1488 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1488 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* vi: set sw=4 ts=4: */
 | |
| /*
 | |
|  * Utility routines.
 | |
|  *
 | |
|  * Copyright (C) 2010 Denys Vlasenko
 | |
|  *
 | |
|  * Licensed under GPLv2 or later, see file LICENSE in this source tree.
 | |
|  */
 | |
| #include "libbb.h"
 | |
| 
 | |
| #define NEED_SHA512 (ENABLE_SHA512SUM || ENABLE_USE_BB_CRYPT_SHA)
 | |
| 
 | |
| /* gcc 4.2.1 optimizes rotr64 better with inline than with macro
 | |
|  * (for rotX32, there is no difference). Why? My guess is that
 | |
|  * macro requires clever common subexpression elimination heuristics
 | |
|  * in gcc, while inline basically forces it to happen.
 | |
|  */
 | |
| //#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
 | |
| static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n)
 | |
| {
 | |
| 	return (x << n) | (x >> (32 - n));
 | |
| }
 | |
| //#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
 | |
| static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n)
 | |
| {
 | |
| 	return (x >> n) | (x << (32 - n));
 | |
| }
 | |
| /* rotr64 in needed for sha512 only: */
 | |
| //#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
 | |
| static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n)
 | |
| {
 | |
| 	return (x >> n) | (x << (64 - n));
 | |
| }
 | |
| 
 | |
| /* rotl64 only used for sha3 currently */
 | |
| static ALWAYS_INLINE uint64_t rotl64(uint64_t x, unsigned n)
 | |
| {
 | |
| 	return (x << n) | (x >> (64 - n));
 | |
| }
 | |
| 
 | |
| /* Feed data through a temporary buffer.
 | |
|  * The internal buffer remembers previous data until it has 64
 | |
|  * bytes worth to pass on.
 | |
|  */
 | |
| static void FAST_FUNC common64_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
 | |
| {
 | |
| 	unsigned bufpos = ctx->total64 & 63;
 | |
| 
 | |
| 	ctx->total64 += len;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned remaining = 64 - bufpos;
 | |
| 		if (remaining > len)
 | |
| 			remaining = len;
 | |
| 		/* Copy data into aligned buffer */
 | |
| 		memcpy(ctx->wbuffer + bufpos, buffer, remaining);
 | |
| 		len -= remaining;
 | |
| 		buffer = (const char *)buffer + remaining;
 | |
| 		bufpos += remaining;
 | |
| 		/* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
 | |
| 		bufpos -= 64;
 | |
| 		if (bufpos != 0)
 | |
| 			break;
 | |
| 		/* Buffer is filled up, process it */
 | |
| 		ctx->process_block(ctx);
 | |
| 		/*bufpos = 0; - already is */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Process the remaining bytes in the buffer */
 | |
| static void FAST_FUNC common64_end(md5_ctx_t *ctx, int swap_needed)
 | |
| {
 | |
| 	unsigned bufpos = ctx->total64 & 63;
 | |
| 	/* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
 | |
| 	ctx->wbuffer[bufpos++] = 0x80;
 | |
| 
 | |
| 	/* This loop iterates either once or twice, no more, no less */
 | |
| 	while (1) {
 | |
| 		unsigned remaining = 64 - bufpos;
 | |
| 		memset(ctx->wbuffer + bufpos, 0, remaining);
 | |
| 		/* Do we have enough space for the length count? */
 | |
| 		if (remaining >= 8) {
 | |
| 			/* Store the 64-bit counter of bits in the buffer */
 | |
| 			uint64_t t = ctx->total64 << 3;
 | |
| 			if (swap_needed)
 | |
| 				t = bb_bswap_64(t);
 | |
| 			/* wbuffer is suitably aligned for this */
 | |
| 			*(bb__aliased_uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
 | |
| 		}
 | |
| 		ctx->process_block(ctx);
 | |
| 		if (remaining >= 8)
 | |
| 			break;
 | |
| 		bufpos = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Compute MD5 checksum of strings according to the
 | |
|  * definition of MD5 in RFC 1321 from April 1992.
 | |
|  *
 | |
|  * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
 | |
|  *
 | |
|  * Copyright (C) 1995-1999 Free Software Foundation, Inc.
 | |
|  * Copyright (C) 2001 Manuel Novoa III
 | |
|  * Copyright (C) 2003 Glenn L. McGrath
 | |
|  * Copyright (C) 2003 Erik Andersen
 | |
|  *
 | |
|  * Licensed under GPLv2 or later, see file LICENSE in this source tree.
 | |
|  */
 | |
| 
 | |
| /* 0: fastest, 3: smallest */
 | |
| #if CONFIG_MD5_SMALL < 0
 | |
| # define MD5_SMALL 0
 | |
| #elif CONFIG_MD5_SMALL > 3
 | |
| # define MD5_SMALL 3
 | |
| #else
 | |
| # define MD5_SMALL CONFIG_MD5_SMALL
 | |
| #endif
 | |
| 
 | |
| /* These are the four functions used in the four steps of the MD5 algorithm
 | |
|  * and defined in the RFC 1321.  The first function is a little bit optimized
 | |
|  * (as found in Colin Plumbs public domain implementation).
 | |
|  * #define FF(b, c, d) ((b & c) | (~b & d))
 | |
|  */
 | |
| #undef FF
 | |
| #undef FG
 | |
| #undef FH
 | |
| #undef FI
 | |
| #define FF(b, c, d) (d ^ (b & (c ^ d)))
 | |
| #define FG(b, c, d) FF(d, b, c)
 | |
| #define FH(b, c, d) (b ^ c ^ d)
 | |
| #define FI(b, c, d) (c ^ (b | ~d))
 | |
| 
 | |
| /* Hash a single block, 64 bytes long and 4-byte aligned */
 | |
| static void FAST_FUNC md5_process_block64(md5_ctx_t *ctx)
 | |
| {
 | |
| #if MD5_SMALL > 0
 | |
| 	/* Before we start, one word to the strange constants.
