307 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * PCI address cache; allows the lookup of PCI devices based on I/O address
 | |
|  *
 | |
|  * Copyright IBM Corporation 2004
 | |
|  * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 | |
|  */
 | |
| 
 | |
| #include <linux/list.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/pci-bridge.h>
 | |
| #include <asm/ppc-pci.h>
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * The pci address cache subsystem.  This subsystem places
 | |
|  * PCI device address resources into a red-black tree, sorted
 | |
|  * according to the address range, so that given only an i/o
 | |
|  * address, the corresponding PCI device can be **quickly**
 | |
|  * found. It is safe to perform an address lookup in an interrupt
 | |
|  * context; this ability is an important feature.
 | |
|  *
 | |
|  * Currently, the only customer of this code is the EEH subsystem;
 | |
|  * thus, this code has been somewhat tailored to suit EEH better.
 | |
|  * In particular, the cache does *not* hold the addresses of devices
 | |
|  * for which EEH is not enabled.
 | |
|  *
 | |
|  * (Implementation Note: The RB tree seems to be better/faster
 | |
|  * than any hash algo I could think of for this problem, even
 | |
|  * with the penalty of slow pointer chases for d-cache misses).
 | |
|  */
 | |
| struct pci_io_addr_range {
 | |
| 	struct rb_node rb_node;
 | |
| 	resource_size_t addr_lo;
 | |
| 	resource_size_t addr_hi;
 | |
| 	struct eeh_dev *edev;
 | |
| 	struct pci_dev *pcidev;
 | |
| 	unsigned long flags;
 | |
| };
 | |
| 
 | |
| static struct pci_io_addr_cache {
 | |
| 	struct rb_root rb_root;
 | |
| 	spinlock_t piar_lock;
 | |
| } pci_io_addr_cache_root;
 | |
| 
 | |
| static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
 | |
| {
 | |
| 	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
 | |
| 
 | |
| 	while (n) {
 | |
| 		struct pci_io_addr_range *piar;
 | |
| 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
 | |
| 
 | |
| 		if (addr < piar->addr_lo)
 | |
| 			n = n->rb_left;
 | |
| 		else if (addr > piar->addr_hi)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			return piar->edev;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_addr_cache_get_dev - Get device, given only address
 | |
|  * @addr: mmio (PIO) phys address or i/o port number
 | |
|  *
 | |
|  * Given an mmio phys address, or a port number, find a pci device
 | |
|  * that implements this address.  I/O port numbers are assumed to be offset
 | |
|  * from zero (that is, they do *not* have pci_io_addr added in).
 | |
|  * It is safe to call this function within an interrupt.
 | |
|  */
 | |
| struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
 | |
| {
 | |
| 	struct eeh_dev *edev;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
 | |
| 	edev = __eeh_addr_cache_get_device(addr);
 | |
| 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
 | |
| 	return edev;
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG
 | |
| /*
 | |
|  * Handy-dandy debug print routine, does nothing more
 | |
|  * than print out the contents of our addr cache.
 | |
|  */
 | |
| static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
 | |
| {
 | |
| 	struct rb_node *n;
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	n = rb_first(&cache->rb_root);
 | |
| 	while (n) {
 | |
| 		struct pci_io_addr_range *piar;
 | |
| 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
 | |
| 		pr_debug("PCI: %s addr range %d [%pap-%pap]: %s\n",
 | |
| 		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
 | |
| 		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
 | |
| 		cnt++;
 | |
| 		n = rb_next(n);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Insert address range into the rb tree. */
 | |
| static struct pci_io_addr_range *
 | |
| eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
 | |
| 		      resource_size_t ahi, unsigned long flags)
 | |
| {
 | |
| 	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct pci_io_addr_range *piar;
 | |
| 
 | |
| 	/* Walk tree, find a place to insert into tree */
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
 | |
| 		if (ahi < piar->addr_lo) {
 | |
| 			p = &parent->rb_left;
 | |
| 		} else if (alo > piar->addr_hi) {
 | |
| 			p = &parent->rb_right;
 | |
| 		} else {
 | |
| 			if (dev != piar->pcidev ||
 | |
| 			    alo != piar->addr_lo || ahi != piar->addr_hi) {
 | |
| 				pr_warn("PIAR: overlapping address range\n");
 | |
| 			}
 | |
| 			return piar;
 | |
| 		}
 | |
| 	}
 | |
| 	piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
 | |
| 	if (!piar)
 | |
| 		return NULL;
 | |
| 
 | |
| 	piar->addr_lo = alo;
 | |
| 	piar->addr_hi = ahi;
 | |
| 	piar->edev = pci_dev_to_eeh_dev(dev);
 | |
| 	piar->pcidev = dev;
 | |
| 	piar->flags = flags;
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	pr_debug("PIAR: insert range=[%pap:%pap] dev=%s\n",
 | |
| 		 &alo, &ahi, pci_name(dev));
 | |
| #endif
 | |
| 
 | |
| 	rb_link_node(&piar->rb_node, parent, p);
 | |
| 	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
 | |
| 
 | |
| 	return piar;
 | |
| }
 | |
| 
 | |
| static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
 | |
| {
 | |
| 	struct pci_dn *pdn;
 | |
| 	struct eeh_dev *edev;
 | |
| 	int i;
 | |
| 
 | |
| 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
 | |
| 	if (!pdn) {
 | |
| 		pr_warn("PCI: no pci dn found for dev=%s\n",
 | |
| 			pci_name(dev));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	edev = pdn_to_eeh_dev(pdn);
 | |
| 	if (!edev) {
 | |
| 		pr_warn("PCI: no EEH dev found for %s\n",
 | |
| 			pci_name(dev));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip any devices for which EEH is not enabled. */
 | |
| 	if (!edev->pe) {
 | |
| 		dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
 | |
| 	 * ROM BAR) into the tree.
