tx_mode,
 | |
| 			UCC_UART_TX_STATE_UART | UCC_UART_TX_STATE_X1);
 | |
| 		out_be16(&uccup->tx_state, 0);
 | |
| 		out_8(&uccup->resD4, 0);
 | |
| 		out_be16(&uccup->resD5, 0);
 | |
| 
 | |
| 		/* Set UART mode.
 | |
| 		 * Enable receive and transmit.
 | |
| 		 */
 | |
| 
 | |
| 		/* From the microcode errata:
 | |
| 		 * 1.GUMR_L register, set mode=0010 (QMC).
 | |
| 		 * 2.Set GUMR_H[17] bit. (UART/AHDLC mode).
 | |
| 		 * 3.Set GUMR_H[19:20] (Transparent mode)
 | |
| 		 * 4.Clear GUMR_H[26] (RFW)
 | |
| 		 * ...
 | |
| 		 * 6.Receiver must use 16x over sampling
 | |
| 		 */
 | |
| 		clrsetbits_be32(&uccp->gumr_l,
 | |
| 			UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
 | |
| 			UCC_SLOW_GUMR_L_RDCR_MASK,
 | |
| 			UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 |
 | |
| 			UCC_SLOW_GUMR_L_RDCR_16);
 | |
| 
 | |
| 		clrsetbits_be32(&uccp->gumr_h,
 | |
| 			UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN,
 | |
| 			UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX |
 | |
| 			UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL);
 | |
| 
 | |
| #ifdef LOOPBACK
 | |
| 		clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
 | |
| 				UCC_SLOW_GUMR_L_DIAG_LOOP);
 | |
| 		clrbits32(&uccp->gumr_h, UCC_SLOW_GUMR_H_CTSP |
 | |
| 			  UCC_SLOW_GUMR_H_CDS);
 | |
| #endif
 | |
| 
 | |
| 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
 | |
| 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
 | |
| 			QE_CR_PROTOCOL_UNSPECIFIED, 0);
 | |
| 	} else {
 | |
| 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
 | |
| 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
 | |
| 			QE_CR_PROTOCOL_UART, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the port.
 | |
|  */
 | |
| static int qe_uart_startup(struct uart_port *port)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're using Soft-UART mode, then we need to make sure the
 | |
| 	 * firmware has been uploaded first.
 | |
| 	 */
 | |
| 	if (soft_uart && !firmware_loaded) {
 | |
| 		dev_err(port->dev, "Soft-UART firmware not uploaded\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	qe_uart_initbd(qe_port);
 | |
| 	qe_uart_init_ucc(qe_port);
 | |
| 
 | |
| 	/* Install interrupt handler. */
 | |
| 	ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart",
 | |
| 		qe_port);
 | |
| 	if (ret) {
 | |
| 		dev_err(port->dev, "could not claim IRQ %u\n", port->irq);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Startup rx-int */
 | |
| 	setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
 | |
| 	ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shutdown the port.
 | |
|  */
 | |
| static void qe_uart_shutdown(struct uart_port *port)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 	struct ucc_slow __iomem *uccp = qe_port->uccp;
 | |
| 	unsigned int timeout = 20;
 | |
| 
 | |
| 	/* Disable RX and TX */
 | |
| 
 | |
| 	/* Wait for all the BDs marked sent */
 | |
| 	while (!qe_uart_tx_empty(port)) {
 | |
| 		if (!--timeout) {
 | |
| 			dev_warn(port->dev, "shutdown timeout\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		schedule_timeout(2);
 | |
| 	}
 | |
| 
 | |
| 	if (qe_port->wait_closing) {
 | |
| 		/* Wait a bit longer */
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		schedule_timeout(qe_port->wait_closing);
 | |
| 	}
 | |
| 
 | |
| 	/* Stop uarts */
 | |
| 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
 | |
| 	clrbits16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX);
 | |
| 
 | |
| 	/* Shut them really down and reinit buffer descriptors */
 | |
| 	ucc_slow_graceful_stop_tx(qe_port->us_private);
 | |
| 	qe_uart_initbd(qe_port);
 | |
| 
 | |
| 	free_irq(port->irq, qe_port);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the serial port parameters.
