657 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			657 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #define pr_fmt(fmt) "efi: " fmt
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/dmi.h>
 | |
| 
 | |
| #include <asm/e820/api.h>
 | |
| #include <asm/efi.h>
 | |
| #include <asm/uv/uv.h>
 | |
| #include <asm/cpu_device_id.h>
 | |
| 
 | |
| #define EFI_MIN_RESERVE 5120
 | |
| 
 | |
| #define EFI_DUMMY_GUID \
 | |
| 	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
 | |
| 
 | |
| #define QUARK_CSH_SIGNATURE		0x5f435348	/* _CSH */
 | |
| #define QUARK_SECURITY_HEADER_SIZE	0x400
 | |
| 
 | |
| /*
 | |
|  * Header prepended to the standard EFI capsule on Quark systems the are based
 | |
|  * on Intel firmware BSP.
 | |
|  * @csh_signature:	Unique identifier to sanity check signed module
 | |
|  * 			presence ("_CSH").
 | |
|  * @version:		Current version of CSH used. Should be one for Quark A0.
 | |
|  * @modulesize:		Size of the entire module including the module header
 | |
|  * 			and payload.
 | |
|  * @security_version_number_index: Index of SVN to use for validation of signed
 | |
|  * 			module.
 | |
|  * @security_version_number: Used to prevent against roll back of modules.
 | |
|  * @rsvd_module_id:	Currently unused for Clanton (Quark).
 | |
|  * @rsvd_module_vendor:	Vendor Identifier. For Intel products value is
 | |
|  * 			0x00008086.
 | |
|  * @rsvd_date:		BCD representation of build date as yyyymmdd, where
 | |
|  * 			yyyy=4 digit year, mm=1-12, dd=1-31.
 | |
|  * @headersize:		Total length of the header including including any
 | |
|  * 			padding optionally added by the signing tool.
 | |
|  * @hash_algo:		What Hash is used in the module signing.
 | |
|  * @cryp_algo:		What Crypto is used in the module signing.
 | |
|  * @keysize:		Total length of the key data including including any
 | |
|  * 			padding optionally added by the signing tool.
 | |
|  * @signaturesize:	Total length of the signature including including any
 | |
|  * 			padding optionally added by the signing tool.
 | |
|  * @rsvd_next_header:	32-bit pointer to the next Secure Boot Module in the
 | |
|  * 			chain, if there is a next header.
 | |
|  * @rsvd:		Reserved, padding structure to required size.
 | |
|  *
 | |
|  * See also QuartSecurityHeader_t in
 | |
|  * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
 | |
|  * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
 | |
|  */
 | |
| struct quark_security_header {
 | |
| 	u32 csh_signature;
 | |
| 	u32 version;
 | |
| 	u32 modulesize;
 | |
| 	u32 security_version_number_index;
 | |
| 	u32 security_version_number;
 | |
| 	u32 rsvd_module_id;
 | |
| 	u32 rsvd_module_vendor;
 | |
| 	u32 rsvd_date;
 | |
| 	u32 headersize;
 | |
| 	u32 hash_algo;
 | |
| 	u32 cryp_algo;
 | |
| 	u32 keysize;
 | |
| 	u32 signaturesize;
 | |
| 	u32 rsvd_next_header;
 | |
| 	u32 rsvd[2];
 | |
| };
 | |
| 
 | |
| static const efi_char16_t efi_dummy_name[] = L"DUMMY";
 | |
| 
 | |
| static bool efi_no_storage_paranoia;
 | |
| 
 | |
| /*
 | |
|  * Some firmware implementations refuse to boot if there's insufficient
 | |
|  * space in the variable store. The implementation of garbage collection
 | |
|  * in some FW versions causes stale (deleted) variables to take up space
 | |
|  * longer than intended and space is only freed once the store becomes
 | |
|  * almost completely full.
 | |
|  *
 | |
|  * Enabling this option disables the space checks in
 | |
|  * efi_query_variable_store() and forces garbage collection.
 | |
|  *
 | |
|  * Only enable this option if deleting EFI variables does not free up
 | |
|  * space in your variable store, e.g. if despite deleting variables
 | |
|  * you're unable to create new ones.