 | |
| 	   They are defined in RFC 1321 as
 | |
| 	   T[i] = (int)(2^32 * fabs(sin(i))), i=1..64
 | |
| 	 */
 | |
| 	static const uint32_t C_array[] = {
 | |
| 		/* round 1 */
 | |
| 		0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
 | |
| 		0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
 | |
| 		0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
 | |
| 		0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
 | |
| 		/* round 2 */
 | |
| 		0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
 | |
| 		0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
 | |
| 		0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
 | |
| 		0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
 | |
| 		/* round 3 */
 | |
| 		0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
 | |
| 		0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
 | |
| 		0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
 | |
| 		0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
 | |
| 		/* round 4 */
 | |
| 		0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
 | |
| 		0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
 | |
| 		0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
 | |
| 		0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
 | |
| 	};
 | |
| 	static const char P_array[] ALIGN1 = {
 | |
| # if MD5_SMALL > 1
 | |
| 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
 | |
| # endif
 | |
| 		1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
 | |
| 		5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
 | |
| 		0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9  /* 4 */
 | |
| 	};
 | |
| #endif
 | |
| 	uint32_t *words = (void*) ctx->wbuffer;
 | |
| 	uint32_t A = ctx->hash[0];
 | |
| 	uint32_t B = ctx->hash[1];
 | |
| 	uint32_t C = ctx->hash[2];
 | |
| 	uint32_t D = ctx->hash[3];
 | |
| 
 | |
| #if MD5_SMALL >= 2  /* 2 or 3 */
 | |
| 
 | |
| 	static const char S_array[] ALIGN1 = {
 | |
| 		7, 12, 17, 22,
 | |
| 		5, 9, 14, 20,
 | |
| 		4, 11, 16, 23,
 | |
| 		6, 10, 15, 21
 | |
| 	};
 | |
| 	const uint32_t *pc;
 | |
| 	const char *pp;
 | |
| 	const char *ps;
 | |
| 	int i;
 | |
| 	uint32_t temp;
 | |
| 
 | |
| 	if (BB_BIG_ENDIAN)
 | |
| 		for (i = 0; i < 16; i++)
 | |
| 			words[i] = SWAP_LE32(words[i]);
 | |
| 
 | |
| # if MD5_SMALL == 3
 | |
| 	pc = C_array;
 | |
| 	pp = P_array;
 | |
| 	ps = S_array - 4;
 | |
| 
 | |
| 	for (i = 0; i < 64; i++) {
 | |
| 		if ((i & 0x0f) == 0)
 | |
| 			ps += 4;
 | |
| 		temp = A;
 | |
| 		switch (i >> 4) {
 | |
| 		case 0:
 | |
| 			temp += FF(B, C, D);
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			temp += FG(B, C, D);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			temp += FH(B, C, D);
 | |
| 			break;
 | |
| 		default: /* case 3 */
 | |
| 			temp += FI(B, C, D);
 | |
| 		}
 | |
| 		temp += words[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| # else  /* MD5_SMALL == 2 */
 | |
| 	pc = C_array;
 | |
| 	pp = P_array;
 | |
| 	ps = S_array;
 | |
| 
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| 	ps += 4;
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| 	ps += 4;
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| 	ps += 4;
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| # endif
 | |
| 	/* Add checksum to the starting values */
 | |
| 	ctx->hash[0] += A;
 | |
| 	ctx->hash[1] += B;
 | |
| 	ctx->hash[2] += C;
 | |
| 	ctx->hash[3] += D;
 | |
| 
 | |
| #else  /* MD5_SMALL == 0 or 1 */
 | |
| 
 | |
| # if MD5_SMALL == 1
 | |
| 	const uint32_t *pc;
 | |
| 	const char *pp;
 | |
| 	int i;
 | |
| # endif
 | |
| 
 | |
| 	/* First round: using the given function, the context and a constant
 | |
| 	   the next context is computed.  Because the algorithm's processing
 | |
| 	   unit is a 32-bit word and it is determined to work on words in
 | |
| 	   little endian byte order we perhaps have to change the byte order
 | |
| 	   before the computation.  To reduce the work for the next steps
 | |
| 	   we save swapped words in WORDS array.  */
 | |
| # undef OP
 | |
| # define OP(a, b, c, d, s, T) \
 | |
| 	do { \
 | |
| 		a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \
 | |
| 		words++; \
 | |
| 		a = rotl32(a, s); \
 | |
| 		a += b; \
 | |
| 	} while (0)
 | |
| 
 | |
| 	/* Round 1 */
 | |
| # if MD5_SMALL == 1
 | |
| 	pc = C_array;
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		OP(A, B, C, D, 7, *pc++);
 | |
| 		OP(D, A, B, C, 12, *pc++);
 | |
| 		OP(C, D, A, B, 17, *pc++);
 | |
| 		OP(B, C, D, A, 22, *pc++);
 | |
| 	}
 | |
| # else
 | |
| 	OP(A, B, C, D, 7, 0xd76aa478);
 | |
| 	OP(D, A, B, C, 12, 0xe8c7b756);
 | |
| 	OP(C, D, A, B, 17, 0x242070db);
 | |
| 	OP(B, C, D, A, 22, 0xc1bdceee);
 | |
| 	OP(A, B, C, D, 7, 0xf57c0faf);
 | |
| 	OP(D, A, B, C, 12, 0x4787c62a);
 | |
| 	OP(C, D, A, B, 17, 0xa8304613);
 | |
| 	OP(B, C, D, A, 22, 0xfd469501);
 | |
| 	OP(A, B, C, D, 7, 0x698098d8);
 | |
| 	OP(D, A, B, C, 12, 0x8b44f7af);
 | |
| 	OP(C, D, A, B, 17, 0xffff5bb1);
 | |
| 	OP(B, C, D, A, 22, 0x895cd7be);
 | |
| 	OP(A, B, C, D, 7, 0x6b901122);
 | |
| 	OP(D, A, B, C, 12, 0xfd987193);
 | |
| 	OP(C, D, A, B, 17, 0xa679438e);
 | |
| 	OP(B, C, D, A, 22, 0x49b40821);
 | |
| # endif
 | |
| 	words -= 16;
 | |
| 
 | |
| 	/* For the second to fourth round we have the possibly swapped words
 | |
| 	   in WORDS.  Redefine the macro to take an additional first
 | |
| 	   argument specifying the function to use.  */
 | |
| # undef OP
 | |
| # define OP(f, a, b, c, d, k, s, T) \
 | |
| 	do { \
 | |
| 		a += f(b, c, d) + words[k] + T; \
 | |
| 		a = rotl32(a, s); \
 | |
| 		a += b; \
 | |
| 	} while (0)
 | |
| 
 | |
| 	/* Round 2 */
 | |
| # if MD5_SMALL == 1
 | |
| 	pp = P_array;
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
 | |
| 		OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
 | |
| 		OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
 | |
| 		OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
 | |
| 	}
 | |
| # else
 | |
| 	OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
 | |
| 	OP(FG, D, A, B, C, 6, 9, 0xc040b340);
 | |
| 	OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
 | |
| 	OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
 | |
| 	OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
 | |
| 	OP(FG, D, A, B, C, 10, 9, 0x02441453);
 | |
| 	OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
 | |
| 	OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
 | |
| 	OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
 | |
| 	OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
 | |
| 	OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
 | |
| 	OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
 | |
| 	OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
 | |
| 	OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
 | |
| 	OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
 | |
| 	OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
 | |
| # endif
 | |
| 
 | |
| 	/* Round 3 */
 | |
| # if MD5_SMALL == 1
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
 | |
| 		OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
 | |
| 		OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
 | |
| 		OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
 | |
| 	}
 | |
| # else
 | |
| 	OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
 | |
| 	OP(FH, D, A, B, C, 8, 11, 0x8771f681);
 | |
| 	OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
 | |
| 	OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
 | |
| 	OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
 | |
| 	OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
 | |
| 	OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
 | |
| 	OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
 | |
| 	OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
 | |
| 	OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
 | |
| 	OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
 | |
| 	OP(FH, B, C, D, A, 6, 23, 0x04881d05);
 | |
| 	OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
 | |
| 	OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
 | |
| 	OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
 | |
| 	OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
 | |
| # endif
 | |
| 
 | |
| 	/* Round 4 */
 | |
| # if MD5_SMALL == 1
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
 | |
| 		OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
 | |
| 		OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
 | |
| 		OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
 | |
| 	}
 | |
| # else
 | |
| 	OP(FI, A, B, C, D, 0, 6, 0xf4292244);
 | |
| 	OP(FI, D, A, B, C, 7, 10, 0x432aff97);
 | |
| 	OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
 | |
| 	OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
 | |
| 	OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
 | |
| 	OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
 | |
| 	OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
 | |
| 	OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
 | |
| 	OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
 | |
| 	OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
 | |
| 	OP(FI, C, D, A, B, 6, 15, 0xa3014314);
 | |
| 	OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
 | |
| 	OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
 | |
| 	OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
 | |
| 	OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
 | |
| 	OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
 | |
| # undef OP
 | |
| # endif
 | |
| 	/* Add checksum to the starting values */
 | |
| 	ctx->hash[0] += A;
 | |
| 	ctx->hash[1] += B;
 | |
| 	ctx->hash[2] += C;
 | |
| 	ctx->hash[3] += D;
 | |
| #endif
 | |
| }
 | |
| #undef FF
 | |
| #undef FG
 | |
| #undef FH
 | |
| #undef FI
 | |
| 
 | |
| /* Initialize structure containing state of computation.
 | |
|  * (RFC 1321, 3.3: Step 3)
 | |
|  */
 | |
| void FAST_FUNC md5_begin(md5_ctx_t *ctx)
 | |
| {
 | |
| 	ctx->hash[0] = 0x67452301;
 | |
| 	ctx->hash[1] = 0xefcdab89;
 | |
| 	ctx->hash[2] = 0x98badcfe;
 | |
| 	ctx->hash[3] = 0x10325476;
 | |
| 	ctx->total64 = 0;
 | |
| 	ctx->process_block = md5_process_block64;
 | |
| }
 | |
| 
 | |
| /* Used also for sha1 and sha256 */
 | |
| void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
 | |
| {
 | |
| 	common64_hash(ctx, buffer, len);
 | |
| }
 | |
| 
 | |
| /* Process the remaining bytes in the buffer and put result from CTX
 | |
|  * in first 16 bytes following RESBUF.  The result is always in little
 | |
|  * endian byte order, so that a byte-wise output yields to the wanted
 | |
|  * ASCII representation of the message digest.
