nt9856x/BSP/u-boot/drivers/net/eth_na51055.c
2023-03-28 15:07:53 +08:00

1655 lines
50 KiB
C
Executable File

/*
* Copyright (c) 2017, NOVATEK CORPORATION.
*
* SPDX-License-Identifier: GPL-2.0
*
* Portions based on U-Boot's rtl8169.c. dwc_eth_qos.c
*/
/*
* This driver supports the Synopsys Designware Ethernet QOS (Quality Of
* Service) IP block. The IP supports multiple options for bus type, clocking/
* reset structure, and feature list.
*
* The driver is written such that generic core logic is kept separate from
* configuration-specific logic. Code that interacts with configuration-
* specific resources is split out into separate functions to avoid polluting
* common code. If/when this driver is enhanced to support multiple
* configurations, the core code should be adapted to call all configuration-
* specific functions through function pointers, with the definition of those
* function pointers being supplied by struct udevice_id eqos_ids[]'s .data
* field.
*
* The following configurations are currently supported:
* na51055:
* NOVATEK's NA51055 chip. This configuration uses an AXI master/DMA bus, an
* AHB slave/register bus, contains the DMA, MTL, and MAC sub-blocks, and
* supports a single RGMII PHY. This configuration also has SW control over
* all clock and reset signals to the HW block.
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <miiphy.h>
#include <net.h>
#include <netdev.h>
#include <phy.h>
#include <asm/io.h>
#include <malloc.h>
#include <asm/gpio.h>
#include <asm/arch/IOAddress.h>
#include <asm/arch/hardware.h>
#include <asm/nvt-common/nvt_types.h>
#include <asm/nvt-common/nvt_common.h>
#include <linux/libfdt.h>
#define ETHVERSION "2.0.5.0"
#define SW_RESET_ADDRESS (IOADDR_ETH_REG_BASE + 0x3800)
#define SW_RESET_MASK 0x00000002
#define PLLREGWR_MASK 0x00000008
#define phy_sw_reset_enable() do { \
unsigned long v; \
v = readl((void *)SW_RESET_ADDRESS); \
v |= SW_RESET_MASK; \
writel(v, (void *)SW_RESET_ADDRESS);\
} while(0)
#define phy_sw_reset_disable() do { \
unsigned long v; \
v = readl((void *)SW_RESET_ADDRESS); \
v |= PLLREGWR_MASK; \
v &= ~(SW_RESET_MASK); \
writel(v, (void *)SW_RESET_ADDRESS);\
} while(0)
#define set_break_link_timer() do { \
writel(0x53, (void *)(IOADDR_ETH_REG_BASE + 0x3A88));\
writel(0x07, (void *)(IOADDR_ETH_REG_BASE + 0x3A8C));\
writel(0xC9, (void *)(IOADDR_ETH_REG_BASE + 0x3A84));\
} while(0)
#define set_one_led() do { \
writel(0x40, (void *)(IOADDR_ETH_REG_BASE + 0x3900));\
writel(0x300, (void *)(IOADDR_ETH_REG_BASE + 0x300C));\
} while(0)
#define set_led_blinking() do { \
writel(0x40, (void *)(IOADDR_ETH_REG_BASE + 0x3900));\
writel(0x312, (void *)(IOADDR_ETH_REG_BASE + 0x300C));\
} while(0)
#define set_led_inv() do { \
unsigned long v; \
v = readl((void *)(IOADDR_ETH_REG_BASE + 0x300C)); \
v &= ~(0x3<<8); \
writel(v, (void *)(IOADDR_ETH_REG_BASE + 0x300C));\
} while(0)
/* Core registers */
#define DEFAULT_MAC_ADDRESS {0x00, 0x80, 0x48, 0xBA, 0xD1, 0x30}
#define EQOS_MAC_REGS_BASE 0x000
struct eqos_mac_regs {
uint32_t configuration; /* 0x000 */
uint32_t unused_004[(0x070 - 0x004) / 4]; /* 0x004 */
uint32_t q0_tx_flow_ctrl; /* 0x070 */
uint32_t unused_070[(0x090 - 0x074) / 4]; /* 0x074 */
uint32_t rx_flow_ctrl; /* 0x090 */
uint32_t unused_094; /* 0x094 */
uint32_t txq_prty_map0; /* 0x098 */
uint32_t unused_09c; /* 0x09c */
uint32_t rxq_ctrl0; /* 0x0a0 */
uint32_t unused_0a4; /* 0x0a4 */
uint32_t rxq_ctrl2; /* 0x0a8 */
uint32_t unused_0ac[(0x0dc - 0x0ac) / 4]; /* 0x0ac */
uint32_t us_tic_counter; /* 0x0dc */
uint32_t unused_0e0[(0x11c - 0x0e0) / 4]; /* 0x0e0 */
uint32_t hw_feature0; /* 0x11c */
uint32_t hw_feature1; /* 0x120 */
uint32_t hw_feature2; /* 0x124 */
uint32_t unused_128[(0x200 - 0x128) / 4]; /* 0x128 */
uint32_t mdio_address; /* 0x200 */
uint32_t mdio_data; /* 0x204 */
uint32_t unused_208[(0x300 - 0x208) / 4]; /* 0x208 */
uint32_t address0_high; /* 0x300 */
uint32_t address0_low; /* 0x304 */
};
#define EQOS_MAC_CONFIGURATION_GPSLCE BIT(23)
#define EQOS_MAC_CONFIGURATION_CST BIT(21)
#define EQOS_MAC_CONFIGURATION_ACS BIT(20)
#define EQOS_MAC_CONFIGURATION_WD BIT(19)
#define EQOS_MAC_CONFIGURATION_JD BIT(17)
#define EQOS_MAC_CONFIGURATION_JE BIT(16)
#define EQOS_MAC_CONFIGURATION_PS BIT(15)
#define EQOS_MAC_CONFIGURATION_FES BIT(14)
#define EQOS_MAC_CONFIGURATION_DM BIT(13)
#define EQOS_MAC_CONFIGURATION_TE BIT(1)
#define EQOS_MAC_CONFIGURATION_RE BIT(0)
#define EQOS_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT 16
#define EQOS_MAC_Q0_TX_FLOW_CTRL_PT_MASK 0xffff
#define EQOS_MAC_Q0_TX_FLOW_CTRL_TFE BIT(1)
#define EQOS_MAC_RX_FLOW_CTRL_RFE BIT(0)
#define EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_SHIFT 0
#define EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_MASK 0xff
#define EQOS_MAC_RXQ_CTRL0_RXQ0EN_SHIFT 0
#define EQOS_MAC_RXQ_CTRL0_RXQ0EN_MASK 3
#define EQOS_MAC_RXQ_CTRL0_RXQ0EN_NOT_ENABLED 0
#define EQOS_MAC_RXQ_CTRL0_RXQ0EN_ENABLED_DCB 2
#define EQOS_MAC_RXQ_CTRL2_PSRQ0_SHIFT 0
#define EQOS_MAC_RXQ_CTRL2_PSRQ0_MASK 0xff
#define EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_SHIFT 6
#define EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_MASK 0x1f
#define EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_SHIFT 0
#define EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_MASK 0x1f
#define EQOS_MAC_MDIO_ADDRESS_PA_SHIFT 21
#define EQOS_MAC_MDIO_ADDRESS_RDA_SHIFT 16
#define EQOS_MAC_MDIO_ADDRESS_CR_SHIFT 8
#define EQOS_MAC_MDIO_ADDRESS_CR_20_35 2
#define EQOS_MAC_MDIO_ADDRESS_SKAP BIT(4)
#define EQOS_MAC_MDIO_ADDRESS_GOC_SHIFT 2
#define EQOS_MAC_MDIO_ADDRESS_GOC_READ 3
#define EQOS_MAC_MDIO_ADDRESS_GOC_WRITE 1
#define EQOS_MAC_MDIO_ADDRESS_C45E BIT(1)
#define EQOS_MAC_MDIO_ADDRESS_GB BIT(0)
#define EQOS_MAC_MDIO_DATA_GD_MASK 0xffff
#define EQOS_MTL_REGS_BASE 0xd00
struct eqos_mtl_regs {
uint32_t txq0_operation_mode; /* 0xd00 */
uint32_t unused_d04; /* 0xd04 */
uint32_t txq0_debug; /* 0xd08 */
uint32_t unused_d0c[(0xd18 - 0xd0c) / 4]; /* 0xd0c */