 | |
|  */
 | |
| static int __init setup_storage_paranoia(char *arg)
 | |
| {
 | |
| 	efi_no_storage_paranoia = true;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("efi_no_storage_paranoia", setup_storage_paranoia);
 | |
| 
 | |
| /*
 | |
|  * Deleting the dummy variable which kicks off garbage collection
 | |
| */
 | |
| void efi_delete_dummy_variable(void)
 | |
| {
 | |
| 	efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name,
 | |
| 				     &EFI_DUMMY_GUID,
 | |
| 				     EFI_VARIABLE_NON_VOLATILE |
 | |
| 				     EFI_VARIABLE_BOOTSERVICE_ACCESS |
 | |
| 				     EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In the nonblocking case we do not attempt to perform garbage
 | |
|  * collection if we do not have enough free space. Rather, we do the
 | |
|  * bare minimum check and give up immediately if the available space
 | |
|  * is below EFI_MIN_RESERVE.
 | |
|  *
 | |
|  * This function is intended to be small and simple because it is
 | |
|  * invoked from crash handler paths.
 | |
|  */
 | |
| static efi_status_t
 | |
| query_variable_store_nonblocking(u32 attributes, unsigned long size)
 | |
| {
 | |
| 	efi_status_t status;
 | |
| 	u64 storage_size, remaining_size, max_size;
 | |
| 
 | |
| 	status = efi.query_variable_info_nonblocking(attributes, &storage_size,
 | |
| 						     &remaining_size,
 | |
| 						     &max_size);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	if (remaining_size - size < EFI_MIN_RESERVE)
 | |
| 		return EFI_OUT_OF_RESOURCES;
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some firmware implementations refuse to boot if there's insufficient space
 | |
|  * in the variable store. Ensure that we never use more than a safe limit.
 | |
|  *
 | |
|  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
 | |
|  * store.
 | |
|  */
 | |
| efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
 | |
| 				      bool nonblocking)
 | |
| {
 | |
| 	efi_status_t status;
 | |
| 	u64 storage_size, remaining_size, max_size;
 | |
| 
 | |
| 	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (nonblocking)
 | |
| 		return query_variable_store_nonblocking(attributes, size);
 | |
| 
 | |
| 	status = efi.query_variable_info(attributes, &storage_size,
 | |
| 					 &remaining_size, &max_size);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	/*
 | |
| 	 * We account for that by refusing the write if permitting it would
 | |
| 	 * reduce the available space to under 5KB. This figure was provided by
 | |
| 	 * Samsung, so should be safe.
 | |
| 	 */
 | |
| 	if ((remaining_size - size < EFI_MIN_RESERVE) &&
 | |
| 		!efi_no_storage_paranoia) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Triggering garbage collection may require that the firmware
 | |
| 		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
 | |
| 		 * that by attempting to use more space than is available.
 | |
| 		 */
 | |
| 		unsigned long dummy_size = remaining_size + 1024;
 | |
| 		void *dummy = kzalloc(dummy_size, GFP_KERNEL);
 | |
| 
 | |
| 		if (!dummy)
 | |
| 			return EFI_OUT_OF_RESOURCES;
 | |
| 
 | |
| 		status = efi.set_variable((efi_char16_t *)efi_dummy_name,
 | |
| 					  &EFI_DUMMY_GUID,
 | |
| 					  EFI_VARIABLE_NON_VOLATILE |
 | |
| 					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
 | |
| 					  EFI_VARIABLE_RUNTIME_ACCESS,
 | |
| 					  dummy_size, dummy);
 | |
| 
 | |
| 		if (status == EFI_SUCCESS) {
 | |
| 			/*
 | |
| 			 * This should have failed, so if it didn't make sure
 | |
| 			 * that we delete it...