 | |
|  */
 | |
| unsigned FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf)
 | |
| {
 | |
| 	/* MD5 stores total in LE, need to swap on BE arches: */
 | |
| 	common64_end(ctx, /*swap_needed:*/ BB_BIG_ENDIAN);
 | |
| 
 | |
| 	/* The MD5 result is in little endian byte order */
 | |
| 	if (BB_BIG_ENDIAN) {
 | |
| 		ctx->hash[0] = SWAP_LE32(ctx->hash[0]);
 | |
| 		ctx->hash[1] = SWAP_LE32(ctx->hash[1]);
 | |
| 		ctx->hash[2] = SWAP_LE32(ctx->hash[2]);
 | |
| 		ctx->hash[3] = SWAP_LE32(ctx->hash[3]);
 | |
| 	}
 | |
| 
 | |
| 	memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * 4);
 | |
| 	return sizeof(ctx->hash[0]) * 4;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * SHA1 part is:
 | |
|  * Copyright 2007 Rob Landley <rob@landley.net>
 | |
|  *
 | |
|  * Based on the public domain SHA-1 in C by Steve Reid <steve@edmweb.com>
 | |
|  * from http://www.mirrors.wiretapped.net/security/cryptography/hashes/sha1/
 | |
|  *
 | |
|  * Licensed under GPLv2, see file LICENSE in this source tree.
 | |
|  *
 | |
|  * ---------------------------------------------------------------------------
 | |
|  *
 | |
|  * SHA256 and SHA512 parts are:
 | |
|  * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
 | |
|  * Shrank by Denys Vlasenko.
 | |
|  *
 | |
|  * ---------------------------------------------------------------------------
 | |
|  *
 | |
|  * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c
 | |
|  * and replace "4096" with something like "2000 + time(NULL) % 2097",
 | |
|  * then rebuild and compare "shaNNNsum bigfile" results.
 | |
|  */
 | |
| 
 | |
| static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx)
 | |
| {
 | |
| 	static const uint32_t rconsts[] = {
 | |
| 		0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6
 | |
| 	};
 | |
| 	int i, j;
 | |
| 	int cnt;
 | |
| 	uint32_t W[16+16];
 | |
| 	uint32_t a, b, c, d, e;
 | |
| 
 | |
| 	/* On-stack work buffer frees up one register in the main loop
 | |
| 	 * which otherwise will be needed to hold ctx pointer */
 | |
| 	for (i = 0; i < 16; i++)
 | |
| 		W[i] = W[i+16] = SWAP_BE32(((uint32_t*)ctx->wbuffer)[i]);
 | |
| 
 | |
| 	a = ctx->hash[0];
 | |
| 	b = ctx->hash[1];
 | |
| 	c = ctx->hash[2];
 | |
| 	d = ctx->hash[3];
 | |
| 	e = ctx->hash[4];
 | |
| 
 | |
| 	/* 4 rounds of 20 operations each */
 | |
| 	cnt = 0;
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		j = 19;
 | |
| 		do {
 | |
| 			uint32_t work;
 | |
| 
 | |
| 			work = c ^ d;
 | |
| 			if (i == 0) {
 | |
| 				work = (work & b) ^ d;
 | |
| 				if (j <= 3)
 | |
| 					goto ge16;
 | |
| 				/* Used to do SWAP_BE32 here, but this
 | |
| 				 * requires ctx (see comment above) */
 | |
| 				work += W[cnt];
 | |
| 			} else {
 | |
| 				if (i == 2)
 | |
| 					work = ((b | c) & d) | (b & c);
 | |
| 				else /* i = 1 or 3 */
 | |
| 					work ^= b;
 | |
|  ge16:
 | |
| 				W[cnt] = W[cnt+16] = rotl32(W[cnt+13] ^ W[cnt+8] ^ W[cnt+2] ^ W[cnt], 1);
 | |
| 				work += W[cnt];
 | |
| 			}
 | |
| 			work += e + rotl32(a, 5) + rconsts[i];
 | |
| 
 | |
| 			/* Rotate by one for next time */
 | |
| 			e = d;
 | |
| 			d = c;
 | |
| 			c = /* b = */ rotl32(b, 30);
 | |
| 			b = a;
 | |
| 			a = work;
 | |
| 			cnt = (cnt + 1) & 15;
 | |
| 		} while (--j >= 0);
 | |
| 	}
 | |
| 
 | |
| 	ctx->hash[0] += a;
 | |
| 	ctx->hash[1] += b;
 | |
| 	ctx->hash[2] += c;
 | |
| 	ctx->hash[3] += d;
 | |
| 	ctx->hash[4] += e;
 | |
| }
 | |
| 
 | |
| /* Constants for SHA512 from FIPS 180-2:4.2.3.
 | |
|  * SHA256 constants from FIPS 180-2:4.2.2
 | |
|  * are the most significant half of first 64 elements
 | |
|  * of the same array.
 | |
|  */
 | |
| #undef K
 | |
| #if NEED_SHA512
 | |
| typedef uint64_t sha_K_int;
 | |
| # define K(v) v
 | |
| #else
 | |
| typedef uint32_t sha_K_int;
 | |
| # define K(v) (uint32_t)(v >> 32)
 | |
| #endif
 | |
| static const sha_K_int sha_K[] = {
 | |
| 	K(0x428a2f98d728ae22ULL), K(0x7137449123ef65cdULL),
 | |
| 	K(0xb5c0fbcfec4d3b2fULL), K(0xe9b5dba58189dbbcULL),
 | |
| 	K(0x3956c25bf348b538ULL), K(0x59f111f1b605d019ULL),
 | |
| 	K(0x923f82a4af194f9bULL), K(0xab1c5ed5da6d8118ULL),
 | |
| 	K(0xd807aa98a3030242ULL), K(0x12835b0145706fbeULL),
 | |
| 	K(0x243185be4ee4b28cULL), K(0x550c7dc3d5ffb4e2ULL),
 | |
| 	K(0x72be5d74f27b896fULL), K(0x80deb1fe3b1696b1ULL),
 | |
| 	K(0x9bdc06a725c71235ULL), K(0xc19bf174cf692694ULL),
 | |
| 	K(0xe49b69c19ef14ad2ULL), K(0xefbe4786384f25e3ULL),
 | |
| 	K(0x0fc19dc68b8cd5b5ULL), K(0x240ca1cc77ac9c65ULL),
 | |
| 	K(0x2de92c6f592b0275ULL), K(0x4a7484aa6ea6e483ULL),
 | |
| 	K(0x5cb0a9dcbd41fbd4ULL), K(0x76f988da831153b5ULL),
 | |
| 	K(0x983e5152ee66dfabULL), K(0xa831c66d2db43210ULL),
 | |
| 	K(0xb00327c898fb213fULL), K(0xbf597fc7beef0ee4ULL),
 | |
| 	K(0xc6e00bf33da88fc2ULL), K(0xd5a79147930aa725ULL),
 | |
| 	K(0x06ca6351e003826fULL), K(0x142929670a0e6e70ULL),
 | |
| 	K(0x27b70a8546d22ffcULL), K(0x2e1b21385c26c926ULL),
 | |
| 	K(0x4d2c6dfc5ac42aedULL), K(0x53380d139d95b3dfULL),
 | |
| 	K(0x650a73548baf63deULL), K(0x766a0abb3c77b2a8ULL),
 | |
| 	K(0x81c2c92e47edaee6ULL), K(0x92722c851482353bULL),
 | |
| 	K(0xa2bfe8a14cf10364ULL), K(0xa81a664bbc423001ULL),
 | |
| 	K(0xc24b8b70d0f89791ULL), K(0xc76c51a30654be30ULL),
 | |
| 	K(0xd192e819d6ef5218ULL), K(0xd69906245565a910ULL),
 | |
| 	K(0xf40e35855771202aULL), K(0x106aa07032bbd1b8ULL),
 | |
| 	K(0x19a4c116b8d2d0c8ULL), K(0x1e376c085141ab53ULL),
 | |
| 	K(0x2748774cdf8eeb99ULL), K(0x34b0bcb5e19b48a8ULL),
 | |
| 	K(0x391c0cb3c5c95a63ULL), K(0x4ed8aa4ae3418acbULL),
 | |
| 	K(0x5b9cca4f7763e373ULL), K(0x682e6ff3d6b2b8a3ULL),
 | |
| 	K(0x748f82ee5defb2fcULL), K(0x78a5636f43172f60ULL),
 | |
| 	K(0x84c87814a1f0ab72ULL), K(0x8cc702081a6439ecULL),
 | |
| 	K(0x90befffa23631e28ULL), K(0xa4506cebde82bde9ULL),
 | |
| 	K(0xbef9a3f7b2c67915ULL), K(0xc67178f2e372532bULL),
 | |
| #if NEED_SHA512  /* [64]+ are used for sha512 only */
 | |
| 	K(0xca273eceea26619cULL), K(0xd186b8c721c0c207ULL),
 | |
| 	K(0xeada7dd6cde0eb1eULL), K(0xf57d4f7fee6ed178ULL),
 | |
| 	K(0x06f067aa72176fbaULL), K(0x0a637dc5a2c898a6ULL),