uint32_t txq0_quantum_weight; /* 0xd18 */
uint32_t unused_d1c[(0xd30 - 0xd1c) / 4]; /* 0xd1c */
uint32_t rxq0_operation_mode; /* 0xd30 */
uint32_t unused_d34; /* 0xd34 */
uint32_t rxq0_debug; /* 0xd38 */
};
#define EQOS_MTL_TXQ0_OPERATION_MODE_TQS_SHIFT 16
#define EQOS_MTL_TXQ0_OPERATION_MODE_TQS_MASK 0x1ff
#define EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_SHIFT 2
#define EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_MASK 3
#define EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_ENABLED 2
#define EQOS_MTL_TXQ0_OPERATION_MODE_TSF BIT(1)
#define EQOS_MTL_TXQ0_OPERATION_MODE_FTQ BIT(0)
#define EQOS_MTL_TXQ0_DEBUG_TXQSTS BIT(4)
#define EQOS_MTL_TXQ0_DEBUG_TRCSTS_SHIFT 1
#define EQOS_MTL_TXQ0_DEBUG_TRCSTS_MASK 3
#define EQOS_MTL_RXQ0_OPERATION_MODE_RQS_SHIFT 20
#define EQOS_MTL_RXQ0_OPERATION_MODE_RQS_MASK 0x3ff
#define EQOS_MTL_RXQ0_OPERATION_MODE_RFD_SHIFT 14
#define EQOS_MTL_RXQ0_OPERATION_MODE_RFD_MASK 0x3f
#define EQOS_MTL_RXQ0_OPERATION_MODE_RFA_SHIFT 8
#define EQOS_MTL_RXQ0_OPERATION_MODE_RFA_MASK 0x3f
#define EQOS_MTL_RXQ0_OPERATION_MODE_EHFC BIT(7)
#define EQOS_MTL_RXQ0_OPERATION_MODE_RSF BIT(5)
#define EQOS_MTL_RXQ0_DEBUG_PRXQ_SHIFT 16
#define EQOS_MTL_RXQ0_DEBUG_PRXQ_MASK 0x7fff
#define EQOS_MTL_RXQ0_DEBUG_RXQSTS_SHIFT 4
#define EQOS_MTL_RXQ0_DEBUG_RXQSTS_MASK 3
#define EQOS_DMA_REGS_BASE 0x1000
struct eqos_dma_regs {
uint32_t mode; /* 0x1000 */
uint32_t sysbus_mode; /* 0x1004 */
uint32_t unused_1008[(0x1100 - 0x1008) / 4]; /* 0x1008 */
uint32_t ch0_control; /* 0x1100 */
uint32_t ch0_tx_control; /* 0x1104 */
uint32_t ch0_rx_control; /* 0x1108 */
uint32_t unused_110c; /* 0x110c */
uint32_t ch0_txdesc_list_haddress; /* 0x1110 */
uint32_t ch0_txdesc_list_address; /* 0x1114 */
uint32_t ch0_rxdesc_list_haddress; /* 0x1118 */
uint32_t ch0_rxdesc_list_address; /* 0x111c */
uint32_t ch0_txdesc_tail_pointer; /* 0x1120 */
uint32_t unused_1124; /* 0x1124 */
uint32_t ch0_rxdesc_tail_pointer; /* 0x1128 */
uint32_t ch0_txdesc_ring_length; /* 0x112c */
uint32_t ch0_rxdesc_ring_length; /* 0x1130 */
};
#define EQOS_DMA_MODE_SWR BIT(0)
#define EQOS_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT 16
#define EQOS_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK 0xf
#define EQOS_DMA_SYSBUS_MODE_EAME BIT(11)
#define EQOS_DMA_SYSBUS_MODE_AALE BIT(10)
#define EQOS_DMA_SYSBUS_MODE_BLEN16 BIT(3)
#define EQOS_DMA_SYSBUS_MODE_BLEN8 BIT(2)
#define EQOS_DMA_SYSBUS_MODE_BLEN4 BIT(1)
#define EQOS_DMA_CH0_CONTROL_PBLX8 BIT(16)
#define EQOS_DMA_CH0_TX_CONTROL_TXPBL_SHIFT 16
#define EQOS_DMA_CH0_TX_CONTROL_TXPBL_MASK 0x3f
#define EQOS_DMA_CH0_TX_CONTROL_OSP BIT(4)
#define EQOS_DMA_CH0_TX_CONTROL_ST BIT(0)
#define EQOS_DMA_CH0_RX_CONTROL_RXPBL_SHIFT 16
#define EQOS_DMA_CH0_RX_CONTROL_RXPBL_MASK 0x3f
#define EQOS_DMA_CH0_RX_CONTROL_RBSZ_SHIFT 1
#define EQOS_DMA_CH0_RX_CONTROL_RBSZ_MASK 0x3fff
#define EQOS_DMA_CH0_RX_CONTROL_SR BIT(0)
/* Descriptors */
/* We assume ARCH_DMA_MINALIGN >= 16; 16 is the EQOS HW minimum */
#define EQOS_DESCRIPTOR_ALIGN ARCH_DMA_MINALIGN
#define EQOS_DESCRIPTOR_BYTES 16
#define EQOS_DESCRIPTOR_DUMMY (ARCH_DMA_MINALIGN - EQOS_DESCRIPTOR_BYTES)
#define EQOS_DESCRIPTOR_SIZE (EQOS_DESCRIPTOR_BYTES + EQOS_DESCRIPTOR_DUMMY)
#define EQOS_DESCRIPTORS_TX 4
#define EQOS_DESCRIPTORS_RX 16
#define EQOS_DESCRIPTORS_NUM (EQOS_DESCRIPTORS_TX + EQOS_DESCRIPTORS_RX)
#define EQOS_DESCRIPTORS_SIZE ALIGN(EQOS_DESCRIPTORS_NUM * \
EQOS_DESCRIPTOR_SIZE, ARCH_DMA_MINALIGN)
#define EQOS_BUFFER_ALIGN ARCH_DMA_MINALIGN
#define EQOS_MAX_PACKET_SIZE ALIGN(1568, ARCH_DMA_MINALIGN)
#define EQOS_RX_BUFFER_SIZE (EQOS_DESCRIPTORS_RX * EQOS_MAX_PACKET_SIZE)
/*
* Warn if the cache-line size is larger than the descriptor size. In such
* cases the driver will likely fail because the CPU needs to flush the cache
* when requeuing RX buffers, therefore descriptors written by the hardware
* may be discarded. Architectures with full IO coherence, such as x86, do not
* experience this issue, and hence are excluded from this condition.
*
* This can be fixed by defining CONFIG_SYS_NONCACHED_MEMORY which will cause
* the driver to allocate descriptors from a pool of non-cached memory.
*/
#if EQOS_DESCRIPTOR_SIZE != ARCH_DMA_MINALIGN
#warning Cache line size is NOT equal to descriptor size
#endif
struct eqos_desc {
u32 des0;
u32 des1;
u32 des2;
u32 des3;
#if (ARCH_DMA_MINALIGN > 16)
u32 dummy0;
u32 dummy1;
u32 dummy2;
u32 dummy3;
#endif
#if (ARCH_DMA_MINALIGN > 32)
u32 dummy4;
u32 dummy5;
u32 dummy6;
u32 dummy7;
u32 dummy9;
u32 dummy10;
u32 dummy11;
u32 dummy12;
#endif
#if (ARCH_DMA_MINALIGN > 64)
#warning Driver is not designed to handle 128 bytes cache line size
#endif
};
#define EQOS_DESC3_OWN BIT(31)
#define EQOS_DESC3_FD BIT(29)
#define EQOS_DESC3_LD BIT(28)
#define EQOS_DESC3_BUF1V BIT(24)
struct eqos_config {
bool reg_access_always_ok;
};
struct eqos_priv {
struct eth_device *dev;
const struct eqos_config *config;
uint32_t regs;
struct eqos_mac_regs *mac_regs;
struct eqos_mtl_regs *mtl_regs;
struct eqos_dma_regs *dma_regs;
struct mii_dev *mii;
struct phy_device *phy;
void *descs;
struct eqos_desc *tx_descs;
struct eqos_desc *rx_descs;
int tx_desc_idx, rx_desc_idx;
void *tx_dma_buf;
void *rx_dma_buf;
void *rx_pkt;
bool started;
bool reg_access_ok;
u32 phyaddr;
};
static u8 mdc_div = 1;
static u32 inv_led = 0;
static u32 single_led = 0;
/*
* TX and RX descriptors are 16 bytes. This causes problems with the cache
* maintenance on CPUs where the cache-line size exceeds the size of these
* descriptors. What will happen is that when the driver receives a packet
* it will be immediately requeued for the hardware to reuse. The CPU will
* therefore need to flush the cache-line containing the descriptor, which
* will cause all other descriptors in the same cache-line to be flushed
* along with it. If one of those descriptors had been written to by the
* device those changes (and the associated packet) will be lost.
