458 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2005, Paul Mackerras, IBM Corporation.
 | |
|  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
 | |
|  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/mm.h>
 | |
| 
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/tlb.h>
 | |
| 
 | |
| #include "mmu_decl.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/thp.h>
 | |
| 
 | |
| #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
 | |
| #warning Limited user VSID range means pagetable space is wasted
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| /*
 | |
|  * vmemmap is the starting address of the virtual address space where
 | |
|  * struct pages are allocated for all possible PFNs present on the system
 | |
|  * including holes and bad memory (hence sparse). These virtual struct
 | |
|  * pages are stored in sequence in this virtual address space irrespective
 | |
|  * of the fact whether the corresponding PFN is valid or not. This achieves
 | |
|  * constant relationship between address of struct page and its PFN.
 | |
|  *
 | |
|  * During boot or memory hotplug operation when a new memory section is
 | |
|  * added, physical memory allocation (including hash table bolting) will
 | |
|  * be performed for the set of struct pages which are part of the memory
 | |
|  * section. This saves memory by not allocating struct pages for PFNs
 | |
|  * which are not valid.
 | |
|  *
 | |
|  *		----------------------------------------------
 | |
|  *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
 | |
|  *		----------------------------------------------
 | |
|  *
 | |
|  *	   f000000000000000                  c000000000000000
 | |
|  * vmemmap +--------------+                  +--------------+
 | |
|  *  +      |  page struct | +--------------> |  page struct |
 | |
|  *  |      +--------------+                  +--------------+
 | |
|  *  |      |  page struct | +--------------> |  page struct |
 | |
|  *  |      +--------------+ |                +--------------+
 | |
|  *  |      |  page struct | +       +------> |  page struct |
 | |
|  *  |      +--------------+         |        +--------------+
 | |
|  *  |      |  page struct |         |   +--> |  page struct |
 | |
|  *  |      +--------------+         |   |    +--------------+
 | |
|  *  |      |  page struct |         |   |
 | |
|  *  |      +--------------+         |   |
 | |
|  *  |      |  page struct |         |   |
 | |
|  *  |      +--------------+         |   |
 | |
|  *  |      |  page struct |         |   |
 | |
|  *  |      +--------------+         |   |
 | |
|  *  |      |  page struct |         |   |
 | |
|  *  |      +--------------+         |   |
 | |
|  *  |      |  page struct | +-------+   |
 | |
|  *  |      +--------------+             |
 | |
|  *  |      |  page struct | +-----------+
 | |
|  *  |      +--------------+
 | |
|  *  |      |  page struct | No mapping
 | |
|  *  |      +--------------+
 | |
|  *  |      |  page struct | No mapping
 | |
|  *  v      +--------------+
 | |
|  *
 | |
|  *		-----------------------------------------
 | |
|  *		| RELATION BETWEEN STRUCT PAGES AND PFNS|
 | |
|  *		-----------------------------------------
 | |
|  *
 | |
|  * vmemmap +--------------+                 +---------------+
 | |
|  *  +      |  page struct | +-------------> |      PFN      |
 | |
|  *  |      +--------------+                 +---------------+
 | |
|  *  |      |  page struct | +-------------> |      PFN      |
 | |
|  *  |      +--------------+                 +---------------+
 | |
|  *  |      |  page struct | +-------------> |      PFN      |
 | |
|  *  |      +--------------+                 +---------------+
 | |
|  *  |      |  page struct | +-------------> |      PFN      |
 | |
|  *  |      +--------------+                 +---------------+
 | |
|  *  |      |              |
 | |
|  *  |      +--------------+
 | |
|  *  |      |              |
 | |
|  *  |      +--------------+
 | |
|  *  |      |              |
 | |
|  *  |      +--------------+                 +---------------+
 | |
|  *  |      |  page struct | +-------------> |      PFN      |
 | |
|  *  |      +--------------+                 +---------------+
 | |
|  *  |      |              |
 | |
|  *  |      +--------------+
 | |
|  *  |      |              |
 | |
|  *  |      +--------------+                 +---------------+
 | |
|  *  |      |  page struct | +-------------> |      PFN      |
 | |
|  *  |      +--------------+                 +---------------+
 | |
|  *  |      |  page struct | +-------------> |      PFN      |
 | |
|  *  v      +--------------+                 +---------------+
 | |
|  */
 | |
| /*
 | |
|  * On hash-based CPUs, the vmemmap is bolted in the hash table.