 | |
| 			 */
 | |
| 			efi_delete_dummy_variable();
 | |
| 		}
 | |
| 
 | |
| 		kfree(dummy);
 | |
| 
 | |
| 		/*
 | |
| 		 * The runtime code may now have triggered a garbage collection
 | |
| 		 * run, so check the variable info again
 | |
| 		 */
 | |
| 		status = efi.query_variable_info(attributes, &storage_size,
 | |
| 						 &remaining_size, &max_size);
 | |
| 
 | |
| 		if (status != EFI_SUCCESS)
 | |
| 			return status;
 | |
| 
 | |
| 		/*
 | |
| 		 * There still isn't enough room, so return an error
 | |
| 		 */
 | |
| 		if (remaining_size - size < EFI_MIN_RESERVE)
 | |
| 			return EFI_OUT_OF_RESOURCES;
 | |
| 	}
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(efi_query_variable_store);
 | |
| 
 | |
| /*
 | |
|  * The UEFI specification makes it clear that the operating system is
 | |
|  * free to do whatever it wants with boot services code after
 | |
|  * ExitBootServices() has been called. Ignoring this recommendation a
 | |
|  * significant bunch of EFI implementations continue calling into boot
 | |
|  * services code (SetVirtualAddressMap). In order to work around such
 | |
|  * buggy implementations we reserve boot services region during EFI
 | |
|  * init and make sure it stays executable. Then, after
 | |
|  * SetVirtualAddressMap(), it is discarded.
 | |
|  *
 | |
|  * However, some boot services regions contain data that is required
 | |
|  * by drivers, so we need to track which memory ranges can never be
 | |
|  * freed. This is done by tagging those regions with the
 | |
|  * EFI_MEMORY_RUNTIME attribute.
 | |
|  *
 | |
|  * Any driver that wants to mark a region as reserved must use
 | |
|  * efi_mem_reserve() which will insert a new EFI memory descriptor
 | |
|  * into efi.memmap (splitting existing regions if necessary) and tag
 | |
|  * it with EFI_MEMORY_RUNTIME.
 | |
|  */
 | |
| void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
 | |
| {
 | |
| 	phys_addr_t new_phys, new_size;
 | |
| 	struct efi_mem_range mr;
 | |
| 	efi_memory_desc_t md;
 | |
| 	int num_entries;
 | |
| 	void *new;
 | |
| 
 | |
| 	if (efi_mem_desc_lookup(addr, &md) ||
 | |
| 	    md.type != EFI_BOOT_SERVICES_DATA) {
 | |
| 		pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
 | |
| 		pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* No need to reserve regions that will never be freed. */
 | |
| 	if (md.attribute & EFI_MEMORY_RUNTIME)
 | |
| 		return;
 | |
| 
 | |
| 	size += addr % EFI_PAGE_SIZE;
 | |
| 	size = round_up(size, EFI_PAGE_SIZE);
 | |
| 	addr = round_down(addr, EFI_PAGE_SIZE);
 | |
| 
 | |
| 	mr.range.start = addr;
 | |
| 	mr.range.end = addr + size - 1;
 | |
| 	mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
 | |
| 
 | |
| 	num_entries = efi_memmap_split_count(&md, &mr.range);
 | |
| 	num_entries += efi.memmap.nr_map;
 | |
| 
 | |
| 	new_size = efi.memmap.desc_size * num_entries;
 | |
| 
 | |
| 	new_phys = efi_memmap_alloc(num_entries);
 | |
| 	if (!new_phys) {
 | |
| 		pr_err("Could not allocate boot services memmap\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	new = early_memremap(new_phys, new_size);
 | |
| 	if (!new) {
 | |
| 		pr_err("Failed to map new boot services memmap\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	efi_memmap_insert(&efi.memmap, new, &mr);
 | |
| 	early_memunmap(new, new_size);
 | |
| 
 | |
| 	efi_memmap_install(new_phys, num_entries);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for efi_reserve_boot_services() to figure out if we
 | |
|  * can free regions in efi_free_boot_services().