*
* To work around this, we make use of non-cached memory if available. If
* descriptors are mapped uncached there's no need to manually flush them
* or invalidate them.
*
* Note that this only applies to descriptors. The packet data buffers do
* not have the same constraints since they are 1536 bytes large, so they
* are unlikely to share cache-lines.
*/
static void *eqos_alloc_descs(unsigned int num)
{
#ifdef CONFIG_SYS_NONCACHED_MEMORY
return (void *)noncached_alloc(EQOS_DESCRIPTORS_SIZE,
EQOS_DESCRIPTOR_ALIGN);
#else
return memalign(EQOS_DESCRIPTOR_ALIGN, EQOS_DESCRIPTORS_SIZE);
#endif
}
static void eqos_free_descs(void *descs)
{
#ifdef CONFIG_SYS_NONCACHED_MEMORY
/* FIXME: noncached_alloc() has no opposite */
#else
free(descs);
#endif
}
static void eqos_inval_desc(void *desc)
{
#ifndef CONFIG_SYS_NONCACHED_MEMORY
unsigned long start = (unsigned long)desc & ~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN(start + EQOS_DESCRIPTOR_SIZE,
ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
#endif
}
static void eqos_flush_desc(void *desc)
{
#ifndef CONFIG_SYS_NONCACHED_MEMORY
flush_cache((unsigned long)desc, EQOS_DESCRIPTOR_SIZE);
#endif
}
static void eqos_inval_buffer(void *buf, size_t size)
{
unsigned long start = (unsigned long)buf & ~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN(start + size, ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
}
static void eqos_flush_buffer(void *buf, size_t size)
{
size_t align_size = ALIGN(size + ARCH_DMA_MINALIGN - 1, ARCH_DMA_MINALIGN);
flush_cache((unsigned long)buf, align_size);
}
static int eqos_mdio_wait_idle(struct eqos_priv *eqos)
{
int i = 0;
u32 reg;
do {
reg = readl(&eqos->mac_regs->mdio_address);
if (!(reg & EQOS_MAC_MDIO_ADDRESS_GB))
return 0;
i++;
} while (i < 1000000);
return -1;
}
static int eqos_dma_wait_swrst(struct eqos_priv *eqos)
{
int i = 0;
u32 reg;
writel(EQOS_DMA_MODE_SWR, &eqos->dma_regs->mode);
do {
reg = readl(&eqos->dma_regs->mode);
if (!(reg & EQOS_DMA_MODE_SWR))
return 0;
i++;
} while (i < 100);
return -1;
}
static int eqos_mdio_read(struct mii_dev *bus, int mdio_addr, int mdio_devad,
int mdio_reg)
{
struct eqos_priv *eqos = bus->priv;
u32 val;
int ret;
debug("%s(dev=%p, addr=%x, reg=%d):\n", __func__, eqos->dev, mdio_addr,
mdio_reg);
ret = eqos_mdio_wait_idle(eqos);
if (ret) {
pr_err("MDIO not idle at entry");
return ret;
}
val = readl(&eqos->mac_regs->mdio_address);
val &= EQOS_MAC_MDIO_ADDRESS_SKAP |
EQOS_MAC_MDIO_ADDRESS_C45E;
val |= (mdio_addr << EQOS_MAC_MDIO_ADDRESS_PA_SHIFT) |
(mdio_reg << EQOS_MAC_MDIO_ADDRESS_RDA_SHIFT) |
(mdc_div <<
EQOS_MAC_MDIO_ADDRESS_CR_SHIFT) |
(EQOS_MAC_MDIO_ADDRESS_GOC_READ <<
EQOS_MAC_MDIO_ADDRESS_GOC_SHIFT) |
EQOS_MAC_MDIO_ADDRESS_GB;
writel(val, &eqos->mac_regs->mdio_address);
udelay(10);
ret = eqos_mdio_wait_idle(eqos);
if (ret) {
pr_err("MDIO read didn't complete");
return ret;
}
val = readl(&eqos->mac_regs->mdio_data);
val &= EQOS_MAC_MDIO_DATA_GD_MASK;
debug("%s: val=%x\n", __func__, val);
return val;
}
static int eqos_mdio_write(struct mii_dev *bus, int mdio_addr, int mdio_devad,
int mdio_reg, u16 mdio_val)
{
struct eqos_priv *eqos = bus->priv;
u32 val;
int ret;
debug("%s(dev=%p, addr=%x, reg=%d, val=%x):\n", __func__, eqos->dev,
mdio_addr, mdio_reg, mdio_val);
ret = eqos_mdio_wait_idle(eqos);
if (ret) {
pr_err("MDIO not idle at entry");
return ret;
}
writel(mdio_val, &eqos->mac_regs->mdio_data);
val = readl(&eqos->mac_regs->mdio_address);
val &= EQOS_MAC_MDIO_ADDRESS_SKAP |
EQOS_MAC_MDIO_ADDRESS_C45E;
val |= (mdio_addr << EQOS_MAC_MDIO_ADDRESS_PA_SHIFT) |
(mdio_reg << EQOS_MAC_MDIO_ADDRESS_RDA_SHIFT) |
(mdc_div <<
EQOS_MAC_MDIO_ADDRESS_CR_SHIFT) |
(EQOS_MAC_MDIO_ADDRESS_GOC_WRITE <<
EQOS_MAC_MDIO_ADDRESS_GOC_SHIFT) |
EQOS_MAC_MDIO_ADDRESS_GB;
writel(val, &eqos->mac_regs->mdio_address);
udelay(10);
ret = eqos_mdio_wait_idle(eqos);
if (ret) {
pr_err("MDIO read didn't complete");
return ret;
}
return 0;
}
static int eqos_set_full_duplex(struct eth_device *dev)
{
struct eqos_priv *eqos = dev->priv;
debug("%s(dev=%p):\n", __func__, dev);
setbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_DM);
return 0;
}
static int eqos_set_half_duplex(struct eth_device *dev)
{
struct eqos_priv *eqos = dev->priv;
debug("%s(dev=%p):\n", __func__, dev);
clrbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_DM);
/* WAR: Flush TX queue when switching to half-duplex */
setbits_le32(&eqos->mtl_regs->txq0_operation_mode,
EQOS_MTL_TXQ0_OPERATION_MODE_FTQ);
return 0;
}
static int eqos_set_gmii_speed(struct eth_device *dev)
{
struct eqos_priv *eqos = dev->priv;
debug("%s(dev=%p):\n", __func__, dev);
clrbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_PS | EQOS_MAC_CONFIGURATION_FES);
return 0;
}
static int eqos_set_mii_speed_100(struct eth_device *dev)
{
struct eqos_priv *eqos = dev->priv;
debug("%s(dev=%p):\n", __func__, dev);
setbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_PS | EQOS_MAC_CONFIGURATION_FES);
return 0;
}
static int eqos_set_mii_speed_10(struct eth_device *dev)
{
struct eqos_priv *eqos = dev->priv;
debug("%s(dev=%p):\n", __func__, dev);
clrsetbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_FES, EQOS_MAC_CONFIGURATION_PS);
return 0;
}
static int eqos_adjust_link(struct eth_device *dev)
{
struct eqos_priv *eqos = dev->priv;
int ret;
debug("%s(dev=%p):\n", __func__, dev);
if (eqos->phy->duplex)
ret = eqos_set_full_duplex(dev);
else
ret = eqos_set_half_duplex(dev);
if (ret < 0) {
pr_err("eqos_set_*_duplex() failed: %d", ret);
return ret;
}
switch (eqos->phy->speed) {
case SPEED_1000:
ret = eqos_set_gmii_speed(dev);
break;
case SPEED_100:
ret = eqos_set_mii_speed_100(dev);
break;
case SPEED_10:
ret = eqos_set_mii_speed_10(dev);
break;
default:
pr_err("invalid speed %d", eqos->phy->speed);
return -EINVAL;
}
if (ret < 0) {
pr_err("eqos_set_*mii_speed*() failed: %d", ret);
return ret;
}
return 0;
}
static int eqos_write_hwaddr(struct eth_device *eth_dev)
{
struct eqos_priv *eqos = eth_dev->priv;
uint32_t val;
/*
* This function may be called before start() or after stop(). At that
* time, on at least some configurations of the EQoS HW, all clocks to
* the EQoS HW block will be stopped, and a reset signal applied. If
* any register access is attempted in this state, bus timeouts or CPU
* hangs may occur. This check prevents that.