 | |
|  *
 | |
|  */
 | |
| int __meminit hash__vmemmap_create_mapping(unsigned long start,
 | |
| 				       unsigned long page_size,
 | |
| 				       unsigned long phys)
 | |
| {
 | |
| 	int rc = htab_bolt_mapping(start, start + page_size, phys,
 | |
| 				   pgprot_val(PAGE_KERNEL),
 | |
| 				   mmu_vmemmap_psize, mmu_kernel_ssize);
 | |
| 	if (rc < 0) {
 | |
| 		int rc2 = htab_remove_mapping(start, start + page_size,
 | |
| 					      mmu_vmemmap_psize,
 | |
| 					      mmu_kernel_ssize);
 | |
| 		BUG_ON(rc2 && (rc2 != -ENOENT));
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| void hash__vmemmap_remove_mapping(unsigned long start,
 | |
| 			      unsigned long page_size)
 | |
| {
 | |
| 	int rc = htab_remove_mapping(start, start + page_size,
 | |
| 				     mmu_vmemmap_psize,
 | |
| 				     mmu_kernel_ssize);
 | |
| 	BUG_ON((rc < 0) && (rc != -ENOENT));
 | |
| 	WARN_ON(rc == -ENOENT);
 | |
| }
 | |
| #endif
 | |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| /*
 | |
|  * map_kernel_page currently only called by __ioremap
 | |
|  * map_kernel_page adds an entry to the ioremap page table
 | |
|  * and adds an entry to the HPT, possibly bolting it
 | |
|  */
 | |
| int hash__map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
 | |
| {
 | |
| 	pgd_t *pgdp;
 | |
| 	pud_t *pudp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| 	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
 | |
| 	if (slab_is_available()) {
 | |
| 		pgdp = pgd_offset_k(ea);
 | |
| 		pudp = pud_alloc(&init_mm, pgdp, ea);
 | |
| 		if (!pudp)
 | |
| 			return -ENOMEM;
 | |
| 		pmdp = pmd_alloc(&init_mm, pudp, ea);
 | |
| 		if (!pmdp)
 | |
| 			return -ENOMEM;
 | |
| 		ptep = pte_alloc_kernel(pmdp, ea);
 | |
| 		if (!ptep)
 | |
| 			return -ENOMEM;
 | |
| 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
 | |
| 							  __pgprot(flags)));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If the mm subsystem is not fully up, we cannot create a
 | |
| 		 * linux page table entry for this mapping.  Simply bolt an
 | |
| 		 * entry in the hardware page table.
 | |
| 		 *
 | |
| 		 */
 | |
| 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
 | |
| 				      mmu_io_psize, mmu_kernel_ssize)) {
 | |
| 			printk(KERN_ERR "Failed to do bolted mapping IO "
 | |
| 			       "memory at %016lx !\n", pa);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	smp_wmb();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 
 | |
| unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
 | |
| 				    pmd_t *pmdp, unsigned long clr,
 | |
| 				    unsigned long set)
 | |
| {
 | |
| 	__be64 old_be, tmp;
 | |
| 	unsigned long old;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmdp));
 | |
| #endif
 | |
| 
 | |
| 	__asm__ __volatile__(
 | |
| 	"1:	ldarx	%0,0,%3\n\
 | |
| 		and.	%1,%0,%6\n\
 | |
| 		bne-	1b \n\
 | |
| 		andc	%1,%0,%4 \n\
 | |
| 		or	%1,%1,%7\n\
 | |
| 		stdcx.	%1,0,%3 \n\
 | |
| 		bne-	1b"
 | |
| 	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
 | |
| 	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
 | |
| 	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
 | |
| 	: "cc" );
 | |
| 
 | |
| 	old = be64_to_cpu(old_be);
 | |
| 
 | |
| 	trace_hugepage_update(addr, old, clr, set);
 | |
| 	if (old & H_PAGE_HASHPTE)
 | |
| 		hpte_do_hugepage_flush(mm, addr, pmdp, old);
 | |
| 	return old;
 | |
| }
 | |
| 
 | |
| pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
 | |
| 			    pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t pmd;
 | |
| 
 | |
| 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | |
| 	VM_BUG_ON(pmd_trans_huge(*pmdp));
 | |
| 	VM_BUG_ON(pmd_devmap(*pmdp));
 | |
| 
 | |
| 	pmd = *pmdp;
 | |
| 	pmd_clear(pmdp);
 | |
| 	/*
 | |
| 	 * Wait for all pending hash_page to finish. This is needed
 | |
| 	 * in case of subpage collapse. When we collapse normal pages
 | |
| 	 * to hugepage, we first clear the pmd, then invalidate all
 | |
| 	 * the PTE entries. The assumption here is that any low level
 | |
| 	 * page fault will see a none pmd and take the slow path that
 | |
| 	 * will wait on mmap_sem. But we could very well be in a
 | |
| 	 * hash_page with local ptep pointer value. Such a hash page
 | |
| 	 * can result in adding new HPTE entries for normal subpages.