 | |
|  *
 | |
|  * Use this function to ensure we do not free regions owned by somebody
 | |
|  * else. We must only reserve (and then free) regions:
 | |
|  *
 | |
|  * - Not within any part of the kernel
 | |
|  * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
 | |
|  */
 | |
| static bool can_free_region(u64 start, u64 size)
 | |
| {
 | |
| 	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void __init efi_reserve_boot_services(void)
 | |
| {
 | |
| 	efi_memory_desc_t *md;
 | |
| 
 | |
| 	for_each_efi_memory_desc(md) {
 | |
| 		u64 start = md->phys_addr;
 | |
| 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
 | |
| 		bool already_reserved;
 | |
| 
 | |
| 		if (md->type != EFI_BOOT_SERVICES_CODE &&
 | |
| 		    md->type != EFI_BOOT_SERVICES_DATA)
 | |
| 			continue;
 | |
| 
 | |
| 		already_reserved = memblock_is_region_reserved(start, size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Because the following memblock_reserve() is paired
 | |
| 		 * with free_bootmem_late() for this region in
 | |
| 		 * efi_free_boot_services(), we must be extremely
 | |
| 		 * careful not to reserve, and subsequently free,
 | |
| 		 * critical regions of memory (like the kernel image) or
 | |
| 		 * those regions that somebody else has already
 | |
| 		 * reserved.
 | |
| 		 *
 | |
| 		 * A good example of a critical region that must not be
 | |
| 		 * freed is page zero (first 4Kb of memory), which may
 | |
| 		 * contain boot services code/data but is marked
 | |
| 		 * E820_TYPE_RESERVED by trim_bios_range().
 | |
| 		 */
 | |
| 		if (!already_reserved) {
 | |
| 			memblock_reserve(start, size);
 | |
| 
 | |
| 			/*
 | |
| 			 * If we are the first to reserve the region, no
 | |
| 			 * one else cares about it. We own it and can
 | |
| 			 * free it later.
 | |
| 			 */
 | |
| 			if (can_free_region(start, size))
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't own the region. We must not free it.
 | |
| 		 *
 | |
| 		 * Setting this bit for a boot services region really
 | |
| 		 * doesn't make sense as far as the firmware is
 | |
| 		 * concerned, but it does provide us with a way to tag
 | |
| 		 * those regions that must not be paired with
 | |
| 		 * free_bootmem_late().
 | |
| 		 */
 | |
| 		md->attribute |= EFI_MEMORY_RUNTIME;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init efi_free_boot_services(void)
 | |
| {
 | |
| 	phys_addr_t new_phys, new_size;
 | |
| 	efi_memory_desc_t *md;
 | |
| 	int num_entries = 0;
 | |
| 	void *new, *new_md;
 | |
| 
 | |
| 	for_each_efi_memory_desc(md) {
 | |
| 		unsigned long long start = md->phys_addr;
 | |
| 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 | |
| 		size_t rm_size;
 | |
| 
 | |
| 		if (md->type != EFI_BOOT_SERVICES_CODE &&
 | |
| 		    md->type != EFI_BOOT_SERVICES_DATA) {
 | |
| 			num_entries++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Do not free, someone else owns it: */
 | |
| 		if (md->attribute & EFI_MEMORY_RUNTIME) {
 | |
| 			num_entries++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Nasty quirk: if all sub-1MB memory is used for boot
 | |
| 		 * services, we can get here without having allocated the
 | |
| 		 * real mode trampoline.  It's too late to hand boot services
 | |
| 		 * memory back to the memblock allocator, so instead
 | |
| 		 * try to manually allocate the trampoline if needed.
 | |
| 		 *
 | |
| 		 * I've seen this on a Dell XPS 13 9350 with firmware
 | |
| 		 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
 | |
| 		 * grub2-efi on a hard disk.  (And no, I don't know why
 | |
| 		 * this happened, but Linux should still try to boot rather
 | |
| 		 * panicing early.)