 | |
|  */
 | |
| static void qe_uart_set_termios(struct uart_port *port,
 | |
| 				struct ktermios *termios, struct ktermios *old)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 	struct ucc_slow __iomem *uccp = qe_port->uccp;
 | |
| 	unsigned int baud;
 | |
| 	unsigned long flags;
 | |
| 	u16 upsmr = in_be16(&uccp->upsmr);
 | |
| 	struct ucc_uart_pram __iomem *uccup = qe_port->uccup;
 | |
| 	u16 supsmr = in_be16(&uccup->supsmr);
 | |
| 	u8 char_length = 2; /* 1 + CL + PEN + 1 + SL */
 | |
| 
 | |
| 	/* Character length programmed into the mode register is the
 | |
| 	 * sum of: 1 start bit, number of data bits, 0 or 1 parity bit,
 | |
| 	 * 1 or 2 stop bits, minus 1.
 | |
| 	 * The value 'bits' counts this for us.
 | |
| 	 */
 | |
| 
 | |
| 	/* byte size */
 | |
| 	upsmr &= UCC_UART_UPSMR_CL_MASK;
 | |
| 	supsmr &= UCC_UART_SUPSMR_CL_MASK;
 | |
| 
 | |
| 	switch (termios->c_cflag & CSIZE) {
 | |
| 	case CS5:
 | |
| 		upsmr |= UCC_UART_UPSMR_CL_5;
 | |
| 		supsmr |= UCC_UART_SUPSMR_CL_5;
 | |
| 		char_length += 5;
 | |
| 		break;
 | |
| 	case CS6:
 | |
| 		upsmr |= UCC_UART_UPSMR_CL_6;
 | |
| 		supsmr |= UCC_UART_SUPSMR_CL_6;
 | |
| 		char_length += 6;
 | |
| 		break;
 | |
| 	case CS7:
 | |
| 		upsmr |= UCC_UART_UPSMR_CL_7;
 | |
| 		supsmr |= UCC_UART_SUPSMR_CL_7;
 | |
| 		char_length += 7;
 | |
| 		break;
 | |
| 	default:	/* case CS8 */
 | |
| 		upsmr |= UCC_UART_UPSMR_CL_8;
 | |
| 		supsmr |= UCC_UART_SUPSMR_CL_8;
 | |
| 		char_length += 8;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* If CSTOPB is set, we want two stop bits */
 | |
| 	if (termios->c_cflag & CSTOPB) {
 | |
| 		upsmr |= UCC_UART_UPSMR_SL;
 | |
| 		supsmr |= UCC_UART_SUPSMR_SL;
 | |
| 		char_length++;  /* + SL */
 | |
| 	}
 | |
| 
 | |
| 	if (termios->c_cflag & PARENB) {
 | |
| 		upsmr |= UCC_UART_UPSMR_PEN;
 | |
| 		supsmr |= UCC_UART_SUPSMR_PEN;
 | |
| 		char_length++;  /* + PEN */
 | |
| 
 | |
| 		if (!(termios->c_cflag & PARODD)) {
 | |
| 			upsmr &= ~(UCC_UART_UPSMR_RPM_MASK |
 | |
| 				   UCC_UART_UPSMR_TPM_MASK);
 | |
| 			upsmr |= UCC_UART_UPSMR_RPM_EVEN |
 | |
| 				UCC_UART_UPSMR_TPM_EVEN;
 | |
| 			supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK |
 | |
| 				    UCC_UART_SUPSMR_TPM_MASK);
 | |
| 			supsmr |= UCC_UART_SUPSMR_RPM_EVEN |
 | |
| 				UCC_UART_SUPSMR_TPM_EVEN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up parity check flag
 | |
| 	 */
 | |
| 	port->read_status_mask = BD_SC_EMPTY | BD_SC_OV;
 | |
| 	if (termios->c_iflag & INPCK)
 | |
| 		port->read_status_mask |= BD_SC_FR | BD_SC_PR;
 | |
| 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
 | |
| 		port->read_status_mask |= BD_SC_BR;
 | |
| 
 | |
| 	/*
 | |
| 	 * Characters to ignore
 | |
| 	 */
 | |
| 	port->ignore_status_mask = 0;
 | |
| 	if (termios->c_iflag & IGNPAR)
 | |
| 		port->ignore_status_mask |= BD_SC_PR | BD_SC_FR;
 | |
| 	if (termios->c_iflag & IGNBRK) {
 | |
| 		port->ignore_status_mask |= BD_SC_BR;
 | |
| 		/*
 | |
| 		 * If we're ignore parity and break indicators, ignore
 | |
| 		 * overruns too.  (For real raw support).