 | |
| 	 * That means we could be modifying the page content as we
 | |
| 	 * copy them to a huge page. So wait for parallel hash_page
 | |
| 	 * to finish before invalidating HPTE entries. We can do this
 | |
| 	 * by sending an IPI to all the cpus and executing a dummy
 | |
| 	 * function there.
 | |
| 	 */
 | |
| 	serialize_against_pte_lookup(vma->vm_mm);
 | |
| 	/*
 | |
| 	 * Now invalidate the hpte entries in the range
 | |
| 	 * covered by pmd. This make sure we take a
 | |
| 	 * fault and will find the pmd as none, which will
 | |
| 	 * result in a major fault which takes mmap_sem and
 | |
| 	 * hence wait for collapse to complete. Without this
 | |
| 	 * the __collapse_huge_page_copy can result in copying
 | |
| 	 * the old content.
 | |
| 	 */
 | |
| 	flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want to put the pgtable in pmd and use pgtable for tracking
 | |
|  * the base page size hptes
 | |
|  */
 | |
| void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 | |
| 				  pgtable_t pgtable)
 | |
| {
 | |
| 	pgtable_t *pgtable_slot;
 | |
| 
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmdp));
 | |
| 	/*
 | |
| 	 * we store the pgtable in the second half of PMD
 | |
| 	 */
 | |
| 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 | |
| 	*pgtable_slot = pgtable;
 | |
| 	/*
 | |
| 	 * expose the deposited pgtable to other cpus.
 | |
| 	 * before we set the hugepage PTE at pmd level
 | |
| 	 * hash fault code looks at the deposted pgtable
 | |
| 	 * to store hash index values.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| }
 | |
| 
 | |
| pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 | |
| {
 | |
| 	pgtable_t pgtable;
 | |
| 	pgtable_t *pgtable_slot;
 | |
| 
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmdp));
 | |
| 
 | |
| 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 | |
| 	pgtable = *pgtable_slot;
 | |
| 	/*
 | |
| 	 * Once we withdraw, mark the entry NULL.
 | |
| 	 */
 | |
| 	*pgtable_slot = NULL;
 | |
| 	/*
 | |
| 	 * We store HPTE information in the deposited PTE fragment.
 | |
| 	 * zero out the content on withdraw.
 | |
| 	 */
 | |
| 	memset(pgtable, 0, PTE_FRAG_SIZE);
 | |
| 	return pgtable;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A linux hugepage PMD was changed and the corresponding hash table entries
 | |
|  * neesd to be flushed.