*
* A simple solution to this problem would be to not implement
* write_hwaddr(), since start() always writes the MAC address into HW
* anyway. However, it is desirable to implement write_hwaddr() to
* support the case of SW that runs subsequent to U-Boot which expects
* the MAC address to already be programmed into the EQoS registers,
* which must happen irrespective of whether the U-Boot user (or
* scripts) actually made use of the EQoS device, and hence
* irrespective of whether start() was ever called.
*
* Note that this requirement by subsequent SW is not valid for
* Tegra186, and is likely not valid for any non-PCI instantiation of
* the EQoS HW block. This function is implemented solely as
* future-proofing with the expectation the driver will eventually be
* ported to some system where the expectation above is true.
*/
if (!eqos->config->reg_access_always_ok && !eqos->reg_access_ok)
return 0;
/* Update the MAC address */
val = (eth_dev->enetaddr[5] << 8) |
(eth_dev->enetaddr[4]);
writel(val, &eqos->mac_regs->address0_high);
val = (eth_dev->enetaddr[3] << 24) |
(eth_dev->enetaddr[2] << 16) |
(eth_dev->enetaddr[1] << 8) |
(eth_dev->enetaddr[0]);
writel(val, &eqos->mac_regs->address0_low);
return 0;
}
static int eqos_start(struct eth_device *eth_dev, bd_t *bis)
{
struct eqos_priv *eqos = eth_dev->priv;
int ret = 0, i;
u32 val, tx_fifo_sz, rx_fifo_sz, tqs, rqs, pbl;
ulong last_rx_desc;
debug("%s(eth_dev=%p):\n", __func__, eth_dev);
if (!eqos->phy) {
eqos->phy = phy_connect(eqos->mii, eqos->phyaddr, eth_dev, 0);
if (!eqos->phy) {
pr_err("phy_connect() failed");
goto err;
}
ret = phy_config(eqos->phy);
if (ret < 0) {
pr_err("phy_config() failed: %d", ret);
goto err;
}
ret = phy_startup(eqos->phy);
if (ret < 0) {
pr_err("phy_startup() failed: %d", ret);
goto err;
}
}
eqos->tx_desc_idx = 0;
eqos->rx_desc_idx = 0;
eqos->reg_access_ok = true;
// Check DMA SW reset
ret = eqos_dma_wait_swrst(eqos);
if (ret) {
pr_err("EQOS_DMA_MODE_SWR reset fail, ethernet function will be error, plz check rx_clk waveform");
goto err;
}
ret = phy_startup(eqos->phy);
if (ret < 0) {
ret = -1;
pr_err("phy_startup() failed: %d", ret);
goto err;
}
if (!eqos->phy->link) {
ret = -1;
pr_err("No link");
goto err;
}
ret = eqos_adjust_link(eth_dev);
if (ret < 0) {
pr_err("eqos_adjust_link() failed: %d", ret);
goto err;
}
/* Configure MTL */
/* Enable Store and Forward mode for TX */
/* Program Tx operating mode */
setbits_le32(&eqos->mtl_regs->txq0_operation_mode,
EQOS_MTL_TXQ0_OPERATION_MODE_TSF |
(EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_ENABLED <<
EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_SHIFT));
// /* Transmit Queue weight */
// writel(0x10, &eqos->mtl_regs->txq0_quantum_weight);
/* Enable Store and Forward mode for RX, since no jumbo frame */
setbits_le32(&eqos->mtl_regs->rxq0_operation_mode,
EQOS_MTL_RXQ0_OPERATION_MODE_RSF);
/* Transmit/Receive queue fifo size; use all RAM for 1 queue */
val = readl(&eqos->mac_regs->hw_feature1);
tx_fifo_sz = (val >> EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_SHIFT) &
EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_MASK;
rx_fifo_sz = (val >> EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_SHIFT) &
EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_MASK;
/*
* r/tx_fifo_sz is encoded as log2(n / 128). Undo that by shifting.
* r/tqs is encoded as (n / 256) - 1.
*/
tqs = (128 << tx_fifo_sz) / 256 - 1;
rqs = (128 << rx_fifo_sz) / 256 - 1;
clrsetbits_le32(&eqos->mtl_regs->txq0_operation_mode,
EQOS_MTL_TXQ0_OPERATION_MODE_TQS_MASK <<
EQOS_MTL_TXQ0_OPERATION_MODE_TQS_SHIFT,
tqs << EQOS_MTL_TXQ0_OPERATION_MODE_TQS_SHIFT);
clrsetbits_le32(&eqos->mtl_regs->rxq0_operation_mode,
EQOS_MTL_RXQ0_OPERATION_MODE_RQS_MASK <<
EQOS_MTL_RXQ0_OPERATION_MODE_RQS_SHIFT,
rqs << EQOS_MTL_RXQ0_OPERATION_MODE_RQS_SHIFT);
/* Flow control used only if each channel gets 4KB or more FIFO */
if (rqs >= ((4096 / 256) - 1)) {
u32 rfd, rfa;
setbits_le32(&eqos->mtl_regs->rxq0_operation_mode,
EQOS_MTL_RXQ0_OPERATION_MODE_EHFC);
/*
* Set Threshold for Activating Flow Contol space for min 2
* frames ie, (1500 * 1) = 1500 bytes.
*
* Set Threshold for Deactivating Flow Contol for space of
* min 1 frame (frame size 1500bytes) in receive fifo
*/
if (rqs == ((4096 / 256) - 1)) {
/*
* This violates the above formula because of FIFO size
* limit therefore overflow may occur inspite of this.