 | |
| 		 */
 | |
| 		if (termios->c_iflag & IGNPAR)
 | |
| 			port->ignore_status_mask |= BD_SC_OV;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * !!! ignore all characters if CREAD is not set
 | |
| 	 */
 | |
| 	if ((termios->c_cflag & CREAD) == 0)
 | |
| 		port->read_status_mask &= ~BD_SC_EMPTY;
 | |
| 
 | |
| 	baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16);
 | |
| 
 | |
| 	/* Do we really need a spinlock here? */
 | |
| 	spin_lock_irqsave(&port->lock, flags);
 | |
| 
 | |
| 	/* Update the per-port timeout. */
 | |
| 	uart_update_timeout(port, termios->c_cflag, baud);
 | |
| 
 | |
| 	out_be16(&uccp->upsmr, upsmr);
 | |
| 	if (soft_uart) {
 | |
| 		out_be16(&uccup->supsmr, supsmr);
 | |
| 		out_8(&uccup->rx_length, char_length);
 | |
| 
 | |
| 		/* Soft-UART requires a 1X multiplier for TX */
 | |
| 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
 | |
| 		qe_setbrg(qe_port->us_info.tx_clock, baud, 1);
 | |
| 	} else {
 | |
| 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
 | |
| 		qe_setbrg(qe_port->us_info.tx_clock, baud, 16);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&port->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a pointer to a string that describes what kind of port this is.
 | |
|  */
 | |
| static const char *qe_uart_type(struct uart_port *port)
 | |
| {
 | |
| 	return "QE";
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate any memory and I/O resources required by the port.
 | |
|  */
 | |
| static int qe_uart_request_port(struct uart_port *port)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 	struct ucc_slow_info *us_info = &qe_port->us_info;
 | |
| 	struct ucc_slow_private *uccs;
 | |
| 	unsigned int rx_size, tx_size;
 | |
| 	void *bd_virt;
 | |
| 	dma_addr_t bd_dma_addr = 0;
 | |
| 
 | |
| 	ret = ucc_slow_init(us_info, &uccs);
 | |
| 	if (ret) {
 | |
| 		dev_err(port->dev, "could not initialize UCC%u\n",
 | |
| 		       qe_port->ucc_num);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	qe_port->us_private = uccs;
 | |
| 	qe_port->uccp = uccs->us_regs;
 | |
| 	qe_port->uccup = (struct ucc_uart_pram *) uccs->us_pram;
 | |
| 	qe_port->rx_bd_base = uccs->rx_bd;
 | |
| 	qe_port->tx_bd_base = uccs->tx_bd;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the transmit and receive data buffers.
 | |
| 	 */
 | |
| 
 | |
| 	rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
 | |
| 	tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize);
 | |
| 
 | |
| 	bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr,
 | |
| 		GFP_KERNEL);
 | |
| 	if (!bd_virt) {
 | |
| 		dev_err(port->dev, "could not allocate buffer descriptors\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	qe_port->bd_virt = bd_virt;
 | |
| 	qe_port->bd_dma_addr = bd_dma_addr;
 | |
| 	qe_port->bd_size = rx_size + tx_size;
 | |
| 
 | |
| 	qe_port->rx_buf = bd_virt;
 | |
| 	qe_port->tx_buf = qe_port->rx_buf + rx_size;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Configure the port.
 | |
|  *
 | |
|  * We say we're a CPM-type port because that's mostly true.  Once the device
 | |
|  * is configured, this driver operates almost identically to the CPM serial
 | |
|  * driver.
 | |
|  */
 | |
| static void qe_uart_config_port(struct uart_port *port, int flags)
 | |
| {
 | |
| 	if (flags & UART_CONFIG_TYPE) {
 | |
| 		port->type = PORT_CPM;
 | |
| 		qe_uart_request_port(port);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release any memory and I/O resources that were allocated in
 | |
|  * qe_uart_request_port().