 | |
| 		 */
 | |
| 		rm_size = real_mode_size_needed();
 | |
| 		if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
 | |
| 			set_real_mode_mem(start, rm_size);
 | |
| 			start += rm_size;
 | |
| 			size -= rm_size;
 | |
| 		}
 | |
| 
 | |
| 		free_bootmem_late(start, size);
 | |
| 	}
 | |
| 
 | |
| 	if (!num_entries)
 | |
| 		return;
 | |
| 
 | |
| 	new_size = efi.memmap.desc_size * num_entries;
 | |
| 	new_phys = efi_memmap_alloc(num_entries);
 | |
| 	if (!new_phys) {
 | |
| 		pr_err("Failed to allocate new EFI memmap\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	new = memremap(new_phys, new_size, MEMREMAP_WB);
 | |
| 	if (!new) {
 | |
| 		pr_err("Failed to map new EFI memmap\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Build a new EFI memmap that excludes any boot services
 | |
| 	 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
 | |
| 	 * regions have now been freed.
 | |
| 	 */
 | |
| 	new_md = new;
 | |
| 	for_each_efi_memory_desc(md) {
 | |
| 		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
 | |
| 		    (md->type == EFI_BOOT_SERVICES_CODE ||
 | |
| 		     md->type == EFI_BOOT_SERVICES_DATA))
 | |
| 			continue;
 | |
| 
 | |
| 		memcpy(new_md, md, efi.memmap.desc_size);
 | |
| 		new_md += efi.memmap.desc_size;
 | |
| 	}
 | |
| 
 | |
| 	memunmap(new);
 | |
| 
 | |
| 	if (efi_memmap_install(new_phys, num_entries)) {
 | |
| 		pr_err("Could not install new EFI memmap\n");
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A number of config table entries get remapped to virtual addresses
 | |
|  * after entering EFI virtual mode. However, the kexec kernel requires
 | |
|  * their physical addresses therefore we pass them via setup_data and
 | |
|  * correct those entries to their respective physical addresses here.
 | |
|  *
 | |
|  * Currently only handles smbios which is necessary for some firmware
 | |
|  * implementation.
 | |
|  */
 | |
| int __init efi_reuse_config(u64 tables, int nr_tables)
 | |
| {
 | |
| 	int i, sz, ret = 0;
 | |
| 	void *p, *tablep;
 | |
| 	struct efi_setup_data *data;
 | |
| 
 | |
| 	if (!efi_setup)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!efi_enabled(EFI_64BIT))
 | |
| 		return 0;
 | |
| 
 | |
| 	data = early_memremap(efi_setup, sizeof(*data));
 | |
| 	if (!data) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!data->smbios)
 | |
| 		goto out_memremap;
 | |
| 
 | |
| 	sz = sizeof(efi_config_table_64_t);
 | |
| 
 | |
| 	p = tablep = early_memremap(tables, nr_tables * sz);
 | |
| 	if (!p) {
 | |
| 		pr_err("Could not map Configuration table!\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_memremap;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < efi.systab->nr_tables; i++) {
 | |
| 		efi_guid_t guid;
 | |
| 
 | |
| 		guid = ((efi_config_table_64_t *)p)->guid;
 | |
| 
 | |
| 		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
 | |
| 			((efi_config_table_64_t *)p)->table = data->smbios;
 | |
| 		p += sz;
 | |
| 	}
 | |
| 	early_memunmap(tablep, nr_tables * sz);
 | |
| 
 | |
| out_memremap:
 | |
| 	early_memunmap(data, sizeof(*data));
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct dmi_system_id sgi_uv1_dmi[] = {
 | |
| 	{ NULL, "SGI UV1",
 | |
| 		{	DMI_MATCH(DMI_PRODUCT_NAME,	"Stoutland Platform"),
 | |
| 			DMI_MATCH(DMI_PRODUCT_VERSION,	"1.0"),
 | |
| 			DMI_MATCH(DMI_BIOS_VENDOR,	"SGI.COM"),
 | |
| 		}
 | |
| 	},
 | |
| 	{ } /* NULL entry stops DMI scanning */
 | |
| };
 | |
| 
 | |
| void __init efi_apply_memmap_quirks(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Once setup is done earlier, unmap the EFI memory map on mismatched
 | |
| 	 * firmware/kernel architectures since there is no support for runtime
 | |
| 	 * services.