 | |
| 	K(0x113f9804bef90daeULL), K(0x1b710b35131c471bULL),
 | |
| 	K(0x28db77f523047d84ULL), K(0x32caab7b40c72493ULL),
 | |
| 	K(0x3c9ebe0a15c9bebcULL), K(0x431d67c49c100d4cULL),
 | |
| 	K(0x4cc5d4becb3e42b6ULL), K(0x597f299cfc657e2aULL),
 | |
| 	K(0x5fcb6fab3ad6faecULL), K(0x6c44198c4a475817ULL),
 | |
| #endif
 | |
| };
 | |
| #undef K
 | |
| 
 | |
| #undef Ch
 | |
| #undef Maj
 | |
| #undef S0
 | |
| #undef S1
 | |
| #undef R0
 | |
| #undef R1
 | |
| 
 | |
| static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx)
 | |
| {
 | |
| 	unsigned t;
 | |
| 	uint32_t W[64], a, b, c, d, e, f, g, h;
 | |
| 	const uint32_t *words = (uint32_t*) ctx->wbuffer;
 | |
| 
 | |
| 	/* Operators defined in FIPS 180-2:4.1.2.  */
 | |
| #define Ch(x, y, z) ((x & y) ^ (~x & z))
 | |
| #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
 | |
| #define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
 | |
| #define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
 | |
| #define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
 | |
| #define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
 | |
| 
 | |
| 	/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */
 | |
| 	for (t = 0; t < 16; ++t)
 | |
| 		W[t] = SWAP_BE32(words[t]);
 | |
| 	for (/*t = 16*/; t < 64; ++t)
 | |
| 		W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
 | |
| 
 | |
| 	a = ctx->hash[0];
 | |
| 	b = ctx->hash[1];
 | |
| 	c = ctx->hash[2];
 | |
| 	d = ctx->hash[3];
 | |
| 	e = ctx->hash[4];
 | |
| 	f = ctx->hash[5];
 | |
| 	g = ctx->hash[6];
 | |
| 	h = ctx->hash[7];
 | |
| 
 | |
| 	/* The actual computation according to FIPS 180-2:6.2.2 step 3.  */
 | |
| 	for (t = 0; t < 64; ++t) {
 | |
| 		/* Need to fetch upper half of sha_K[t]
 | |
| 		 * (I hope compiler is clever enough to just fetch
 | |
| 		 * upper half)
 | |
| 		 */
 | |
| 		uint32_t K_t = NEED_SHA512 ? (sha_K[t] >> 32) : sha_K[t];
 | |
| 		uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t];
 | |
| 		uint32_t T2 = S0(a) + Maj(a, b, c);
 | |
| 		h = g;
 | |
| 		g = f;
 | |
| 		f = e;
 | |
| 		e = d + T1;
 | |
| 		d = c;
 | |
| 		c = b;
 | |
| 		b = a;
 | |
| 		a = T1 + T2;
 | |
| 	}
 | |
| #undef Ch
 | |
| #undef Maj
 | |
| #undef S0
 | |
| #undef S1
 | |
| #undef R0
 | |
| #undef R1
 | |
| 	/* Add the starting values of the context according to FIPS 180-2:6.2.2
 | |
| 	   step 4.  */
 | |
| 	ctx->hash[0] += a;
 | |
| 	ctx->hash[1] += b;
 | |
| 	ctx->hash[2] += c;
 | |
| 	ctx->hash[3] += d;
 | |
| 	ctx->hash[4] += e;
 | |
| 	ctx->hash[5] += f;
 | |
| 	ctx->hash[6] += g;
 | |
| 	ctx->hash[7] += h;
 | |
| }
 | |
| 
 | |
| #if NEED_SHA512
 | |
| static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx)
 | |
| {
 | |
| 	unsigned t;
 | |
| 	uint64_t W[80];
 | |
| 	/* On i386, having assignments here (not later as sha256 does)
 | |
| 	 * produces 99 bytes smaller code with gcc 4.3.1
 | |
| 	 */
 | |
| 	uint64_t a = ctx->hash[0];
 | |
| 	uint64_t b = ctx->hash[1];
 | |
| 	uint64_t c = ctx->hash[2];
 | |
| 	uint64_t d = ctx->hash[3];
 | |
| 	uint64_t e = ctx->hash[4];
 | |
| 	uint64_t f = ctx->hash[5];
 | |
| 	uint64_t g = ctx->hash[6];
 | |
| 	uint64_t h = ctx->hash[7];
 | |
| 	const uint64_t *words = (uint64_t*) ctx->wbuffer;
 | |
| 
 | |
| 	/* Operators defined in FIPS 180-2:4.1.2.  */
 | |
| #define Ch(x, y, z) ((x & y) ^ (~x & z))
 | |
| #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
 | |
| #define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
 | |
| #define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
 | |
| #define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
 | |
| #define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
 | |
| 
 | |
| 	/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2.  */
 | |
| 	for (t = 0; t < 16; ++t)
 | |
| 		W[t] = SWAP_BE64(words[t]);
 | |
| 	for (/*t = 16*/; t < 80; ++t)
 | |
| 		W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
 | |
| 
 | |
| 	/* The actual computation according to FIPS 180-2:6.3.2 step 3.  */
 | |
| 	for (t = 0; t < 80; ++t) {
 | |
| 		uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t];
 | |
| 		uint64_t T2 = S0(a) + Maj(a, b, c);
 | |
| 		h = g;
 | |
| 		g = f;
 | |
| 		f = e;
 | |
| 		e = d + T1;
 | |
| 		d = c;
 | |
| 		c = b;
 | |
| 		b = a;
 | |
| 		a = T1 + T2;
 | |
| 	}
 | |
| #undef Ch
 | |
| #undef Maj
 | |
| #undef S0
 | |
| #undef S1
 | |
| #undef R0
 | |
| #undef R1
 | |
| 	/* Add the starting values of the context according to FIPS 180-2:6.3.2
 | |
| 	   step 4.  */
 | |
| 	ctx->hash[0] += a;
 | |
| 	ctx->hash[1] += b;
 | |
| 	ctx->hash[2] += c;
 | |
| 	ctx->hash[3] += d;
 | |
| 	ctx->hash[4] += e;
 | |
| 	ctx->hash[5] += f;
 | |
| 	ctx->hash[6] += g;
 | |
| 	ctx->hash[7] += h;
 | |
| }
 | |
| #endif /* NEED_SHA512 */
 | |
| 
 | |
| void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
 | |
| {
 | |
| 	ctx->hash[0] = 0x67452301;
 | |
| 	ctx->hash[1] = 0xefcdab89;
 | |
| 	ctx->hash[2] = 0x98badcfe;
 | |
| 	ctx->hash[3] = 0x10325476;
 | |
| 	ctx->hash[4] = 0xc3d2e1f0;
 | |
| 	ctx->total64 = 0;
 | |
| 	ctx->process_block = sha1_process_block64;
 | |
| }
 | |
| 
 | |
| static const uint32_t init256[] = {
 | |
| 	0,
 | |
| 	0,
 | |
| 	0x6a09e667,
 | |
| 	0xbb67ae85,
 | |
| 	0x3c6ef372,
 | |
| 	0xa54ff53a,
 | |
| 	0x510e527f,
 | |
| 	0x9b05688c,
 | |
| 	0x1f83d9ab,
 | |
| 	0x5be0cd19,
 | |
| };
 | |
| #if NEED_SHA512
 | |
| static const uint32_t init512_lo[] = {
 | |
| 	0,
 | |
| 	0,
 | |
| 	0xf3bcc908,
 | |
| 	0x84caa73b,
 | |
| 	0xfe94f82b,
 | |
| 	0x5f1d36f1,
 | |
| 	0xade682d1,
 | |
| 	0x2b3e6c1f,
 | |
| 	0xfb41bd6b,
 | |
| 	0x137e2179,
 | |
| };
 | |
| #endif /* NEED_SHA512 */
 | |
| 
 | |
| // Note: SHA-384 is identical to SHA-512, except that initial hash values are
 | |
| // 0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17, 0x152fecd8f70e5939,
 | |
| // 0x67332667ffc00b31, 0x8eb44a8768581511, 0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4,
 | |
| // and the output is constructed by omitting last two 64-bit words of it.
