213 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
/* SPDX-License-Identifier: GPL-2.0 */
 | 
						|
/*
 | 
						|
 * This routine clears to zero a linear memory buffer in user space.
 | 
						|
 *
 | 
						|
 * Inputs:
 | 
						|
 *	in0:	address of buffer
 | 
						|
 *	in1:	length of buffer in bytes
 | 
						|
 * Outputs:
 | 
						|
 *	r8:	number of bytes that didn't get cleared due to a fault
 | 
						|
 *
 | 
						|
 * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co
 | 
						|
 *	Stephane Eranian <eranian@hpl.hp.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <asm/asmmacro.h>
 | 
						|
#include <asm/export.h>
 | 
						|
 | 
						|
//
 | 
						|
// arguments
 | 
						|
//
 | 
						|
#define buf		r32
 | 
						|
#define len		r33
 | 
						|
 | 
						|
//
 | 
						|
// local registers
 | 
						|
//
 | 
						|
#define cnt		r16
 | 
						|
#define buf2		r17
 | 
						|
#define saved_lc	r18
 | 
						|
#define saved_pfs	r19
 | 
						|
#define tmp		r20
 | 
						|
#define len2		r21
 | 
						|
#define len3		r22
 | 
						|
 | 
						|
//
 | 
						|
// Theory of operations:
 | 
						|
//	- we check whether or not the buffer is small, i.e., less than 17
 | 
						|
//	  in which case we do the byte by byte loop.
 | 
						|
//
 | 
						|
//	- Otherwise we go progressively from 1 byte store to 8byte store in
 | 
						|
//	  the head part, the body is a 16byte store loop and we finish we the
 | 
						|
//	  tail for the last 15 bytes.
 | 
						|
//	  The good point about this breakdown is that the long buffer handling
 | 
						|
//	  contains only 2 branches.
 | 
						|
//
 | 
						|
//	The reason for not using shifting & masking for both the head and the
 | 
						|
//	tail is to stay semantically correct. This routine is not supposed
 | 
						|
//	to write bytes outside of the buffer. While most of the time this would
 | 
						|
//	be ok, we can't tolerate a mistake. A classical example is the case
 | 
						|
//	of multithreaded code were to the extra bytes touched is actually owned
 | 
						|
//	by another thread which runs concurrently to ours. Another, less likely,
 | 
						|
//	example is with device drivers where reading an I/O mapped location may
 | 
						|
//	have side effects (same thing for writing).
 | 
						|
//
 | 
						|
 | 
						|
GLOBAL_ENTRY(__do_clear_user)
 | 
						|
	.prologue
 | 
						|
	.save ar.pfs, saved_pfs
 | 
						|
	alloc	saved_pfs=ar.pfs,2,0,0,0
 | 
						|
	cmp.eq p6,p0=r0,len		// check for zero length
 | 
						|
	.save ar.lc, saved_lc
 | 
						|
	mov saved_lc=ar.lc		// preserve ar.lc (slow)
 | 
						|
	.body
 | 
						|
	;;				// avoid WAW on CFM
 | 
						|
	adds tmp=-1,len			// br.ctop is repeat/until
 | 
						|
	mov ret0=len			// return value is length at this point
 | 
						|
(p6)	br.ret.spnt.many rp
 | 
						|
	;;
 | 
						|
	cmp.lt p6,p0=16,len		// if len > 16 then long memset
 | 
						|
	mov ar.lc=tmp			// initialize lc for small count
 | 
						|
(p6)	br.cond.dptk .long_do_clear
 | 
						|
	;;				// WAR on ar.lc
 | 
						|
	//
 | 
						|
	// worst case 16 iterations, avg 8 iterations
 | 
						|
	//
 | 
						|
	// We could have played with the predicates to use the extra
 | 
						|
	// M slot for 2 stores/iteration but the cost the initialization
 | 
						|
	// the various counters compared to how long the loop is supposed
 | 
						|
	// to last on average does not make this solution viable.
 | 
						|
	//
 | 
						|
1:
 | 
						|
	EX( .Lexit1, st1 [buf]=r0,1 )
 | 
						|
	adds len=-1,len			// countdown length using len
 | 
						|
	br.cloop.dptk 1b
 | 
						|
	;;				// avoid RAW on ar.lc
 | 
						|
	//
 | 
						|
	// .Lexit4: comes from byte by byte loop
 | 
						|
	//	    len contains bytes left
 | 
						|
.Lexit1:
 | 
						|
	mov ret0=len			// faster than using ar.lc
 | 
						|
	mov ar.lc=saved_lc
 | 
						|
	br.ret.sptk.many rp		// end of short clear_user
 | 
						|
 | 
						|
 | 
						|
	//
 | 
						|
	// At this point we know we have more than 16 bytes to copy
 | 
						|
	// so we focus on alignment (no branches required)
 | 
						|
	//
 | 
						|
	// The use of len/len2 for countdown of the number of bytes left
 | 
						|
	// instead of ret0 is due to the fact that the exception code
 | 
						|
	// changes the values of r8.