 | |
|  */
 | |
| void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
 | |
| 			    pmd_t *pmdp, unsigned long old_pmd)
 | |
| {
 | |
| 	int ssize;
 | |
| 	unsigned int psize;
 | |
| 	unsigned long vsid;
 | |
| 	unsigned long flags = 0;
 | |
| 
 | |
| 	/* get the base page size,vsid and segment size */
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	psize = get_slice_psize(mm, addr);
 | |
| 	BUG_ON(psize == MMU_PAGE_16M);
 | |
| #endif
 | |
| 	if (old_pmd & H_PAGE_COMBO)
 | |
| 		psize = MMU_PAGE_4K;
 | |
| 	else
 | |
| 		psize = MMU_PAGE_64K;
 | |
| 
 | |
| 	if (!is_kernel_addr(addr)) {
 | |
| 		ssize = user_segment_size(addr);
 | |
| 		vsid = get_user_vsid(&mm->context, addr, ssize);
 | |
| 		WARN_ON(vsid == 0);
 | |
| 	} else {
 | |
| 		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
 | |
| 		ssize = mmu_kernel_ssize;
 | |
| 	}
 | |
| 
 | |
| 	if (mm_is_thread_local(mm))
 | |
| 		flags |= HPTE_LOCAL_UPDATE;
 | |
| 
 | |
| 	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
 | |
| }
 | |
| 
 | |
| pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
 | |
| 				unsigned long addr, pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t old_pmd;
 | |
| 	pgtable_t pgtable;
 | |
| 	unsigned long old;
 | |
| 	pgtable_t *pgtable_slot;
 | |
| 
 | |
| 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
 | |
| 	old_pmd = __pmd(old);
 | |
| 	/*
 | |
| 	 * We have pmd == none and we are holding page_table_lock.
 | |
| 	 * So we can safely go and clear the pgtable hash
 | |
| 	 * index info.
 | |
| 	 */
 | |
| 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 | |
| 	pgtable = *pgtable_slot;
 | |
| 	/*
 | |
| 	 * Let's zero out old valid and hash index details
 | |
| 	 * hash fault look at them.
 | |
| 	 */
 | |
| 	memset(pgtable, 0, PTE_FRAG_SIZE);
 | |
| 	/*
 | |
| 	 * Serialize against find_current_mm_pte variants which does lock-less
 | |
| 	 * lookup in page tables with local interrupts disabled. For huge pages
 | |
| 	 * it casts pmd_t to pte_t. Since format of pte_t is different from
 | |
| 	 * pmd_t we want to prevent transit from pmd pointing to page table
 | |
| 	 * to pmd pointing to huge page (and back) while interrupts are disabled.
 | |
| 	 * We clear pmd to possibly replace it with page table pointer in
 | |
| 	 * different code paths. So make sure we wait for the parallel
 | |
| 	 * find_curren_mm_pte to finish.
 | |
| 	 */
 | |
| 	serialize_against_pte_lookup(mm);
 | |
| 	return old_pmd;
 | |
| }
 | |
| 
 | |
| int hash__has_transparent_hugepage(void)
 | |
| {
 | |
| 
 | |
| 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We support THP only if PMD_SIZE is 16MB.
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We need to make sure that we support 16MB hugepage in a segement
 | |
| 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
 | |
| 	 * of 64K.
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * If we have 64K HPTE, we will be using that by default
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
 | |
| 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Ok we only have 4K HPTE
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| #ifdef CONFIG_STRICT_KERNEL_RWX
 | |
| static bool hash__change_memory_range(unsigned long start, unsigned long end,
 | |
| 				      unsigned long newpp)
 | |
| {
 | |
| 	unsigned long idx;
 | |
| 	unsigned int step, shift;
 | |
| 
 | |
| 	shift = mmu_psize_defs[mmu_linear_psize].shift;
 | |
| 	step = 1 << shift;
 | |
| 
 | |
| 	start = ALIGN_DOWN(start, step);
 | |
| 	end = ALIGN(end, step); // aligns up
 | |
| 
 | |
| 	if (start >= end)
 | |
| 		return false;
 | |
| 
 | |
| 	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
 | |
| 		 start, end, newpp, step);
 | |
| 
 | |
| 	for (idx = start; idx < end; idx += step)
 | |
| 		/* Not sure if we can do much with the return value */
 | |
| 		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
 | |
| 							mmu_kernel_ssize);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void hash__mark_rodata_ro(void)
 | |
| {
 | |
| 	unsigned long start, end;
 | |
| 
 | |
| 	start = (unsigned long)_stext;
 | |
| 	end = (unsigned long)__init_begin;
 | |
| 
 | |
| 	WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
 | |
| }
 | |
| 
 | |
| void hash__mark_initmem_nx(void)
 | |
| {
 | |
| 	unsigned long start, end, pp;
 | |
| 
 | |
| 	start = (unsigned long)__init_begin;
 | |
| 	end = (unsigned long)__init_end;
 | |
| 
 | |
| 	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
 | |
| 
 | |
| 	WARN_ON(!hash__change_memory_range(start, end, pp));
 | |
| }
 | |
| #endif
 | 