 | |
| 
 | |
| /* Initialize structure containing state of computation.
 | |
|    (FIPS 180-2:5.3.2)  */
 | |
| void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
 | |
| {
 | |
| 	memcpy(&ctx->total64, init256, sizeof(init256));
 | |
| 	/*ctx->total64 = 0; - done by prepending two 32-bit zeros to init256 */
 | |
| 	ctx->process_block = sha256_process_block64;
 | |
| }
 | |
| 
 | |
| #if NEED_SHA512
 | |
| /* Initialize structure containing state of computation.
 | |
|    (FIPS 180-2:5.3.3)  */
 | |
| void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
 | |
| {
 | |
| 	int i;
 | |
| 	/* Two extra iterations zero out ctx->total64[2] */
 | |
| 	uint64_t *tp = ctx->total64;
 | |
| 	for (i = 0; i < 2+8; i++)
 | |
| 		tp[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
 | |
| 	/*ctx->total64[0] = ctx->total64[1] = 0; - already done */
 | |
| }
 | |
| 
 | |
| void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
 | |
| {
 | |
| 	unsigned bufpos = ctx->total64[0] & 127;
 | |
| 	unsigned remaining;
 | |
| 
 | |
| 	/* First increment the byte count.  FIPS 180-2 specifies the possible
 | |
| 	   length of the file up to 2^128 _bits_.
 | |
| 	   We compute the number of _bytes_ and convert to bits later.  */
 | |
| 	ctx->total64[0] += len;
 | |
| 	if (ctx->total64[0] < len)
 | |
| 		ctx->total64[1]++;
 | |
| # if 0
 | |
| 	remaining = 128 - bufpos;
 | |
| 
 | |
| 	/* Hash whole blocks */
 | |
| 	while (len >= remaining) {
 | |
| 		memcpy(ctx->wbuffer + bufpos, buffer, remaining);
 | |
| 		buffer = (const char *)buffer + remaining;
 | |
| 		len -= remaining;
 | |
| 		remaining = 128;
 | |
| 		bufpos = 0;
 | |
| 		sha512_process_block128(ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Save last, partial blosk */
 | |
| 	memcpy(ctx->wbuffer + bufpos, buffer, len);
 | |
| # else
 | |
| 	while (1) {
 | |
| 		remaining = 128 - bufpos;
 | |
| 		if (remaining > len)
 | |
| 			remaining = len;
 | |
| 		/* Copy data into aligned buffer */
 | |
| 		memcpy(ctx->wbuffer + bufpos, buffer, remaining);
 | |
| 		len -= remaining;
 | |
| 		buffer = (const char *)buffer + remaining;
 | |
| 		bufpos += remaining;
 | |
| 		/* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
 | |
| 		bufpos -= 128;
 | |
| 		if (bufpos != 0)
 | |
| 			break;
 | |
| 		/* Buffer is filled up, process it */
 | |
| 		sha512_process_block128(ctx);
 | |
| 		/*bufpos = 0; - already is */
 | |
| 	}
 | |
| # endif
 | |
| }
 | |
| #endif /* NEED_SHA512 */
 | |
| 
 | |
| /* Used also for sha256 */
 | |
| unsigned FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf)
 | |
| {
 | |
| 	unsigned hash_size;
 | |
| 
 | |
| 	/* SHA stores total in BE, need to swap on LE arches: */
 | |
| 	common64_end(ctx, /*swap_needed:*/ BB_LITTLE_ENDIAN);
 | |
| 
 | |
| 	hash_size = (ctx->process_block == sha1_process_block64) ? 5 : 8;
 | |
| 	/* This way we do not impose alignment constraints on resbuf: */
 | |
| 	if (BB_LITTLE_ENDIAN) {
 | |
| 		unsigned i;
 | |
| 		for (i = 0; i < hash_size; ++i)
 | |
| 			ctx->hash[i] = SWAP_BE32(ctx->hash[i]);
 | |
| 	}
 | |
| 	hash_size *= sizeof(ctx->hash[0]);
 | |
| 	memcpy(resbuf, ctx->hash, hash_size);
 | |
| 	return hash_size;
 | |
| }
 | |
| 
 | |
| #if NEED_SHA512
 | |
| unsigned FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf)
 | |
| {
 | |
| 	unsigned bufpos = ctx->total64[0] & 127;
 | |
| 
 | |
| 	/* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */
 | |
| 	ctx->wbuffer[bufpos++] = 0x80;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned remaining = 128 - bufpos;
 | |
| 		memset(ctx->wbuffer + bufpos, 0, remaining);
 | |
| 		if (remaining >= 16) {
 | |
| 			/* Store the 128-bit counter of bits in the buffer in BE format */
 | |
| 			uint64_t t;
 | |
| 			t = ctx->total64[0] << 3;
 | |
| 			t = SWAP_BE64(t);
 | |
| 			*(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 8]) = t;
 | |
| 			t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61);
 | |
| 			t = SWAP_BE64(t);
 | |
| 			*(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 16]) = t;
 | |
| 		}
 | |
| 		sha512_process_block128(ctx);
 | |
| 		if (remaining >= 16)
 | |
| 			break;
 | |
| 		bufpos = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (BB_LITTLE_ENDIAN) {
 | |
| 		unsigned i;
 | |
| 		for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i)
 | |
| 			ctx->hash[i] = SWAP_BE64(ctx->hash[i]);
 | |
| 	}
 | |
| 	memcpy(resbuf, ctx->hash, sizeof(ctx->hash));
 | |
| 	return sizeof(ctx->hash);
 | |
| }
 | |
| #endif /* NEED_SHA512 */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The Keccak sponge function, designed by Guido Bertoni, Joan Daemen,
 | |
|  * Michael Peeters and Gilles Van Assche. For more information, feedback or
 | |
|  * questions, please refer to our website: http://keccak.noekeon.org/
 | |
|  *
 | |
|  * Implementation by Ronny Van Keer,
 | |
|  * hereby denoted as "the implementer".
 | |
|  *
 | |
|  * To the extent possible under law, the implementer has waived all copyright
 | |
|  * and related or neighboring rights to the source code in this file.