 | |
|  */
 | |
| static void qe_uart_release_port(struct uart_port *port)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port =
 | |
| 		container_of(port, struct uart_qe_port, port);
 | |
| 	struct ucc_slow_private *uccs = qe_port->us_private;
 | |
| 
 | |
| 	dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt,
 | |
| 			  qe_port->bd_dma_addr);
 | |
| 
 | |
| 	ucc_slow_free(uccs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that the data in serial_struct is suitable for this device.
 | |
|  */
 | |
| static int qe_uart_verify_port(struct uart_port *port,
 | |
| 			       struct serial_struct *ser)
 | |
| {
 | |
| 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (ser->irq < 0 || ser->irq >= nr_irqs)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (ser->baud_base < 9600)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| /* UART operations
 | |
|  *
 | |
|  * Details on these functions can be found in Documentation/serial/driver
 | |
|  */
 | |
| static const struct uart_ops qe_uart_pops = {
 | |
| 	.tx_empty       = qe_uart_tx_empty,
 | |
| 	.set_mctrl      = qe_uart_set_mctrl,
 | |
| 	.get_mctrl      = qe_uart_get_mctrl,
 | |
| 	.stop_tx	= qe_uart_stop_tx,
 | |
| 	.start_tx       = qe_uart_start_tx,
 | |
| 	.stop_rx	= qe_uart_stop_rx,
 | |
| 	.break_ctl      = qe_uart_break_ctl,
 | |
| 	.startup	= qe_uart_startup,
 | |
| 	.shutdown       = qe_uart_shutdown,
 | |
| 	.set_termios    = qe_uart_set_termios,
 | |
| 	.type   	= qe_uart_type,
 | |
| 	.release_port   = qe_uart_release_port,
 | |
| 	.request_port   = qe_uart_request_port,
 | |
| 	.config_port    = qe_uart_config_port,
 | |
| 	.verify_port    = qe_uart_verify_port,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Obtain the SOC model number and revision level
 | |
|  *
 | |
|  * This function parses the device tree to obtain the SOC model.  It then
 | |
|  * reads the SVR register to the revision.
 | |
|  *
 | |
|  * The device tree stores the SOC model two different ways.
 | |
|  *
 | |
|  * The new way is:
 | |
|  *
 | |
|  *      	cpu@0 {
 | |
|  *      		compatible = "PowerPC,8323";
 | |
|  *      		device_type = "cpu";
 | |
|  *      		...
 | |
|  *
 | |
|  *
 | |
|  * The old way is:
 | |
|  *      	 PowerPC,8323@0 {
 | |
|  *      		device_type = "cpu";
 | |
|  *      		...
 | |
|  *
 | |
|  * This code first checks the new way, and then the old way.
 | |
|  */
 | |
| static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 	const char *soc_string;
 | |
| 	unsigned int svr;
 | |
| 	unsigned int soc;
 | |
| 
 | |
| 	/* Find the CPU node */
 | |
| 	np = of_find_node_by_type(NULL, "cpu");
 | |
| 	if (!np)
 | |
| 		return 0;
 | |
| 	/* Find the compatible property */
 | |
| 	soc_string = of_get_property(np, "compatible", NULL);
 | |
| 	if (!soc_string)
 | |
| 		/* No compatible property, so try the name. */
 | |
| 		soc_string = np->name;
 | |
| 
 | |
| 	/* Extract the SOC number from the "PowerPC," string */
 | |
| 	if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Get the revision from the SVR */
 | |
| 	svr = mfspr(SPRN_SVR);
 | |
| 	*rev_h = (svr >> 4) & 0xf;
 | |
| 	*rev_l = svr & 0xf;
 | |
| 
 | |
| 	return soc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * requst_firmware_nowait() callback function
 | |
|  *
 | |
|  * This function is called by the kernel when a firmware is made available,
 | |
|  * or if it times out waiting for the firmware.