 | 
						|
	//
 | 
						|
.long_do_clear:
 | 
						|
	tbit.nz p6,p0=buf,0		// odd alignment (for long_do_clear)
 | 
						|
	;;
 | 
						|
	EX( .Lexit3, (p6) st1 [buf]=r0,1 )	// 1-byte aligned
 | 
						|
(p6)	adds len=-1,len;;		// sync because buf is modified
 | 
						|
	tbit.nz p6,p0=buf,1
 | 
						|
	;;
 | 
						|
	EX( .Lexit3, (p6) st2 [buf]=r0,2 )	// 2-byte aligned
 | 
						|
(p6)	adds len=-2,len;;
 | 
						|
	tbit.nz p6,p0=buf,2
 | 
						|
	;;
 | 
						|
	EX( .Lexit3, (p6) st4 [buf]=r0,4 )	// 4-byte aligned
 | 
						|
(p6)	adds len=-4,len;;
 | 
						|
	tbit.nz p6,p0=buf,3
 | 
						|
	;;
 | 
						|
	EX( .Lexit3, (p6) st8 [buf]=r0,8 )	// 8-byte aligned
 | 
						|
(p6)	adds len=-8,len;;
 | 
						|
	shr.u cnt=len,4		// number of 128-bit (2x64bit) words
 | 
						|
	;;
 | 
						|
	cmp.eq p6,p0=r0,cnt
 | 
						|
	adds tmp=-1,cnt
 | 
						|
(p6)	br.cond.dpnt .dotail		// we have less than 16 bytes left
 | 
						|
	;;
 | 
						|
	adds buf2=8,buf			// setup second base pointer
 | 
						|
	mov ar.lc=tmp
 | 
						|
	;;
 | 
						|
 | 
						|
	//
 | 
						|
	// 16bytes/iteration core loop
 | 
						|
	//
 | 
						|
	// The second store can never generate a fault because
 | 
						|
	// we come into the loop only when we are 16-byte aligned.
 | 
						|
	// This means that if we cross a page then it will always be
 | 
						|
	// in the first store and never in the second.
 | 
						|
	//
 | 
						|
	//
 | 
						|
	// We need to keep track of the remaining length. A possible (optimistic)
 | 
						|
	// way would be to use ar.lc and derive how many byte were left by
 | 
						|
	// doing : left= 16*ar.lc + 16.  this would avoid the addition at
 | 
						|
	// every iteration.
 | 
						|
	// However we need to keep the synchronization point. A template
 | 
						|
	// M;;MB does not exist and thus we can keep the addition at no
 | 
						|
	// extra cycle cost (use a nop slot anyway). It also simplifies the
 | 
						|
	// (unlikely)  error recovery code
 | 
						|
	//
 | 
						|
 | 
						|
2:	EX(.Lexit3, st8 [buf]=r0,16 )
 | 
						|
	;;				// needed to get len correct when error
 | 
						|
	st8 [buf2]=r0,16
 | 
						|
	adds len=-16,len
 | 
						|
	br.cloop.dptk 2b
 | 
						|
	;;
 | 
						|
	mov ar.lc=saved_lc
 | 
						|
	//
 | 
						|
	// tail correction based on len only
 | 
						|
	//
 | 
						|
	// We alternate the use of len3,len2 to allow parallelism and correct
 | 
						|
	// error handling. We also reuse p6/p7 to return correct value.
 | 
						|
	// The addition of len2/len3 does not cost anything more compared to
 | 
						|
	// the regular memset as we had empty slots.
 | 
						|
	//
 | 
						|
.dotail:
 | 
						|
	mov len2=len			// for parallelization of error handling
 | 
						|
	mov len3=len
 | 
						|
	tbit.nz p6,p0=len,3
 | 
						|
	;;
 | 
						|
	EX( .Lexit2, (p6) st8 [buf]=r0,8 )	// at least 8 bytes
 | 
						|
(p6)	adds len3=-8,len2
 | 
						|
	tbit.nz p7,p6=len,2
 | 
						|
	;;
 | 
						|
	EX( .Lexit2, (p7) st4 [buf]=r0,4 )	// at least 4 bytes
 | 
						|
(p7)	adds len2=-4,len3
 | 
						|
	tbit.nz p6,p7=len,1
 | 
						|
	;;
 | 
						|
	EX( .Lexit2, (p6) st2 [buf]=r0,2 )	// at least 2 bytes
 | 
						|
(p6)	adds len3=-2,len2
 | 
						|
	tbit.nz p7,p6=len,0
 | 
						|
	;;
 | 
						|
	EX( .Lexit2, (p7) st1 [buf]=r0 )	// only 1 byte left
 | 
						|
	mov ret0=r0				// success
 | 
						|
	br.ret.sptk.many rp			// end of most likely path
 | 
						|
 | 
						|
	//
 | 
						|
	// Outlined error handling code
 | 
						|
	//
 | 
						|
 | 
						|
	//
 | 
						|
	// .Lexit3: comes from core loop, need restore pr/lc
 | 
						|
	//	    len contains bytes left
 | 
						|
	//
 | 
						|
	//
 | 
						|
	// .Lexit2:
 | 
						|
	//	if p6 -> coming from st8 or st2 : len2 contains what's left
 | 
						|
	//	if p7 -> coming from st4 or st1 : len3 contains what's left
 | 
						|
	// We must restore lc/pr even though might not have been used.
 | 
						|
.Lexit2:
 | 
						|
	.pred.rel "mutex", p6, p7
 | 
						|
(p6)	mov len=len2
 | 
						|
(p7)	mov len=len3
 | 
						|
	;;
 | 
						|
	//
 | 
						|
	// .Lexit4: comes from head, need not restore pr/lc
 | 
						|
	//	    len contains bytes left
 | 
						|
	//
 | 
						|
.Lexit3:
 | 
						|
	mov ret0=len
 | 
						|
	mov ar.lc=saved_lc
 | 
						|
	br.ret.sptk.many rp
 | 
						|
END(__do_clear_user)
 | 
						|
EXPORT_SYMBOL(__do_clear_user)
 |