 | |
|  * http://creativecommons.org/publicdomain/zero/1.0/
 | |
|  *
 | |
|  * Busybox modifications (C) Lauri Kasanen, under the GPLv2.
 | |
|  */
 | |
| 
 | |
| #if CONFIG_SHA3_SMALL < 0
 | |
| # define SHA3_SMALL 0
 | |
| #elif CONFIG_SHA3_SMALL > 1
 | |
| # define SHA3_SMALL 1
 | |
| #else
 | |
| # define SHA3_SMALL CONFIG_SHA3_SMALL
 | |
| #endif
 | |
| 
 | |
| #define OPTIMIZE_SHA3_FOR_32 0
 | |
| /*
 | |
|  * SHA3 can be optimized for 32-bit CPUs with bit-slicing:
 | |
|  * every 64-bit word of state[] can be split into two 32-bit words
 | |
|  * by even/odd bits. In this form, all rotations of sha3 round
 | |
|  * are 32-bit - and there are lots of them.
 | |
|  * However, it requires either splitting/combining state words
 | |
|  * before/after sha3 round (code does this now)
 | |
|  * or shuffling bits before xor'ing them into state and in sha3_end.
 | |
|  * Without shuffling, bit-slicing results in -130 bytes of code
 | |
|  * and marginal speedup (but of course it gives wrong result).
 | |
|  * With shuffling it works, but +260 code bytes, and slower.
 | |
|  * Disabled for now:
 | |
|  */
 | |
| #if 0 /* LONG_MAX == 0x7fffffff */
 | |
| # undef OPTIMIZE_SHA3_FOR_32
 | |
| # define OPTIMIZE_SHA3_FOR_32 1
 | |
| #endif
 | |
| 
 | |
| #if OPTIMIZE_SHA3_FOR_32
 | |
| /* This splits every 64-bit word into a pair of 32-bit words,
 | |
|  * even bits go into first word, odd bits go to second one.
 | |
|  * The conversion is done in-place.
 | |
|  */
 | |
| static void split_halves(uint64_t *state)
 | |
| {
 | |
| 	/* Credit: Henry S. Warren, Hacker's Delight, Addison-Wesley, 2002 */
 | |
| 	uint32_t *s32 = (uint32_t*)state;
 | |
| 	uint32_t t, x0, x1;
 | |
| 	int i;
 | |
| 	for (i = 24; i >= 0; --i) {
 | |
| 		x0 = s32[0];
 | |
| 		t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
 | |
| 		t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
 | |
| 		t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
 | |
| 		t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
 | |
| 		x1 = s32[1];
 | |
| 		t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
 | |
| 		t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
 | |
| 		t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
 | |
| 		t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
 | |
| 		*s32++ = (x0 & 0x0000FFFF) | (x1 << 16);
 | |
| 		*s32++ = (x0 >> 16) | (x1 & 0xFFFF0000);
 | |
| 	}
 | |
| }
 | |
| /* The reverse operation */
 | |
| static void combine_halves(uint64_t *state)
 | |
| {
 | |
| 	uint32_t *s32 = (uint32_t*)state;
 | |
| 	uint32_t t, x0, x1;
 | |
| 	int i;
 | |
| 	for (i = 24; i >= 0; --i) {
 | |
| 		x0 = s32[0];
 | |
| 		x1 = s32[1];
 | |
| 		t = (x0 & 0x0000FFFF) | (x1 << 16);
 | |
| 		x1 = (x0 >> 16) | (x1 & 0xFFFF0000);
 | |
| 		x0 = t;
 | |
| 		t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
 | |
| 		t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
 | |
| 		t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
 | |
| 		t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
 | |
| 		*s32++ = x0;
 | |
| 		t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
 | |
| 		t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
 | |
| 		t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
 | |
| 		t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
 | |
| 		*s32++ = x1;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * In the crypto literature this function is usually called Keccak-f().
 | |
|  */
 | |
| static void sha3_process_block72(uint64_t *state)
 | |
| {
 | |
| 	enum { NROUNDS = 24 };
 | |
| 
 | |
| #if OPTIMIZE_SHA3_FOR_32
 | |
| 	/*
 | |
| 	static const uint32_t IOTA_CONST_0[NROUNDS] = {
 | |
| 		0x00000001UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000000UL,
 | |
| 		0x00000001UL,
 | |
| 		0x00000000UL,
 | |
| 	};
 | |
| 	** bits are in lsb: 0101 0000 1111 0100 1111 0001
 | |
| 	*/
 | |
| 	uint32_t IOTA_CONST_0bits = (uint32_t)(0x0050f4f1);
 | |
| 	static const uint32_t IOTA_CONST_1[NROUNDS] = {
 | |
| 		0x00000000UL,
 | |
| 		0x00000089UL,
 | |
| 		0x8000008bUL,
 | |
| 		0x80008080UL,
 | |
| 		0x0000008bUL,
 | |
| 		0x00008000UL,
 | |
| 		0x80008088UL,
 | |
| 		0x80000082UL,
 | |
| 		0x0000000bUL,
 | |
| 		0x0000000aUL,
 | |
| 		0x00008082UL,
 | |
| 		0x00008003UL,
 | |
| 		0x0000808bUL,
 | |
| 		0x8000000bUL,
 | |
| 		0x8000008aUL,
 | |
| 		0x80000081UL,
 | |
| 		0x80000081UL,
 | |
| 		0x80000008UL,
 | |
| 		0x00000083UL,
 | |
| 		0x80008003UL,
 | |
| 		0x80008088UL,
 | |
| 		0x80000088UL,
 | |
| 		0x00008000UL,
 | |
| 		0x80008082UL,
 | |
| 	};
 | |
| 
 | |
| 	uint32_t *const s32 = (uint32_t*)state;
 | |
| 	unsigned round;
 | |
| 
 | |
| 	split_halves(state);
 | |
| 
 | |
| 	for (round = 0; round < NROUNDS; round++) {
 | |
| 		unsigned x;
 | |
| 
 | |
| 		/* Theta */
 | |
| 		{
 | |
| 			uint32_t BC[20];
 | |
| 			for (x = 0; x < 10; ++x) {
 | |
| 				BC[x+10] = BC[x] = s32[x]^s32[x+10]^s32[x+20]^s32[x+30]^s32[x+40];
 | |
| 			}
 | |
| 			for (x = 0; x < 10; x += 2) {
 | |
| 				uint32_t ta, tb;
 | |
| 				ta = BC[x+8] ^ rotl32(BC[x+3], 1);
 | |
| 				tb = BC[x+9] ^ BC[x+2];
 | |
| 				s32[x+0] ^= ta;
 | |
| 				s32[x+1] ^= tb;
 | |
| 				s32[x+10] ^= ta;
 | |
| 				s32[x+11] ^= tb;
 | |
| 				s32[x+20] ^= ta;
 | |
| 				s32[x+21] ^= tb;
 | |
| 				s32[x+30] ^= ta;
 | |
| 				s32[x+31] ^= tb;
 | |
| 				s32[x+40] ^= ta;
 | |
| 				s32[x+41] ^= tb;
 | |
| 			}
 | |
| 		}
 | |
| 		/* RhoPi */
 | |
| 		{
 | |
| 			uint32_t t0a,t0b, t1a,t1b;
 | |
| 			t1a = s32[1*2+0];