*/
rfd = 0x3; /* Full-3K */
rfa = 0x1; /* Full-1.5K */
} else if (rqs == ((8192 / 256) - 1)) {
rfd = 0x6; /* Full-4K */
rfa = 0xa; /* Full-6K */
} else if (rqs == ((16384 / 256) - 1)) {
rfd = 0x6; /* Full-4K */
rfa = 0x12; /* Full-10K */
} else {
rfd = 0x6; /* Full-4K */
rfa = 0x1E; /* Full-16K */
}
clrsetbits_le32(&eqos->mtl_regs->rxq0_operation_mode,
(EQOS_MTL_RXQ0_OPERATION_MODE_RFD_MASK <<
EQOS_MTL_RXQ0_OPERATION_MODE_RFD_SHIFT) |
(EQOS_MTL_RXQ0_OPERATION_MODE_RFA_MASK <<
EQOS_MTL_RXQ0_OPERATION_MODE_RFA_SHIFT),
(rfd <<
EQOS_MTL_RXQ0_OPERATION_MODE_RFD_SHIFT) |
(rfa <<
EQOS_MTL_RXQ0_OPERATION_MODE_RFA_SHIFT));
}
/* Configure MAC */
clrsetbits_le32(&eqos->mac_regs->rxq_ctrl0,
EQOS_MAC_RXQ_CTRL0_RXQ0EN_MASK <<
EQOS_MAC_RXQ_CTRL0_RXQ0EN_SHIFT,
EQOS_MAC_RXQ_CTRL0_RXQ0EN_ENABLED_DCB <<
EQOS_MAC_RXQ_CTRL0_RXQ0EN_SHIFT);
/* Set TX flow control parameters */
/* Set Pause Time */
setbits_le32(&eqos->mac_regs->q0_tx_flow_ctrl,
0xffff << EQOS_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT);
setbits_le32(&eqos->mac_regs->q0_tx_flow_ctrl,
0x0 << EQOS_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT);
// /* Assign priority for TX flow control */
// clrbits_le32(&eqos->mac_regs->txq_prty_map0,
// EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_MASK <<
// EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_SHIFT);
// /* Assign priority for RX flow control */
// clrbits_le32(&eqos->mac_regs->rxq_ctrl2,
// EQOS_MAC_RXQ_CTRL2_PSRQ0_MASK <<
// EQOS_MAC_RXQ_CTRL2_PSRQ0_SHIFT);
// setbits_le32(&eqos->mac_regs->rxq_ctrl2,
// BIT(0));
/* Enable flow control */
setbits_le32(&eqos->mac_regs->q0_tx_flow_ctrl,
EQOS_MAC_Q0_TX_FLOW_CTRL_TFE);
setbits_le32(&eqos->mac_regs->rx_flow_ctrl,
EQOS_MAC_RX_FLOW_CTRL_RFE);
clrsetbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_GPSLCE |
EQOS_MAC_CONFIGURATION_WD |
EQOS_MAC_CONFIGURATION_JD |
EQOS_MAC_CONFIGURATION_JE,
EQOS_MAC_CONFIGURATION_CST |
EQOS_MAC_CONFIGURATION_ACS);
eqos_write_hwaddr(eth_dev);
/* Configure DMA */
/* Enable OSP mode */
setbits_le32(&eqos->dma_regs->ch0_tx_control,
EQOS_DMA_CH0_TX_CONTROL_OSP);
/* RX buffer size. Must be a multiple of bus width */
clrsetbits_le32(&eqos->dma_regs->ch0_rx_control,
EQOS_DMA_CH0_RX_CONTROL_RBSZ_MASK <<
EQOS_DMA_CH0_RX_CONTROL_RBSZ_SHIFT,
EQOS_MAX_PACKET_SIZE <<
EQOS_DMA_CH0_RX_CONTROL_RBSZ_SHIFT);
if(nvt_get_chip_id() == CHIP_NA51084) {
setbits_le32(&eqos->dma_regs->ch0_control,
(EQOS_DMA_CH0_CONTROL_PBLX8 | ((EQOS_DESCRIPTOR_DUMMY/8)<<18)));
} else {
setbits_le32(&eqos->dma_regs->ch0_control,
(EQOS_DMA_CH0_CONTROL_PBLX8 | ((EQOS_DESCRIPTOR_DUMMY/4)<<18)));
}
/*
* Burst length must be < 1/2 FIFO size.
* FIFO size in tqs is encoded as (n / 256) - 1.
* Each burst is n * 8 (PBLX8) * 16 (AXI width) == 128 bytes.
* Half of n * 256 is n * 128, so pbl == tqs, modulo the -1.
*/
pbl = tqs + 1;
if (pbl > 32)
pbl = 32;
clrsetbits_le32(&eqos->dma_regs->ch0_tx_control,
EQOS_DMA_CH0_TX_CONTROL_TXPBL_MASK <<
EQOS_DMA_CH0_TX_CONTROL_TXPBL_SHIFT,
16 << EQOS_DMA_CH0_TX_CONTROL_TXPBL_SHIFT);
clrsetbits_le32(&eqos->dma_regs->ch0_rx_control,
EQOS_DMA_CH0_RX_CONTROL_RXPBL_MASK <<
EQOS_DMA_CH0_RX_CONTROL_RXPBL_SHIFT,
16 << EQOS_DMA_CH0_RX_CONTROL_RXPBL_SHIFT);
/* DMA performance configuration */
val = (2 << EQOS_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT) |
EQOS_DMA_SYSBUS_MODE_AALE;
// val = (2 << EQOS_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT) |
// EQOS_DMA_SYSBUS_MODE_EAME | EQOS_DMA_SYSBUS_MODE_BLEN16 |
// EQOS_DMA_SYSBUS_MODE_BLEN8 | EQOS_DMA_SYSBUS_MODE_BLEN4;
writel(val, &eqos->dma_regs->sysbus_mode);
/* Set up descriptors */
memset(eqos->descs, 0, EQOS_DESCRIPTORS_SIZE);
for (i = 0; i < EQOS_DESCRIPTORS_RX; i++) {
struct eqos_desc *rx_desc = &(eqos->rx_descs[i]);
rx_desc->des0 = (u32)(ulong)(eqos->rx_dma_buf +
(i * EQOS_MAX_PACKET_SIZE));
rx_desc->des3 |= EQOS_DESC3_OWN | EQOS_DESC3_BUF1V;
eqos_inval_buffer((void*)rx_desc->des0, EQOS_MAX_PACKET_SIZE);
}
flush_cache((unsigned long)eqos->descs, EQOS_DESCRIPTORS_SIZE);
writel(0, &eqos->dma_regs->ch0_txdesc_list_haddress);
writel((ulong)eqos->tx_descs, &eqos->dma_regs->ch0_txdesc_list_address);
writel(EQOS_DESCRIPTORS_TX - 1,
&eqos->dma_regs->ch0_txdesc_ring_length);
writel(0, &eqos->dma_regs->ch0_rxdesc_list_haddress);
writel((ulong)eqos->rx_descs, &eqos->dma_regs->ch0_rxdesc_list_address);
writel(EQOS_DESCRIPTORS_RX - 1,
&eqos->dma_regs->ch0_rxdesc_ring_length);
/* Enable everything */
setbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_TE | EQOS_MAC_CONFIGURATION_RE);
setbits_le32(&eqos->dma_regs->ch0_tx_control,
EQOS_DMA_CH0_TX_CONTROL_ST);
setbits_le32(&eqos->dma_regs->ch0_rx_control,
EQOS_DMA_CH0_RX_CONTROL_SR);
/* TX tail pointer not written until we need to TX a packet */
/*
* Point RX tail pointer at last descriptor. Ideally, we'd point at the
* first descriptor, implying all descriptors were available. However,
* that's not distinguishable from none of the descriptors being
* available.
*/
last_rx_desc = (ulong)&(eqos->rx_descs[(EQOS_DESCRIPTORS_RX - 1)]);
writel(last_rx_desc, &eqos->dma_regs->ch0_rxdesc_tail_pointer);
eqos->started = true;
debug("%s: OK\n", __func__);
return 0;
err:
pr_err("FAILED: %d", ret);
return ret;
}
void eqos_stop(struct eth_device *eth_dev)
{
struct eqos_priv *eqos = eth_dev->priv;
int i;
debug("%s(eth_dev=%p):\n", __func__, eth_dev);
if (!eqos->started)
return;
eqos->started = false;
eqos->reg_access_ok = false;
/* Disable TX DMA */
clrbits_le32(&eqos->dma_regs->ch0_tx_control,
EQOS_DMA_CH0_TX_CONTROL_ST);
/* Wait for TX all packets to drain out of MTL */
for (i = 0; i < 1000000; i++) {
u32 val = readl(&eqos->mtl_regs->txq0_debug);
u32 trcsts = (val >> EQOS_MTL_TXQ0_DEBUG_TRCSTS_SHIFT) &
EQOS_MTL_TXQ0_DEBUG_TRCSTS_MASK;
u32 txqsts = val & EQOS_MTL_TXQ0_DEBUG_TXQSTS;
if ((trcsts != 1) && (!txqsts))
break;
}
/* Turn off MAC TX and RX */
clrbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_TE | EQOS_MAC_CONFIGURATION_RE);
/* Wait for all RX packets to drain out of MTL */
for (i = 0; i < 1000000; i++) {
u32 val = readl(&eqos->mtl_regs->rxq0_debug);
u32 prxq = (val >> EQOS_MTL_RXQ0_DEBUG_PRXQ_SHIFT) &
EQOS_MTL_RXQ0_DEBUG_PRXQ_MASK;
u32 rxqsts = (val >> EQOS_MTL_RXQ0_DEBUG_RXQSTS_SHIFT) &
EQOS_MTL_RXQ0_DEBUG_RXQSTS_MASK;
if ((!prxq) && (!rxqsts))
break;
}
/* Turn off RX DMA */
clrbits_le32(&eqos->dma_regs->ch0_rx_control,
EQOS_DMA_CH0_RX_CONTROL_SR);
}
int eqos_send(struct eth_device *eth_dev, void *packet, int length)
{
struct eqos_priv *eqos = eth_dev->priv;
struct eqos_desc *tx_desc;
int i;
debug("%s(eth_dev=%p, packet=%p, length=%d):\n", __func__, eth_dev, packet,
length);
memcpy(eqos->tx_dma_buf, packet, length);
eqos_flush_buffer(eqos->tx_dma_buf, length);
tx_desc = &(eqos->tx_descs[eqos->tx_desc_idx]);
eqos->tx_desc_idx++;
eqos->tx_desc_idx %= EQOS_DESCRIPTORS_TX;
tx_desc->des0 = (ulong)eqos->tx_dma_buf;
tx_desc->des1 = 0;
tx_desc->des2 = length;
/*
* Make sure that if HW sees the _OWN write below, it will see all the
* writes to the rest of the descriptor too.