 | |
|  */
 | |
| static void uart_firmware_cont(const struct firmware *fw, void *context)
 | |
| {
 | |
| 	struct qe_firmware *firmware;
 | |
| 	struct device *dev = context;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!fw) {
 | |
| 		dev_err(dev, "firmware not found\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	firmware = (struct qe_firmware *) fw->data;
 | |
| 
 | |
| 	if (firmware->header.length != fw->size) {
 | |
| 		dev_err(dev, "invalid firmware\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = qe_upload_firmware(firmware);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "could not load firmware\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	firmware_loaded = 1;
 | |
|  out:
 | |
| 	release_firmware(fw);
 | |
| }
 | |
| 
 | |
| static int ucc_uart_probe(struct platform_device *ofdev)
 | |
| {
 | |
| 	struct device_node *np = ofdev->dev.of_node;
 | |
| 	const unsigned int *iprop;      /* Integer OF properties */
 | |
| 	const char *sprop;      /* String OF properties */
 | |
| 	struct uart_qe_port *qe_port = NULL;
 | |
| 	struct resource res;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine if we need Soft-UART mode
 | |
| 	 */
 | |
| 	if (of_find_property(np, "soft-uart", NULL)) {
 | |
| 		dev_dbg(&ofdev->dev, "using Soft-UART mode\n");
 | |
| 		soft_uart = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are using Soft-UART, determine if we need to upload the
 | |
| 	 * firmware, too.
 | |
| 	 */
 | |
| 	if (soft_uart) {
 | |
| 		struct qe_firmware_info *qe_fw_info;
 | |
| 
 | |
| 		qe_fw_info = qe_get_firmware_info();
 | |
| 
 | |
| 		/* Check if the firmware has been uploaded. */
 | |
| 		if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) {
 | |
| 			firmware_loaded = 1;
 | |
| 		} else {
 | |
| 			char filename[32];
 | |
| 			unsigned int soc;
 | |
| 			unsigned int rev_h;
 | |
| 			unsigned int rev_l;
 | |
| 
 | |
| 			soc = soc_info(&rev_h, &rev_l);
 | |
| 			if (!soc) {
 | |
| 				dev_err(&ofdev->dev, "unknown CPU model\n");
 | |
| 				return -ENXIO;
 | |
| 			}
 | |
| 			sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin",
 | |
| 				soc, rev_h, rev_l);
 | |
| 
 | |
| 			dev_info(&ofdev->dev, "waiting for firmware %s\n",
 | |
| 				filename);
 | |
| 
 | |
| 			/*
 | |
| 			 * We call request_firmware_nowait instead of
 | |
| 			 * request_firmware so that the driver can load and
 | |
| 			 * initialize the ports without holding up the rest of
 | |
| 			 * the kernel.  If hotplug support is enabled in the
 | |
| 			 * kernel, then we use it.
 | |
| 			 */
 | |
| 			ret = request_firmware_nowait(THIS_MODULE,
 | |
| 				FW_ACTION_HOTPLUG, filename, &ofdev->dev,
 | |
| 				GFP_KERNEL, &ofdev->dev, uart_firmware_cont);
 | |
| 			if (ret) {
 | |
| 				dev_err(&ofdev->dev,
 | |
| 					"could not load firmware %s\n",
 | |
| 					filename);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL);
 | |
| 	if (!qe_port) {
 | |
| 		dev_err(&ofdev->dev, "can't allocate QE port structure\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Search for IRQ and mapbase */
 | |
| 	ret = of_address_to_resource(np, 0, &res);
 | |
| 	if (ret) {
 | |
| 		dev_err(&ofdev->dev, "missing 'reg' property in device tree\n");
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	if (!res.start) {
 | |
| 		dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	qe_port->port.mapbase = res.start;
 | |
| 
 | |
| 	/* Get the UCC number (device ID) */
 | |
| 	/* UCCs are numbered 1-7 */
 | |
| 	iprop = of_get_property(np, "cell-index", NULL);
 | |
| 	if (!iprop) {
 | |
| 		iprop = of_get_property(np, "device-id", NULL);
 | |
| 		if (!iprop) {
 | |
| 			dev_err(&ofdev->dev, "UCC is unspecified in "
 | |
| 				"device tree\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((*iprop < 1) || (*iprop > UCC_MAX_NUM)) {
 | |
| 		dev_err(&ofdev->dev, "no support for UCC%u\n", *iprop);
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	qe_port->ucc_num = *iprop - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the future, we should not require the BRG to be specified in the
 | |
| 	 * device tree.  If no clock-source is specified, then just pick a BRG
 | |
| 	 * to use.  This requires a new QE library function that manages BRG
 | |
| 	 * assignments.