 | |
| 			t1b = s32[1*2+1];
 | |
| 
 | |
| #define RhoPi(PI_LANE, ROT_CONST) \
 | |
| 	t0a = s32[PI_LANE*2+0];\
 | |
| 	t0b = s32[PI_LANE*2+1];\
 | |
| 	if (ROT_CONST & 1) {\
 | |
| 		s32[PI_LANE*2+0] = rotl32(t1b, ROT_CONST/2+1);\
 | |
| 		s32[PI_LANE*2+1] = ROT_CONST == 1 ? t1a : rotl32(t1a, ROT_CONST/2+0);\
 | |
| 	} else {\
 | |
| 		s32[PI_LANE*2+0] = rotl32(t1a, ROT_CONST/2);\
 | |
| 		s32[PI_LANE*2+1] = rotl32(t1b, ROT_CONST/2);\
 | |
| 	}\
 | |
| 	t1a = t0a; t1b = t0b;
 | |
| 
 | |
| 			RhoPi(10, 1)
 | |
| 			RhoPi( 7, 3)
 | |
| 			RhoPi(11, 6)
 | |
| 			RhoPi(17,10)
 | |
| 			RhoPi(18,15)
 | |
| 			RhoPi( 3,21)
 | |
| 			RhoPi( 5,28)
 | |
| 			RhoPi(16,36)
 | |
| 			RhoPi( 8,45)
 | |
| 			RhoPi(21,55)
 | |
| 			RhoPi(24, 2)
 | |
| 			RhoPi( 4,14)
 | |
| 			RhoPi(15,27)
 | |
| 			RhoPi(23,41)
 | |
| 			RhoPi(19,56)
 | |
| 			RhoPi(13, 8)
 | |
| 			RhoPi(12,25)
 | |
| 			RhoPi( 2,43)
 | |
| 			RhoPi(20,62)
 | |
| 			RhoPi(14,18)
 | |
| 			RhoPi(22,39)
 | |
| 			RhoPi( 9,61)
 | |
| 			RhoPi( 6,20)
 | |
| 			RhoPi( 1,44)
 | |
| #undef RhoPi
 | |
| 		}
 | |
| 		/* Chi */
 | |
| 		for (x = 0; x <= 40;) {
 | |
| 			uint32_t BC0, BC1, BC2, BC3, BC4;
 | |
| 			BC0 = s32[x + 0*2];
 | |
| 			BC1 = s32[x + 1*2];
 | |
| 			BC2 = s32[x + 2*2];
 | |
| 			s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
 | |
| 			BC3 = s32[x + 3*2];
 | |
| 			s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
 | |
| 			BC4 = s32[x + 4*2];
 | |
| 			s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
 | |
| 			s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
 | |
| 			s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
 | |
| 			x++;
 | |
| 			BC0 = s32[x + 0*2];
 | |
| 			BC1 = s32[x + 1*2];
 | |
| 			BC2 = s32[x + 2*2];
 | |
| 			s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
 | |
| 			BC3 = s32[x + 3*2];
 | |
| 			s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
 | |
| 			BC4 = s32[x + 4*2];
 | |
| 			s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
 | |
| 			s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
 | |
| 			s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
 | |
| 			x += 9;
 | |
| 		}
 | |
| 		/* Iota */
 | |
| 		s32[0] ^= IOTA_CONST_0bits & 1;
 | |
| 		IOTA_CONST_0bits >>= 1;
 | |
| 		s32[1] ^= IOTA_CONST_1[round];
 | |
| 	}
 | |
| 
 | |
| 	combine_halves(state);
 | |
| #else
 | |
| 	/* Native 64-bit algorithm */
 | |
| 	static const uint16_t IOTA_CONST[NROUNDS] = {
 | |
| 		/* Elements should be 64-bit, but top half is always zero
 | |
| 		 * or 0x80000000. We encode 63rd bits in a separate word below.
 | |
| 		 * Same is true for 31th bits, which lets us use 16-bit table
 | |
| 		 * instead of 64-bit. The speed penalty is lost in the noise.
 | |
| 		 */
 | |
| 		0x0001,
 | |
| 		0x8082,
 | |
| 		0x808a,
 | |
| 		0x8000,
 | |
| 		0x808b,
 | |
| 		0x0001,
 | |
| 		0x8081,
 | |
| 		0x8009,
 | |
| 		0x008a,
 | |
| 		0x0088,
 | |
| 		0x8009,
 | |
| 		0x000a,
 | |
| 		0x808b,
 | |
| 		0x008b,
 | |
| 		0x8089,
 | |
| 		0x8003,
 | |
| 		0x8002,
 | |
| 		0x0080,
 | |
| 		0x800a,
 | |
| 		0x000a,
 | |
| 		0x8081,
 | |
| 		0x8080,
 | |
| 		0x0001,
 | |
| 		0x8008,
 | |
| 	};
 | |
| 	/* bit for CONST[0] is in msb: 0011 0011 0000 0111 1101 1101 */
 | |
| 	const uint32_t IOTA_CONST_bit63 = (uint32_t)(0x3307dd00);
 | |
| 	/* bit for CONST[0] is in msb: 0001 0110 0011 1000 0001 1011 */
 | |
| 	const uint32_t IOTA_CONST_bit31 = (uint32_t)(0x16381b00);
 | |
| 
 | |
| 	static const uint8_t ROT_CONST[24] = {
 | |
| 		1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
 | |
| 		27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44,
 | |
| 	};
 | |
| 	static const uint8_t PI_LANE[24] = {
 | |
| 		10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
 | |
| 		15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1,
 | |
| 	};
 | |
| 	/*static const uint8_t MOD5[10] = { 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, };*/
 | |
| 
 | |
| 	unsigned x;
 | |
| 	unsigned round;
 | |
| 
 | |
| 	if (BB_BIG_ENDIAN) {
 | |
| 		for (x = 0; x < 25; x++) {
 | |
| 			state[x] = SWAP_LE64(state[x]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (round = 0; round < NROUNDS; ++round) {
 | |
| 		/* Theta */
 | |
| 		{
 | |
| 			uint64_t BC[10];
 | |
| 			for (x = 0; x < 5; ++x) {
 | |
| 				BC[x + 5] = BC[x] = state[x]
 | |
| 					^ state[x + 5] ^ state[x + 10]
 | |
| 					^ state[x + 15]	^ state[x + 20];
 | |
| 			}
 | |
| 			/* Using 2x5 vector above eliminates the need to use
 | |
| 			 * BC[MOD5[x+N]] trick below to fetch BC[(x+N) % 5],
 | |
| 			 * and the code is a bit _smaller_.
 | |
| 			 */
 | |
| 			for (x = 0; x < 5; ++x) {
 | |
| 				uint64_t temp = BC[x + 4] ^ rotl64(BC[x + 1], 1);
 | |
| 				state[x] ^= temp;
 | |
| 				state[x + 5] ^= temp;
 | |
| 				state[x + 10] ^= temp;
 | |
| 				state[x + 15] ^= temp;
 | |
| 				state[x + 20] ^= temp;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Rho Pi */
 | |
| 		if (SHA3_SMALL) {
 | |
| 			uint64_t t1 = state[1];
 | |
| 			for (x = 0; x < 24; ++x) {
 | |
| 				uint64_t t0 = state[PI_LANE[x]];
 | |
| 				state[PI_LANE[x]] = rotl64(t1, ROT_CONST[x]);
 | |
| 				t1 = t0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Especially large benefit for 32-bit arch (75% faster):
 | |
| 			 * 64-bit rotations by non-constant usually are SLOW on those.
 | |
| 			 * We resort to unrolling here.
 | |
| 			 * This optimizes out PI_LANE[] and ROT_CONST[],
 | |
| 			 * but generates 300-500 more bytes of code.