*/
mb();
tx_desc->des3 = EQOS_DESC3_OWN | EQOS_DESC3_FD | EQOS_DESC3_LD | length;
eqos_flush_desc(tx_desc);
writel((ulong)(tx_desc + 1), &eqos->dma_regs->ch0_txdesc_tail_pointer);
for (i = 0; i < 1000000; i++) {
eqos_inval_desc(tx_desc);
if (!(readl(&tx_desc->des3) & EQOS_DESC3_OWN))
{
return 0;
}
udelay(1);
}
debug("%s: TX timeout\n", __func__);
return -ETIMEDOUT;
}
int eqos_free_pkt(struct eth_device *eth_dev, uchar *packet, int length)
{
struct eqos_priv *eqos = eth_dev->priv;
uchar *packet_expected;
struct eqos_desc *rx_desc;
debug("%s(rx_desc_idx=%d, packet=%p, length=%d)\n", __func__, eqos->rx_desc_idx, packet, length);
packet_expected = eqos->rx_dma_buf +
(eqos->rx_desc_idx * EQOS_MAX_PACKET_SIZE);
if (packet != packet_expected) {
debug("%s: Unexpected packet (expected %p)\n", __func__,
packet_expected);
return -EINVAL;
}
rx_desc = &(eqos->rx_descs[eqos->rx_desc_idx]);
rx_desc->des0 = (u32)(ulong)packet;
rx_desc->des1 = 0;
rx_desc->des2 = 0;
/*
* Make sure that if HW sees the _OWN write below, it will see all the
* writes to the rest of the descriptor too.
*/
mb();
rx_desc->des3 |= EQOS_DESC3_OWN | EQOS_DESC3_BUF1V;
eqos_flush_desc(rx_desc);
writel((ulong)rx_desc, &eqos->dma_regs->ch0_rxdesc_tail_pointer);
eqos->rx_desc_idx++;
eqos->rx_desc_idx %= EQOS_DESCRIPTORS_RX;
return 0;
}
int eqos_recv(struct eth_device *eth_dev)
{
struct eqos_priv *eqos = eth_dev->priv;
struct eqos_desc *rx_desc;
int length;
uint32_t packetp;
debug("%s(dev=%p: des indx 0x%x\n", __func__, eth_dev, eqos->rx_desc_idx);
rx_desc = &(eqos->rx_descs[eqos->rx_desc_idx]);
eqos_inval_buffer((void*)rx_desc, EQOS_DESCRIPTOR_SIZE);
if (rx_desc->des3 & EQOS_DESC3_OWN) {
debug("%s: RX packet not available\n", __func__);
return -EAGAIN;
}
packetp = (u32) eqos->rx_dma_buf +
(eqos->rx_desc_idx * EQOS_MAX_PACKET_SIZE);
length = rx_desc->des3 & 0x7fff;
eqos_inval_buffer((void*)packetp, EQOS_MAX_PACKET_SIZE);
mb();
net_process_received_packet((void*)packetp, length);
eqos_free_pkt(eth_dev, (void*)packetp, length);
//printf("r(%d)\n",eqos->rx_desc_idx-1);
return length;
}
static int eqos_probe_resources_core(struct eth_device *dev)
{
struct eqos_priv *eqos = dev->priv;
int ret;
debug("%s(dev=%p):\n", __func__, dev);
eqos->descs = eqos_alloc_descs(EQOS_DESCRIPTORS_TX +
EQOS_DESCRIPTORS_RX);
if (!eqos->descs) {
debug("%s: eqos_alloc_descs() failed\n", __func__);
ret = -ENOMEM;
goto err;
}
eqos->tx_descs = (struct eqos_desc *)eqos->descs;
eqos->rx_descs = (eqos->tx_descs + EQOS_DESCRIPTORS_TX);
debug("%s: tx_descs=%p, rx_descs=%p\n", __func__, eqos->tx_descs,
eqos->rx_descs);
eqos->tx_dma_buf = memalign(EQOS_BUFFER_ALIGN, EQOS_MAX_PACKET_SIZE);
if (!eqos->tx_dma_buf) {
debug("%s: memalign(tx_dma_buf) failed\n", __func__);
ret = -ENOMEM;
goto err_free_descs;
}
debug("%s: tx_dma_buf=%p\n", __func__, eqos->tx_dma_buf);
eqos->rx_dma_buf = memalign(EQOS_BUFFER_ALIGN, EQOS_RX_BUFFER_SIZE);
if (!eqos->rx_dma_buf) {
debug("%s: memalign(rx_dma_buf) failed\n", __func__);
ret = -ENOMEM;
goto err_free_tx_dma_buf;
}
debug("%s: rx_dma_buf=%p\n", __func__, eqos->rx_dma_buf);
eqos->rx_pkt = malloc(EQOS_MAX_PACKET_SIZE);
if (!eqos->rx_pkt) {
debug("%s: malloc(rx_pkt) failed\n", __func__);
ret = -ENOMEM;
goto err_free_rx_dma_buf;
}
debug("%s: rx_pkt=%p\n", __func__, eqos->rx_pkt);
debug("%s: OK\n", __func__);
return 0;
err_free_rx_dma_buf:
free(eqos->rx_dma_buf);
err_free_tx_dma_buf:
free(eqos->tx_dma_buf);
err_free_descs:
eqos_free_descs(eqos->descs);
err:
debug("%s: returns %d\n", __func__, ret);
return ret;
}
static int eqos_remove_resources_core(struct eth_device *eth_dev)
{
struct eqos_priv *eqos = eth_dev->priv;
debug("%s(dev=%p):\n", __func__, eth_dev);
free(eqos->rx_pkt);
free(eqos->rx_dma_buf);
free(eqos->tx_dma_buf);
eqos_free_descs(eqos->descs);
debug("%s: OK\n", __func__);
return 0;
}
static void eth_phy_poweron(void)
{
unsigned long reg;
reg = readl((void*)(IOADDR_ETH_REG_BASE + 0x3800 + 0xF8));
writel(reg | (1<<7), (void *)(IOADDR_ETH_REG_BASE + 0x3800 + 0xF8));
udelay(20);
reg = readl((void*)(IOADDR_ETH_REG_BASE + 0x3800 + 0xC8));
writel(reg & (~(1<<0)), (void *)(IOADDR_ETH_REG_BASE + 0x3800 + 0xC8));
udelay(200);
reg = readl((void*)(IOADDR_ETH_REG_BASE + 0x3800 + 0xC8));
writel(reg & (~(1<<1)), (void *)(IOADDR_ETH_REG_BASE + 0x3800 + 0xC8));
udelay(250);
reg = readl((void*)(IOADDR_ETH_REG_BASE + 0x3800 + 0x2E8));
writel(reg & (~(1<<0)), (void *)(IOADDR_ETH_REG_BASE + 0x3800 + 0x2E8));
reg = readl((void*)(IOADDR_ETH_REG_BASE + 0x3800 + 0xCC));
writel(reg & (~(1<<0)), (void *)(IOADDR_ETH_REG_BASE + 0x3800 + 0xCC));
reg = readl((void*)(IOADDR_ETH_REG_BASE + 0x3800 + 0xDC));
writel(reg | (1<<0), (void *)(IOADDR_ETH_REG_BASE + 0x3800 + 0xDC));
reg = readl((void*)(IOADDR_ETH_REG_BASE + 0x3800 + 0x9C));
writel(reg & (~(1<<0)), (void *)(IOADDR_ETH_REG_BASE + 0x3800 + 0x9C));
}
static void eqos_probe_hwinit(void)
{
u32 varCGSys = *(uint32_t*) (IOADDR_CG_REG_BASE + 0x10);
if(((varCGSys>>8)&0x3) == 3) { // 120 MHz
mdc_div = 1;
} else if (((varCGSys>>8)&0x3) == 2) { // 80 MHz
mdc_div = 0;
} else if (((varCGSys>>8)&0x3) == 1) { // 60 MHz
mdc_div = 0;
} else { // 48
mdc_div = 3;
}
// global setting
if(nvt_get_chip_id() == CHIP_NA51055) {
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x0) |= 0x40; /*Enable PLL6*/
}
udelay(10);
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x74) |= 0x20000000; /*Enable Clock*/
udelay(10);
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x84) |= 0x20000000; /*Release reset*/
udelay(10);
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x1000) &= ~0x40000; /*Release SRAM shutdown*/
// phy setting
eth_phy_poweron();
phy_sw_reset_enable();
set_break_link_timer();
if (single_led) {
set_one_led();
} else {
set_led_blinking();
}
if (inv_led) {
set_led_inv();
}
mdelay(10);
phy_sw_reset_disable();
}
