283 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  MMU context allocation for 64-bit kernels.
 | |
|  *
 | |
|  *  Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or
 | |
|  *  modify it under the terms of the GNU General Public License
 | |
|  *  as published by the Free Software Foundation; either version
 | |
|  *  2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pkeys.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/pgalloc.h>
 | |
| 
 | |
| static DEFINE_IDA(mmu_context_ida);
 | |
| 
 | |
| static int alloc_context_id(int min_id, int max_id)
 | |
| {
 | |
| 	return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| void hash__reserve_context_id(int id)
 | |
| {
 | |
| 	int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
 | |
| 
 | |
| 	WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
 | |
| }
 | |
| 
 | |
| int hash__alloc_context_id(void)
 | |
| {
 | |
| 	unsigned long max;
 | |
| 
 | |
| 	if (mmu_has_feature(MMU_FTR_68_BIT_VA))
 | |
| 		max = MAX_USER_CONTEXT;
 | |
| 	else
 | |
| 		max = MAX_USER_CONTEXT_65BIT_VA;
 | |
| 
 | |
| 	return alloc_context_id(MIN_USER_CONTEXT, max);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hash__alloc_context_id);
 | |
| 
 | |
| static int realloc_context_ids(mm_context_t *ctx)
 | |
| {
 | |
| 	int i, id;
 | |
| 
 | |
| 	/*
 | |
| 	 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
 | |
| 	 * there wasn't one allocated previously (which happens in the exec
 | |
| 	 * case where ctx is newly allocated).
 | |
| 	 *
 | |
| 	 * We have to be a bit careful here. We must keep the existing ids in
 | |
| 	 * the array, so that we can test if they're non-zero to decide if we
 | |
| 	 * need to allocate a new one. However in case of error we must free the
 | |
| 	 * ids we've allocated but *not* any of the existing ones (or risk a
 | |
| 	 * UAF). That's why we decrement i at the start of the error handling
 | |
| 	 * loop, to skip the id that we just tested but couldn't reallocate.
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
 | |
| 		if (i == 0 || ctx->extended_id[i]) {
 | |
| 			id = hash__alloc_context_id();
 | |
| 			if (id < 0)
 | |
| 				goto error;
 | |
| 
 | |
| 			ctx->extended_id[i] = id;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* The caller expects us to return id */
 | |
| 	return ctx->id;
 | |
| 
 | |
| error:
 | |
| 	for (i--; i >= 0; i--) {
 | |
| 		if (ctx->extended_id[i])
 | |
| 			ida_free(&mmu_context_ida, ctx->extended_id[i]);
 | |
| 	}
 | |
| 
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| static int hash__init_new_context(struct mm_struct *mm)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	/*
 | |
| 	 * The old code would re-promote on fork, we don't do that when using
 | |
| 	 * slices as it could cause problem promoting slices that have been
 | |
| 	 * forced down to 4K.
 | |
| 	 *
 | |
| 	 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
 | |
| 	 * explicitly against context.id == 0. This ensures that we properly
 | |
| 	 * initialize context slice details for newly allocated mm's (which will
 | |
| 	 * have id == 0) and don't alter context slice inherited via fork (which
 | |
| 	 * will have id != 0).
 | |
| 	 *
 | |
| 	 * We should not be calling init_new_context() on init_mm. Hence a
 | |
| 	 * check against 0 is OK.
 | |
| 	 */
 | |
| 	if (mm->context.id == 0)
 | |
| 		slice_init_new_context_exec(mm);
 | |
| 
 | |
| 	index = realloc_context_ids(&mm->context);
 | |
| 	if (index < 0)
 | |
| 		return index;
 | |
| 
 | |
| 	subpage_prot_init_new_context(mm);
 | |
| 
 | |
| 	pkey_mm_init(mm);
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| static int radix__init_new_context(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long rts_field;
 | |
| 	int index, max_id;
 | |
| 
 | |
| 	max_id = (1 << mmu_pid_bits) - 1;
 | |
| 	index = alloc_context_id(mmu_base_pid, max_id);
 | |
| 	if (index < 0)
 | |
| 		return index;
 | |
| 
 | |
| 	/*
 | |
| 	 * set the process table entry,
 | |
| 	 */
 | |
| 	rts_field = radix__get_tree_size();
 | |
| 	process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Order the above store with subsequent update of the PID
 | |
| 	 * register (at which point HW can start loading/caching
 | |
| 	 * the entry) and the corresponding load by the MMU from
 | |
| 	 * the L2 cache.