 | |
| 	 */
 | |
| 
 | |
| 	sprop = of_get_property(np, "rx-clock-name", NULL);
 | |
| 	if (!sprop) {
 | |
| 		dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n");
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	qe_port->us_info.rx_clock = qe_clock_source(sprop);
 | |
| 	if ((qe_port->us_info.rx_clock < QE_BRG1) ||
 | |
| 	    (qe_port->us_info.rx_clock > QE_BRG16)) {
 | |
| 		dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n");
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| #ifdef LOOPBACK
 | |
| 	/* In internal loopback mode, TX and RX must use the same clock */
 | |
| 	qe_port->us_info.tx_clock = qe_port->us_info.rx_clock;
 | |
| #else
 | |
| 	sprop = of_get_property(np, "tx-clock-name", NULL);
 | |
| 	if (!sprop) {
 | |
| 		dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n");
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	qe_port->us_info.tx_clock = qe_clock_source(sprop);
 | |
| #endif
 | |
| 	if ((qe_port->us_info.tx_clock < QE_BRG1) ||
 | |
| 	    (qe_port->us_info.tx_clock > QE_BRG16)) {
 | |
| 		dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n");
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Get the port number, numbered 0-3 */
 | |
| 	iprop = of_get_property(np, "port-number", NULL);
 | |
| 	if (!iprop) {
 | |
| 		dev_err(&ofdev->dev, "missing port-number in device tree\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	qe_port->port.line = *iprop;
 | |
| 	if (qe_port->port.line >= UCC_MAX_UART) {
 | |
| 		dev_err(&ofdev->dev, "port-number must be 0-%u\n",
 | |
| 			UCC_MAX_UART - 1);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	qe_port->port.irq = irq_of_parse_and_map(np, 0);
 | |
| 	if (qe_port->port.irq == 0) {
 | |
| 		dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n",
 | |
| 		       qe_port->ucc_num + 1);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Newer device trees have an "fsl,qe" compatible property for the QE
 | |
| 	 * node, but we still need to support older device trees.
 | |
| 	 */
 | |
| 	np = of_find_compatible_node(NULL, NULL, "fsl,qe");
 | |
| 	if (!np) {
 | |
| 		np = of_find_node_by_type(NULL, "qe");
 | |
| 		if (!np) {
 | |
| 			dev_err(&ofdev->dev, "could not find 'qe' node\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	iprop = of_get_property(np, "brg-frequency", NULL);
 | |
| 	if (!iprop) {
 | |
| 		dev_err(&ofdev->dev,
 | |
| 		       "missing brg-frequency in device tree\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_np;
 | |
| 	}
 | |
| 
 | |
| 	if (*iprop)
 | |
| 		qe_port->port.uartclk = *iprop;
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Older versions of U-Boot do not initialize the brg-frequency
 | |
| 		 * property, so in this case we assume the BRG frequency is
 | |
| 		 * half the QE bus frequency.