typedef enum {
PIN_ETH_CFG_NONE = 0x00, ///< PINMUX none
PIN_ETH_CFG_RMII = 0x01, ///< ETH RMII. Enable RMII on @ LCD0~LCD10
PIN_ETH_CFG_INTERANL = 0x02, ///< ETH INTERNAL MII
PIN_ETH_CFG_EXTPHYCLK = 0x04, ///< ETH EXT_PHY_CLK
PIN_ETH_CFG_LED1 = 0x10, ///< ETH INTERNAL PHY LED1
PIN_ETH_CFG_LED2 = 0x20, ///< ETH INTERNAL PHY LED2
PIN_ETH_CFG_RMII_2 = 0x40, ///< ETH RMII_2. Enable RMII_2
PIN_ETH_CFG_RGMII = 0x80, ///< ETH RGMII. Enable RGMII
} PINMUX_ETH_CFG;
static void mac_clk_en(phy_interface_t phy_intf)
{
if(nvt_get_chip_id() == CHIP_NA51084) {
if (phy_intf & PIN_ETH_CFG_INTERANL) {
// 480
} else {
// PLL16
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x0) |= 1<<16; /*Enable PLL16*/
}
} else {
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x0) |= 0x40; /*Enable PLL6*/
}
udelay(10);
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x74) |= 0x20000000; /*Enable Clock*/
udelay(10);
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x84) |= 0x20000000; /*Release reset*/
udelay(10);
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x1000) &= ~0x40000; /*Release SRAM shutdown*/
}
static void extphy_clk_en(u32 phy_intf, int phy_clk, int rmii_ref_out)
{
UINT reg;
if(nvt_get_chip_id() == CHIP_NA51084) {
if (phy_intf & (PIN_ETH_CFG_RMII|PIN_ETH_CFG_RMII_2)) {
reg = readl(IOADDR_ETH_REG_BASE + 0x3014);
// pre-assume refclk: phy--> mac
reg |= 1<<0;
reg &= ~(1<<4);
if (rmii_ref_out) {
printf("RMII REF_CLK OUT\r\n");
reg &= ~(1<<0);
reg |= 1<<4;
}
reg |= (1<<5); // REF_CLK_I
reg &= ~(0x03<<30);// TXD_SRC: RMII
writel(reg, IOADDR_ETH_REG_BASE + 0x3014);
reg = readl(IOADDR_ETH_REG_BASE + 0x3004);
reg |= (1<<8); // select external phy
writel(reg, IOADDR_ETH_REG_BASE + 0x3004);
if (phy_clk > 0) {
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x78) |= (1<<24); /*Enable phyclk*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) |= 0x10000000; /*Enable Pinmux*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xB8) &= ~0x80; /*Enable Pinmux*/
}
// reset external phy
gpio_request(L_GPIO(22), "PHY_RST");
gpio_direction_output(L_GPIO(22), 0);
mdelay(10); // assert low at least 10ms
gpio_set_value(L_GPIO(22), 1);
mdelay(50); // wait 50ms before access phy register
gpio_free(L_GPIO(22));
} else if (phy_intf & PIN_ETH_CFG_RGMII) {
reg = readl(IOADDR_ETH_REG_BASE + 0x3014);
reg |= (1<<4); // REF_CLK_O_EN: enable rgmii_tx_clk
reg &= ~(0x03<<30);
reg |= (0x01<<30);// TXD_SRC: RGMII
writel(reg, IOADDR_ETH_REG_BASE + 0x3014);
reg = readl(IOADDR_ETH_REG_BASE + 0x3004);
reg |= (1<<8); // select external phy
writel(reg, IOADDR_ETH_REG_BASE + 0x3004);
if (phy_clk > 0) {
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x78) |= (1<<24); /*Enable phyclk*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) |= 0x10000000; /*Enable Pinmux*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xB8) &= ~0x80; /*Enable Pinmux*/
}
// reset external phy
gpio_request(L_GPIO(22), "PHY_RST");
gpio_direction_output(L_GPIO(22), 0);
mdelay(10); // assert low at least 10ms
gpio_set_value(L_GPIO(22), 1);
mdelay(50); // wait 50ms before access phy register
gpio_free(L_GPIO(22));
} else if (phy_intf & PIN_ETH_CFG_INTERANL) {
reg = readl(IOADDR_ETH_REG_BASE + 0x3004);
reg &= ~(1<<8);// select embedded phy
writel(reg, IOADDR_ETH_REG_BASE + 0x3004);
}
} else {
if (phy_intf & PIN_ETH_CFG_RMII) {
reg = readl(IOADDR_ETH_REG_BASE + 0x3014);
// pre-assume refclk: phy--> mac
reg |= 1<<0;
reg &= ~(1<<4);
if (rmii_ref_out) {
printf("RMII REF_CLK OUT\r\n");
reg &= ~(1<<0);
reg |= 1<<4;
}
reg |= (1<<5); // REF_CLK_I
writel(reg, IOADDR_ETH_REG_BASE + 0x3014);
reg = readl(IOADDR_ETH_REG_BASE + 0x3004);
reg |= (1<<8);// select external phy
writel(reg, IOADDR_ETH_REG_BASE + 0x3004);
if (phy_clk > 0) {
*(uint32_t*) (IOADDR_CG_REG_BASE + 0x78) |= (1<<24); /*Enable phyclk*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) |= 0x10000000; /*Enable Pinmux*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xB8) &= ~0x80; /*Enable Pinmux*/
}
// reset external phy
gpio_request(L_GPIO(22), "PHY_RST");
gpio_direction_output(L_GPIO(22), 0);
mdelay(10); // assert low at least 10ms
gpio_set_value(L_GPIO(22), 1);
mdelay(50); // wait 50ms before access phy register
gpio_free(L_GPIO(22));
} else if (phy_intf & PIN_ETH_CFG_INTERANL) {
reg = readl(IOADDR_ETH_REG_BASE + 0x3004);
reg &= ~(1<<8);// select embedded phy
writel(reg, IOADDR_ETH_REG_BASE + 0x3004);
// phy setting
eth_phy_poweron();
phy_sw_reset_enable();
set_break_link_timer();
set_led_blinking();
mdelay(10);
phy_sw_reset_disable();
}
}
}
static void mac_pinmux_en(u32 phy_intf)
{
if(nvt_get_chip_id() == CHIP_NA51084) {
if (phy_intf & PIN_ETH_CFG_RMII) {
printf("phy interface: RMII\n");
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x10) |= 0x100; /*Enable Pinmux*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xB8) &= ~0x40077F; /*Enable Pinmux*/
} else if (phy_intf & PIN_ETH_CFG_RMII_2) {
printf("phy interface: RMII_2\n");
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x10) |= 0x200; /*Enable Pinmux*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xB8) &= ~0x18F3800;/*Enable Pinmux*/
} else if (phy_intf & PIN_ETH_CFG_RGMII) {
printf("phy interface: RGMII\n");
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x10) |= 0x300; /*Enable Pinmux*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xB8) &= ~0x1FFF800;/*Enable Pinmux*/
}
if (phy_intf & PIN_ETH_CFG_INTERANL) {
printf("phy interface: INTERNAL MII\n");
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) &= ~0x10000000; /*Enable Pinmux*/
} else if (phy_intf & PIN_ETH_CFG_EXTPHYCLK) {
printf("phy interface: EXT PHY CLK\n");
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) |= 0x10000000; /*Enable Pinmux*/
if (phy_intf & PIN_ETH_CFG_RMII) {
// RMII
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xB8) &= ~0x80; /*Enable Pinmux*/