 | |
| 	 */
 | |
| 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
 | |
| 		resource_size_t start = pci_resource_start(dev,i);
 | |
| 		resource_size_t end = pci_resource_end(dev,i);
 | |
| 		unsigned long flags = pci_resource_flags(dev,i);
 | |
| 
 | |
| 		/* We are interested only bus addresses, not dma or other stuff */
 | |
| 		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
 | |
| 			continue;
 | |
| 		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
 | |
| 			 continue;
 | |
| 		eeh_addr_cache_insert(dev, start, end, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_addr_cache_insert_dev - Add a device to the address cache
 | |
|  * @dev: PCI device whose I/O addresses we are interested in.
 | |
|  *
 | |
|  * In order to support the fast lookup of devices based on addresses,
 | |
|  * we maintain a cache of devices that can be quickly searched.
 | |
|  * This routine adds a device to that cache.
 | |
|  */
 | |
| void eeh_addr_cache_insert_dev(struct pci_dev *dev)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
 | |
| 	__eeh_addr_cache_insert_dev(dev);
 | |
| 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
 | |
| }
 | |
| 
 | |
| static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
 | |
| {
 | |
| 	struct rb_node *n;
 | |
| 
 | |
| restart:
 | |
| 	n = rb_first(&pci_io_addr_cache_root.rb_root);
 | |
| 	while (n) {
 | |
| 		struct pci_io_addr_range *piar;
 | |
| 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
 | |
| 
 | |
| 		if (piar->pcidev == dev) {
 | |
| 			rb_erase(n, &pci_io_addr_cache_root.rb_root);
 | |
| 			kfree(piar);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 		n = rb_next(n);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_addr_cache_rmv_dev - remove pci device from addr cache
 | |
|  * @dev: device to remove
 | |
|  *
 | |
|  * Remove a device from the addr-cache tree.
 | |
|  * This is potentially expensive, since it will walk
 | |
|  * the tree multiple times (once per resource).
 | |
|  * But so what; device removal doesn't need to be that fast.
 | |
|  */
 | |
| void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
 | |
| 	__eeh_addr_cache_rmv_dev(dev);
 | |
| 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_addr_cache_build - Build a cache of I/O addresses
 | |
|  *
 | |
|  * Build a cache of pci i/o addresses.  This cache will be used to
 | |
|  * find the pci device that corresponds to a given address.
 | |
|  * This routine scans all pci busses to build the cache.
 | |
|  * Must be run late in boot process, after the pci controllers
 | |
|  * have been scanned for devices (after all device resources are known).
 | |
|  */
 | |
| void eeh_addr_cache_build(void)
 | |
| {
 | |
| 	struct pci_dn *pdn;
 | |
| 	struct eeh_dev *edev;
 | |
| 	struct pci_dev *dev = NULL;
 | |
| 
 | |
| 	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
 | |
| 
 | |
| 	for_each_pci_dev(dev) {
 | |
| 		pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
 | |
| 		if (!pdn)
 | |
| 			continue;
 | |
| 
 | |
| 		edev = pdn_to_eeh_dev(pdn);
 | |
| 		if (!edev)
 | |
| 			continue;
 | |
| 
 | |
| 		dev->dev.archdata.edev = edev;
 | |
| 		edev->pdev = dev;
 | |
| 
 | |
| 		eeh_addr_cache_insert_dev(dev);
 | |
| 		eeh_sysfs_add_device(dev);
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	/* Verify tree built up above, echo back the list of addrs. */
 | |
| 	eeh_addr_cache_print(&pci_io_addr_cache_root);
 | |
| #endif
 | |
| }
 | 
