175 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * This file contains an ECC algorithm from Toshiba that detects and
 | |
|  * corrects 1 bit errors in a 256 byte block of data.
 | |
|  *
 | |
|  * drivers/mtd/nand/raw/nand_ecc.c
 | |
|  *
 | |
|  * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
 | |
|  *                         Toshiba America Electronics Components, Inc.
 | |
|  *
 | |
|  * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *
 | |
|  * As a special exception, if other files instantiate templates or use
 | |
|  * macros or inline functions from these files, or you compile these
 | |
|  * files and link them with other works to produce a work based on these
 | |
|  * files, these files do not by themselves cause the resulting work to be
 | |
|  * covered by the GNU General Public License. However the source code for
 | |
|  * these files must still be made available in accordance with section (3)
 | |
|  * of the GNU General Public License.
 | |
|  *
 | |
|  * This exception does not invalidate any other reasons why a work based on
 | |
|  * this file might be covered by the GNU General Public License.
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand_ecc.h>
 | |
| 
 | |
| /*
 | |
|  * NAND-SPL has no sofware ECC for now, so don't include nand_calculate_ecc(),
 | |
|  * only nand_correct_data() is needed
 | |
|  */
 | |
| 
 | |
| #if !defined(CONFIG_NAND_SPL) || defined(CONFIG_SPL_NAND_SOFTECC)
 | |
| /*
 | |
|  * Pre-calculated 256-way 1 byte column parity
 | |
|  */
 | |
| static const u_char nand_ecc_precalc_table[] = {
 | |
| 	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
 | |
| 	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
 | |
| 	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
 | |
| 	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
 | |
| 	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
 | |
| 	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
 | |
| 	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
 | |
| 	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
 | |
| 	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
 | |
| 	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
 | |
| 	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
 | |
| 	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
 | |
| 	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
 | |
| 	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
 | |
| 	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
 | |
| 	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
 | |
|  * @mtd:	MTD block structure
 | |
|  * @dat:	raw data
 | |
|  * @ecc_code:	buffer for ECC
 | |
|  */
 | |
| int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 | |
| 		       u_char *ecc_code)
 | |
| {
 | |
| 	uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Initialize variables */
 | |
| 	reg1 = reg2 = reg3 = 0;
 | |
| 
 | |
| 	/* Build up column parity */
 | |
| 	for(i = 0; i < 256; i++) {
 | |
| 		/* Get CP0 - CP5 from table */
 | |
| 		idx = nand_ecc_precalc_table[*dat++];
 | |
| 		reg1 ^= (idx & 0x3f);
 | |
| 
 | |
| 		/* All bit XOR = 1 ? */
 | |
| 		if (idx & 0x40) {
 | |
| 			reg3 ^= (uint8_t) i;
 | |
| 			reg2 ^= ~((uint8_t) i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Create non-inverted ECC code from line parity */
 | |
| 	tmp1  = (reg3 & 0x80) >> 0; /* B7 -> B7 */
 | |
| 	tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
 | |
| 	tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
 | |
| 	tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
 | |
| 	tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
 | |
| 	tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
 | |
| 	tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
 | |
| 	tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
 | |
| 
 | |
| 	tmp2  = (reg3 & 0x08) << 4; /* B3 -> B7 */
 | |
| 	tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
 | |
| 	tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
 | |
| 	tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
 | |
| 	tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
 | |
| 	tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
 | |
| 	tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
 | |
| 	tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
 | |
| 
 | |
| 	/* Calculate final ECC code */
 | |
| 	ecc_code[0] = ~tmp1;
 | |
| 	ecc_code[1] = ~tmp2;
 | |
| 	ecc_code[2] = ((~reg1) << 2) | 0x03;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_NAND_SPL */
 | |
| 
 | |
| static inline int countbits(uint32_t byte)
 | |
| {
 | |
| 	int res = 0;
 | |
| 
 | |
| 	for (;byte; byte >>= 1)
 | |
| 		res += byte & 0x01;
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
 | |
|  * @mtd:	MTD block structure
 | |
|  * @dat:	raw data read from the chip
 | |
|  * @read_ecc:	ECC from the chip
 | |
|  * @calc_ecc:	the ECC calculated from raw data
 | |
|  *
 | |
|  * Detect and correct a 1 bit error for 256 byte block
 | |
|  */
 | |
| int nand_correct_data(struct mtd_info *mtd, u_char *dat,
 | |
| 		      u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	uint8_t s0, s1, s2;
 | |
| 
 | |
| 	s1 = calc_ecc[0] ^ read_ecc[0];
 | |
| 	s0 = calc_ecc[1] ^ read_ecc[1];
 | |
| 	s2 = calc_ecc[2] ^ read_ecc[2];
 | |
| 	if ((s0 | s1 | s2) == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check for a single bit error */
 | |
| 	if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
 | |
| 	    ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
 | |
| 	    ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
 | |
| 
 | |
| 		uint32_t byteoffs, bitnum;
 | |
| 
 | |
| 		byteoffs = (s1 << 0) & 0x80;
 | |
| 		byteoffs |= (s1 << 1) & 0x40;
 | |
| 		byteoffs |= (s1 << 2) & 0x20;
 | |
| 		byteoffs |= (s1 << 3) & 0x10;
 | |
| 
 | |
| 		byteoffs |= (s0 >> 4) & 0x08;
 | |
| 		byteoffs |= (s0 >> 3) & 0x04;
 | |
| 		byteoffs |= (s0 >> 2) & 0x02;
 | |
| 		byteoffs |= (s0 >> 1) & 0x01;
 | |
| 
 | |
| 		bitnum = (s2 >> 5) & 0x04;
 | |
| 		bitnum |= (s2 >> 4) & 0x02;
 | |
| 		bitnum |= (s2 >> 3) & 0x01;
 | |
| 
 | |
| 		dat[byteoffs] ^= (1 << bitnum);
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
 | |
| 		return 1;
 | |
| 
 | |
| 	return -EBADMSG;
 | |
| }
 | 