 | |
| 	 */
 | |
| 	if (!efi_runtime_supported()) {
 | |
| 		pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
 | |
| 		efi_memmap_unmap();
 | |
| 	}
 | |
| 
 | |
| 	/* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
 | |
| 	if (dmi_check_system(sgi_uv1_dmi))
 | |
| 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For most modern platforms the preferred method of powering off is via
 | |
|  * ACPI. However, there are some that are known to require the use of
 | |
|  * EFI runtime services and for which ACPI does not work at all.
 | |
|  *
 | |
|  * Using EFI is a last resort, to be used only if no other option
 | |
|  * exists.
 | |
|  */
 | |
| bool efi_reboot_required(void)
 | |
| {
 | |
| 	if (!acpi_gbl_reduced_hardware)
 | |
| 		return false;
 | |
| 
 | |
| 	efi_reboot_quirk_mode = EFI_RESET_WARM;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool efi_poweroff_required(void)
 | |
| {
 | |
| 	return acpi_gbl_reduced_hardware || acpi_no_s5;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
 | |
| 
 | |
| static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
 | |
| 				  size_t hdr_bytes)
 | |
| {
 | |
| 	struct quark_security_header *csh = *pkbuff;
 | |
| 
 | |
| 	/* Only process data block that is larger than the security header */
 | |
| 	if (hdr_bytes < sizeof(struct quark_security_header))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
 | |
| 	    csh->headersize != QUARK_SECURITY_HEADER_SIZE)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Only process data block if EFI header is included */
 | |
| 	if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
 | |
| 			sizeof(efi_capsule_header_t))
 | |
| 		return 0;
 | |
| 
 | |
| 	pr_debug("Quark security header detected\n");
 | |
| 
 | |
| 	if (csh->rsvd_next_header != 0) {
 | |
| 		pr_err("multiple Quark security headers not supported\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*pkbuff += csh->headersize;
 | |
| 	cap_info->total_size = csh->headersize;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the first page pointer to skip over the CSH header.
 | |
| 	 */
 | |
| 	cap_info->phys[0] += csh->headersize;
 | |
| 
 | |
| 	/*
 | |
| 	 * cap_info->capsule should point at a virtual mapping of the entire
 | |
| 	 * capsule, starting at the capsule header. Our image has the Quark
 | |
| 	 * security header prepended, so we cannot rely on the default vmap()
 | |
| 	 * mapping created by the generic capsule code.
 | |
| 	 * Given that the Quark firmware does not appear to care about the
 | |
| 	 * virtual mapping, let's just point cap_info->capsule at our copy
 | |
| 	 * of the capsule header.
 | |
| 	 */
 | |
| 	cap_info->capsule = &cap_info->header;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #define ICPU(family, model, quirk_handler) \
 | |
| 	{ X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \
 | |
| 	  (unsigned long)&quirk_handler }
 | |
| 
 | |
| static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
 | |
| 	ICPU(5, 9, qrk_capsule_setup_info),	/* Intel Quark X1000 */
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
 | |
| 			   size_t hdr_bytes)
 | |
| {
 | |
| 	int (*quirk_handler)(struct capsule_info *, void **, size_t);
 | |
| 	const struct x86_cpu_id *id;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (hdr_bytes < sizeof(efi_capsule_header_t))
 | |
| 		return 0;
 | |
| 
 | |
| 	cap_info->total_size = 0;
 | |
| 
 | |
| 	id = x86_match_cpu(efi_capsule_quirk_ids);
 | |
| 	if (id) {
 | |
| 		/*
 | |
| 		 * The quirk handler is supposed to return
 | |
| 		 *  - a value > 0 if the setup should continue, after advancing
 | |
| 		 *    kbuff as needed
 | |
| 		 *  - 0 if not enough hdr_bytes are available yet
 | |
| 		 *  - a negative error code otherwise
 | |
| 		 */
 | |
| 		quirk_handler = (typeof(quirk_handler))id->driver_data;
 | |
| 		ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
 | |
| 		if (ret <= 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
 | |
| 
 | |
| 	cap_info->total_size += cap_info->header.imagesize;
 | |
| 
 | |
| 	return __efi_capsule_setup_info(cap_info);
 | |
| }
 | |
| 
 | |
| #endif
 | 