 | |
| 	 */
 | |
| 	asm volatile("ptesync;isync" : : : "memory");
 | |
| 
 | |
| 	mm->context.npu_context = NULL;
 | |
| 
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	if (radix_enabled())
 | |
| 		index = radix__init_new_context(mm);
 | |
| 	else
 | |
| 		index = hash__init_new_context(mm);
 | |
| 
 | |
| 	if (index < 0)
 | |
| 		return index;
 | |
| 
 | |
| 	mm->context.id = index;
 | |
| 
 | |
| 	mm->context.pte_frag = NULL;
 | |
| 	mm->context.pmd_frag = NULL;
 | |
| #ifdef CONFIG_SPAPR_TCE_IOMMU
 | |
| 	mm_iommu_init(mm);
 | |
| #endif
 | |
| 	atomic_set(&mm->context.active_cpus, 0);
 | |
| 	atomic_set(&mm->context.copros, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __destroy_context(int context_id)
 | |
| {
 | |
| 	ida_free(&mmu_context_ida, context_id);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__destroy_context);
 | |
| 
 | |
| static void destroy_contexts(mm_context_t *ctx)
 | |
| {
 | |
| 	int index, context_id;
 | |
| 
 | |
| 	for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
 | |
| 		context_id = ctx->extended_id[index];
 | |
| 		if (context_id)
 | |
| 			ida_free(&mmu_context_ida, context_id);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pte_frag_destroy(void *pte_frag)
 | |
| {
 | |
| 	int count;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = virt_to_page(pte_frag);
 | |
| 	/* drop all the pending references */
 | |
| 	count = ((unsigned long)pte_frag & ~PAGE_MASK) >> PTE_FRAG_SIZE_SHIFT;
 | |
| 	/* We allow PTE_FRAG_NR fragments from a PTE page */
 | |
| 	if (atomic_sub_and_test(PTE_FRAG_NR - count, &page->pt_frag_refcount)) {
 | |
| 		pgtable_page_dtor(page);
 | |
| 		__free_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pmd_frag_destroy(void *pmd_frag)
 | |
| {
 | |
| 	int count;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = virt_to_page(pmd_frag);
 | |
| 	/* drop all the pending references */
 | |
| 	count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
 | |
| 	/* We allow PTE_FRAG_NR fragments from a PTE page */
 | |
| 	if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) {
 | |
| 		pgtable_pmd_page_dtor(page);
 | |
| 		__free_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void destroy_pagetable_cache(struct mm_struct *mm)
 | |
| {
 | |
| 	void *frag;
 | |
| 
 | |
| 	frag = mm->context.pte_frag;
 | |
| 	if (frag)
 | |
| 		pte_frag_destroy(frag);
 | |
| 
 | |
| 	frag = mm->context.pmd_frag;
 | |
| 	if (frag)
 | |
| 		pmd_frag_destroy(frag);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void destroy_context(struct mm_struct *mm)
 | |
| {
 | |
| #ifdef CONFIG_SPAPR_TCE_IOMMU
 | |
| 	WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
 | |
| #endif
 | |
| 	if (radix_enabled())
 | |
| 		WARN_ON(process_tb[mm->context.id].prtb0 != 0);
 | |
| 	else
 | |
| 		subpage_prot_free(mm);
 | |
| 	destroy_contexts(&mm->context);
 | |
| 	mm->context.id = MMU_NO_CONTEXT;
 | |
| }
 | |
| 
 | |
| void arch_exit_mmap(struct mm_struct *mm)
 | |
| {
 | |
| 	destroy_pagetable_cache(mm);
 | |
| 
 | |
| 	if (radix_enabled()) {
 | |
| 		/*
 | |
| 		 * Radix doesn't have a valid bit in the process table
 | |
| 		 * entries. However we know that at least P9 implementation
 | |
| 		 * will avoid caching an entry with an invalid RTS field,
 | |
| 		 * and 0 is invalid. So this will do.
 | |
| 		 *
 | |
| 		 * This runs before the "fullmm" tlb flush in exit_mmap,
 | |
| 		 * which does a RIC=2 tlbie to clear the process table
 | |
| 		 * entry. See the "fullmm" comments in tlb-radix.c.
 | |
| 		 *
 | |
| 		 * No barrier required here after the store because
 | |
| 		 * this process will do the invalidate, which starts with
 | |
| 		 * ptesync.
 | |
| 		 */
 | |
| 		process_tb[mm->context.id].prtb0 = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_RADIX_MMU
 | |
| void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
 | |
| {
 | |
| 	mtspr(SPRN_PID, next->context.id);
 | |
| 	isync();
 | |
| }
 | |
| #endif
 | 