 | |
| 		 */
 | |
| 		iprop = of_get_property(np, "bus-frequency", NULL);
 | |
| 		if (!iprop) {
 | |
| 			dev_err(&ofdev->dev,
 | |
| 				"missing QE bus-frequency in device tree\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto out_np;
 | |
| 		}
 | |
| 		if (*iprop)
 | |
| 			qe_port->port.uartclk = *iprop / 2;
 | |
| 		else {
 | |
| 			dev_err(&ofdev->dev,
 | |
| 				"invalid QE bus-frequency in device tree\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto out_np;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&qe_port->port.lock);
 | |
| 	qe_port->np = np;
 | |
| 	qe_port->port.dev = &ofdev->dev;
 | |
| 	qe_port->port.ops = &qe_uart_pops;
 | |
| 	qe_port->port.iotype = UPIO_MEM;
 | |
| 
 | |
| 	qe_port->tx_nrfifos = TX_NUM_FIFO;
 | |
| 	qe_port->tx_fifosize = TX_BUF_SIZE;
 | |
| 	qe_port->rx_nrfifos = RX_NUM_FIFO;
 | |
| 	qe_port->rx_fifosize = RX_BUF_SIZE;
 | |
| 
 | |
| 	qe_port->wait_closing = UCC_WAIT_CLOSING;
 | |
| 	qe_port->port.fifosize = 512;
 | |
| 	qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP;
 | |
| 
 | |
| 	qe_port->us_info.ucc_num = qe_port->ucc_num;
 | |
| 	qe_port->us_info.regs = (phys_addr_t) res.start;
 | |
| 	qe_port->us_info.irq = qe_port->port.irq;
 | |
| 
 | |
| 	qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos;
 | |
| 	qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos;
 | |
| 
 | |
| 	/* Make sure ucc_slow_init() initializes both TX and RX */
 | |
| 	qe_port->us_info.init_tx = 1;
 | |
| 	qe_port->us_info.init_rx = 1;
 | |
| 
 | |
| 	/* Add the port to the uart sub-system.  This will cause
 | |
| 	 * qe_uart_config_port() to be called, so the us_info structure must
 | |
| 	 * be initialized.
 | |
| 	 */
 | |
| 	ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port);
 | |
| 	if (ret) {
 | |
| 		dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n",
 | |
| 		       qe_port->port.line);
 | |
| 		goto out_np;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(ofdev, qe_port);
 | |
| 
 | |
| 	dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n",
 | |
| 		qe_port->ucc_num + 1, qe_port->port.line);
 | |
| 
 | |
| 	/* Display the mknod command for this device */
 | |
| 	dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n",
 | |
| 	       qe_port->port.line, SERIAL_QE_MAJOR,
 | |
| 	       SERIAL_QE_MINOR + qe_port->port.line);
 | |
| 
 | |
| 	return 0;
 | |
| out_np:
 | |
| 	of_node_put(np);
 | |
| out_free:
 | |
| 	kfree(qe_port);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ucc_uart_remove(struct platform_device *ofdev)
 | |
| {
 | |
| 	struct uart_qe_port *qe_port = platform_get_drvdata(ofdev);
 | |
| 
 | |
| 	dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line);
 | |
| 
 | |
| 	uart_remove_one_port(&ucc_uart_driver, &qe_port->port);
 | |
| 
 | |
| 	kfree(qe_port);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id ucc_uart_match[] = {
 | |
| 	{
 | |
| 		.type = "serial",
 | |
| 		.compatible = "ucc_uart",
 | |
| 	},
 | |
| 	{
 | |
| 		.compatible = "fsl,t1040-ucc-uart",
 | |
| 	},
 | |
| 	{},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, ucc_uart_match);
 | |
| 
 | |
| static struct platform_driver ucc_uart_of_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "ucc_uart",
 | |
| 		.of_match_table    = ucc_uart_match,
 | |
| 	},
 | |
| 	.probe  	= ucc_uart_probe,
 | |
| 	.remove 	= ucc_uart_remove,
 | |
| };
 | |
| 
 | |
| static int __init ucc_uart_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	printk(KERN_INFO "Freescale QUICC Engine UART device driver\n");
 | |
| #ifdef LOOPBACK
 | |
| 	printk(KERN_INFO "ucc-uart: Using loopback mode\n");
 | |
| #endif
 | |
| 
 | |
| 	ret = uart_register_driver(&ucc_uart_driver);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_ERR "ucc-uart: could not register UART driver\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = platform_driver_register(&ucc_uart_of_driver);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "ucc-uart: could not register platform driver\n");
 | |
| 		uart_unregister_driver(&ucc_uart_driver);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit ucc_uart_exit(void)
 | |
| {
 | |
| 	printk(KERN_INFO
 | |
| 	       "Freescale QUICC Engine UART device driver unloading\n");
 | |
| 
 | |
| 	platform_driver_unregister(&ucc_uart_of_driver);
 | |
| 	uart_unregister_driver(&ucc_uart_driver);
 | |
| }
 | |
| 
 | |
| module_init(ucc_uart_init);
 | |
| module_exit(ucc_uart_exit);
 | |
| 
 | |
| MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART");
 | |
| MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_QE_MAJOR);
 | |
| 
 | 