} else if (phy_intf & PIN_ETH_CFG_RMII_2) {
// RMII_2
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xD0) &= ~0x01; /*Enable Pinmux*/
} else if (phy_intf & PIN_ETH_CFG_RGMII) {
// RGMII
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xD0) &= ~0x01; /*Enable Pinmux*/
}
}
} else {
if (phy_intf & PIN_ETH_CFG_RMII) {
printf("phy interface: RMII\n");
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) |= 0x3000; /*Enable Pinmux*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xB8) &= ~0x40077F; /*Enable Pinmux*/
}
if (phy_intf & PIN_ETH_CFG_INTERANL) {
printf("phy interface: INTERNAL MII\n");
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) &= ~0x10000000; /*Enable Pinmux*/
} else if (phy_intf & PIN_ETH_CFG_EXTPHYCLK) {
printf("phy interface: EXT PHY CLK\n");
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) |= 0x10000000; /*Enable Pinmux*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xB8) &= ~0x80; /*Enable Pinmux*/
}
}
}
static void eth_parse_phy_intf(void)
{
/* Enable it after dts parsing ready*/
ulong fdt_addr = nvt_readl((ulong)nvt_shminfo_boot_fdt_addr);
int nodeoffset;
u32 *cell = NULL;
char path[20] = {0};
int len;
u32 phy_intf;
u32 phy_clk = 0;
u32 rmii_ref_out = 0;
sprintf(path,"/top@%x/eth",IOADDR_TOP_REG_BASE);
nodeoffset = fdt_path_offset((const void*)fdt_addr, path);
if (nodeoffset < 0) {
printf("%s(%d) nodeoffset < 0\n",__func__, __LINE__);
return;
}
cell = (u32*)fdt_getprop((const void*)fdt_addr, nodeoffset, "pinmux", &len);
if (len == 0) {
printf("%s(%d) len = 0\n",__func__, __LINE__);
return;
}
phy_intf = __be32_to_cpu(cell[0]);
sprintf(path,"/%s", "eth@f02b0000");
nodeoffset = fdt_path_offset((const void*)fdt_addr, path);
if (nodeoffset < 0) {
printf("%s(%d) nodeoffset < 0\n",__func__, __LINE__);
printf("%s: path %s not found\n", __func__, path);
return;
}
cell = (u32*)fdt_getprop((const void*)fdt_addr, nodeoffset, "sp-clk", &len);
if (len != 0) {
phy_clk = __be32_to_cpu(cell[0]);
if (phy_clk)
phy_intf |= PIN_ETH_CFG_EXTPHYCLK;
}
cell = (u32*)fdt_getprop((const void*)fdt_addr, nodeoffset, "ref-clk-out", &len);
if (len != 0) {
rmii_ref_out = __be32_to_cpu(cell[0]);
}
sprintf(path,"/phy@f02b3800");
inv_led = 0;
nodeoffset = fdt_path_offset((const void*)fdt_addr, path);
if (nodeoffset < 0) {
printf("%s: node %s not found\r\n", __func__, path);
} else {
cell = (u32*)fdt_getprop((const void*)fdt_addr, nodeoffset, "led-inv", &len);
printf("%s: led-inv len %d\r\n", __func__, len);
if (len > 0) {
inv_led = __be32_to_cpu(cell[0]);
}
}
printf("%s: inv-led %d\r\n", __func__, inv_led);
printf("%s: phy-intf 0x%x\r\n", __func__, phy_intf);
if (phy_intf & 0x10) {
printf("phy interface: LED1\n");
if (phy_intf & 0x100) {
single_led = 1;
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xD0) &= ~0x1; /*Enable 1st Pinmux*/
} else if (phy_intf & 0x200) {
single_led = 1;
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xD0) &= ~0x2; /*Enable 2nd Pinmux*/
} else {
single_led = 0;
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xD0) &= ~0x3; /*Enable Pinmux*/
}
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) &= ~0x6000; /*Enable LED 1*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) |= 0x2000; /*Enable LED 1*/
} else if (phy_intf & 0x20) {
printf("phy interface: LED2\n");
if (phy_intf & 0x100) {
single_led = 1;
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xD0) &= ~0x20; /*Enable 1st Pinmux*/
} else if (phy_intf & 0x200) {
single_led = 1;
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xD0) &= ~0x40; /*Enable 2nd Pinmux*/
} else {
single_led = 0;
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0xD0) &= ~0x60; /*Enable Pinmux*/
}
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) &= ~0x6000; /*Enable LED 2*/
*(uint32_t*) (IOADDR_TOP_REG_BASE + 0x18) |= 0x4000; /*Enable LED 2*/
}
mac_pinmux_en(phy_intf);
mac_clk_en(phy_intf);
extphy_clk_en(phy_intf, phy_clk, rmii_ref_out);
udelay(1);
}
int na51055_eth_initialize(bd_t *bis)
{
struct eth_device *dev;
struct eqos_priv *eqos;
int ret;
u8 phyaddr = 0;
u32 phyval = 0, i;
#ifndef CONFIG_FIXED_ETH_PARAMETER
u8 default_mac_addr[6] = DEFAULT_MAC_ADDRESS;
#else
u8 default_mac_addr[6] = CONFIG_ETHADDR;
#endif
printf("%s %s\n",__func__, ETHVERSION);
eth_parse_phy_intf();
dev = malloc(sizeof *dev);
if (dev == NULL)
return -1;
memset(dev, 0, sizeof *dev);
sprintf(dev->name, "eth_na51055");
dev->init = eqos_start;
dev->halt = eqos_stop;
dev->send = eqos_send;
dev->recv = eqos_recv;
dev->write_hwaddr = eqos_write_hwaddr;
eth_register(dev);
eqos = malloc(sizeof *eqos);
if (eqos == NULL)
return -1;
memset(eqos, 0, sizeof *eqos);
dev->priv = eqos;
eqos->dev = dev;
eqos->regs = IOADDR_ETH_REG_BASE;
eqos->mac_regs = (void *)(eqos->regs + EQOS_MAC_REGS_BASE);
eqos->mtl_regs = (void *)(eqos->regs + EQOS_MTL_REGS_BASE);
eqos->dma_regs = (void *)(eqos->regs + EQOS_DMA_REGS_BASE);
ret = eqos_probe_resources_core(dev);
if (ret < 0) {
pr_err("eqos_probe_resources_core() failed: %d", ret);
return ret;
}
eqos_probe_hwinit();
eqos->mii = mdio_alloc();
if (!eqos->mii) {
pr_err("mdio_alloc() failed");
goto err_remove_resources_core;
}
eqos->mii->read = eqos_mdio_read;
eqos->mii->write = eqos_mdio_write;
eqos->mii->priv = eqos;
strcpy(eqos->mii->name, dev->name);
ret = mdio_register(eqos->mii);
if (ret < 0) {
pr_err("mdio_register() failed: %d", ret);
goto err_free_mdio;
}
memcpy(dev->enetaddr, default_mac_addr, 6);
// scan phy address
for (i = 0; i < 32; i++) {
phyval = eqos_mdio_read(eqos->mii,i, 0, MII_BMSR);
if (phyval != 0x0000 && phyval != 0xffff) {
phyaddr = i;
break;
}
}
eqos->phyaddr = phyaddr;
debug("%s: OK\n", __func__);
return 0;
err_free_mdio:
err_remove_resources_core:
eqos_remove_resources_core(dev);
debug("%s: returns %d\n", __func__, ret);
return ret;
}