 | |
| 			 */
 | |
| 			uint64_t t0;
 | |
| 			uint64_t t1 = state[1];
 | |
| #define RhoPi_twice(x) \
 | |
| 	t0 = state[PI_LANE[x  ]]; \
 | |
| 	state[PI_LANE[x  ]] = rotl64(t1, ROT_CONST[x  ]); \
 | |
| 	t1 = state[PI_LANE[x+1]]; \
 | |
| 	state[PI_LANE[x+1]] = rotl64(t0, ROT_CONST[x+1]);
 | |
| 			RhoPi_twice(0); RhoPi_twice(2);
 | |
| 			RhoPi_twice(4); RhoPi_twice(6);
 | |
| 			RhoPi_twice(8); RhoPi_twice(10);
 | |
| 			RhoPi_twice(12); RhoPi_twice(14);
 | |
| 			RhoPi_twice(16); RhoPi_twice(18);
 | |
| 			RhoPi_twice(20); RhoPi_twice(22);
 | |
| #undef RhoPi_twice
 | |
| 		}
 | |
| 		/* Chi */
 | |
| # if LONG_MAX > 0x7fffffff
 | |
| 		for (x = 0; x <= 20; x += 5) {
 | |
| 			uint64_t BC0, BC1, BC2, BC3, BC4;
 | |
| 			BC0 = state[x + 0];
 | |
| 			BC1 = state[x + 1];
 | |
| 			BC2 = state[x + 2];
 | |
| 			state[x + 0] = BC0 ^ ((~BC1) & BC2);
 | |
| 			BC3 = state[x + 3];
 | |
| 			state[x + 1] = BC1 ^ ((~BC2) & BC3);
 | |
| 			BC4 = state[x + 4];
 | |
| 			state[x + 2] = BC2 ^ ((~BC3) & BC4);
 | |
| 			state[x + 3] = BC3 ^ ((~BC4) & BC0);
 | |
| 			state[x + 4] = BC4 ^ ((~BC0) & BC1);
 | |
| 		}
 | |
| # else
 | |
| 		/* Reduced register pressure version
 | |
| 		 * for register-starved 32-bit arches
 | |
| 		 * (i386: -95 bytes, and it is _faster_)
 | |
| 		 */
 | |
| 		for (x = 0; x <= 40;) {
 | |
| 			uint32_t BC0, BC1, BC2, BC3, BC4;
 | |
| 			uint32_t *const s32 = (uint32_t*)state;
 | |
| #  if SHA3_SMALL
 | |
|  do_half:
 | |
| #  endif
 | |
| 			BC0 = s32[x + 0*2];
 | |
| 			BC1 = s32[x + 1*2];
 | |
| 			BC2 = s32[x + 2*2];
 | |
| 			s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
 | |
| 			BC3 = s32[x + 3*2];
 | |
| 			s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
 | |
| 			BC4 = s32[x + 4*2];
 | |
| 			s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
 | |
| 			s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
 | |
| 			s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
 | |
| 			x++;
 | |
| #  if SHA3_SMALL
 | |
| 			if (x & 1)
 | |
| 				goto do_half;
 | |
| 			x += 8;
 | |
| #  else
 | |
| 			BC0 = s32[x + 0*2];
 | |
| 			BC1 = s32[x + 1*2];
 | |
| 			BC2 = s32[x + 2*2];
 | |
| 			s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
 | |
| 			BC3 = s32[x + 3*2];
 | |
| 			s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
 | |
| 			BC4 = s32[x + 4*2];
 | |
| 			s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
 | |
| 			s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
 | |
| 			s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
 | |
| 			x += 9;
 | |
| #  endif
 | |
| 		}
 | |
| # endif /* long is 32-bit */
 | |
| 		/* Iota */
 | |
| 		state[0] ^= IOTA_CONST[round]
 | |
| 			| (uint32_t)((IOTA_CONST_bit31 << round) & 0x80000000)
 | |
| 			| (uint64_t)((IOTA_CONST_bit63 << round) & 0x80000000) << 32;
 | |
| 	}
 | |
| 
 | |
| 	if (BB_BIG_ENDIAN) {
 | |
| 		for (x = 0; x < 25; x++) {
 | |
| 			state[x] = SWAP_LE64(state[x]);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void FAST_FUNC sha3_begin(sha3_ctx_t *ctx)
 | |
| {
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 	/* SHA3-512, user can override */
 | |
| 	ctx->input_block_bytes = (1600 - 512*2) / 8; /* 72 bytes */
 | |
| }
 | |
| 
 | |
| void FAST_FUNC sha3_hash(sha3_ctx_t *ctx, const void *buffer, size_t len)
 | |
| {
 | |
| #if SHA3_SMALL
 | |
| 	const uint8_t *data = buffer;
 | |
| 	unsigned bufpos = ctx->bytes_queued;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned remaining = ctx->input_block_bytes - bufpos;
 | |
| 		if (remaining > len)
 | |
| 			remaining = len;
 | |
| 		len -= remaining;
 | |
| 		/* XOR data into buffer */
 | |
| 		while (remaining != 0) {
 | |
| 			uint8_t *buf = (uint8_t*)ctx->state;
 | |
| 			buf[bufpos] ^= *data++;
 | |
| 			bufpos++;
 | |
| 			remaining--;
 | |
| 		}
 | |
| 		/* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
 | |
| 		bufpos -= ctx->input_block_bytes;
 | |
| 		if (bufpos != 0)
 | |
| 			break;
 | |
| 		/* Buffer is filled up, process it */
 | |
| 		sha3_process_block72(ctx->state);
 | |
| 		/*bufpos = 0; - already is */
 | |
| 	}
 | |
| 	ctx->bytes_queued = bufpos + ctx->input_block_bytes;
 | |
| #else
 | |
| 	/* +50 bytes code size, but a bit faster because of long-sized XORs */
 | |
| 	const uint8_t *data = buffer;
 | |
| 	unsigned bufpos = ctx->bytes_queued;
 | |
| 	unsigned iblk_bytes = ctx->input_block_bytes;
 | |
| 
 | |
| 	/* If already data in queue, continue queuing first */
 | |
| 	if (bufpos != 0) {
 | |
| 		while (len != 0) {
 | |
| 			uint8_t *buf = (uint8_t*)ctx->state;
 | |
| 			buf[bufpos] ^= *data++;
 | |
| 			len--;
 | |
| 			bufpos++;
 | |
| 			if (bufpos == iblk_bytes) {
 | |
| 				bufpos = 0;
 | |
| 				goto do_block;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Absorb complete blocks */
 | |
| 	while (len >= iblk_bytes) {
 | |
| 		/* XOR data onto beginning of state[].
 | |
| 		 * We try to be efficient - operate one word at a time, not byte.
 | |
| 		 * Careful wrt unaligned access: can't just use "*(long*)data"!
 | |
| 		 */
 | |
| 		unsigned count = iblk_bytes / sizeof(long);
 | |
| 		long *buf = (long*)ctx->state;
 | |
| 		do {
 | |
| 			long v;
 | |
| 			move_from_unaligned_long(v, (long*)data);
 | |
| 			*buf++ ^= v;
 | |
| 			data += sizeof(long);
 | |
| 		} while (--count);
 | |
| 		len -= iblk_bytes;
 | |
|  do_block:
 | |
| 		sha3_process_block72(ctx->state);
 | |
| 	}
 | |
| 
 | |
| 	/* Queue remaining data bytes */
 | |
| 	while (len != 0) {
 | |
| 		uint8_t *buf = (uint8_t*)ctx->state;
 | |
| 		buf[bufpos] ^= *data++;
 | |
| 		bufpos++;
 | |
| 		len--;
 | |
| 	}
 | |
| 
 | |
| 	ctx->bytes_queued = bufpos;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| unsigned FAST_FUNC sha3_end(sha3_ctx_t *ctx, void *resbuf)
 | |
| {
 | |
| 	/* Padding */
 | |
| 	uint8_t *buf = (uint8_t*)ctx->state;
 | |
| 	/*
 | |
| 	 * Keccak block padding is: add 1 bit after last bit of input,
 | |
| 	 * then add zero bits until the end of block, and add the last 1 bit
 | |
| 	 * (the last bit in the block) - the "10*1" pattern.
 | |
| 	 * SHA3 standard appends additional two bits, 01,  before that padding:
 | |
| 	 *
 | |
| 	 * SHA3-224(M) = KECCAK[448](M||01, 224)
 | |
| 	 * SHA3-256(M) = KECCAK[512](M||01, 256)
 | |
| 	 * SHA3-384(M) = KECCAK[768](M||01, 384)
 | |
| 	 * SHA3-512(M) = KECCAK[1024](M||01, 512)
 | |
| 	 * (M is the input, || is bit concatenation)
 | |
| 	 *
 | |
| 	 * The 6 below contains 01 "SHA3" bits and the first 1 "Keccak" bit:
 | |
| 	 */
 | |
| 	buf[ctx->bytes_queued]          ^= 6; /* bit pattern 00000110 */
 | |
| 	buf[ctx->input_block_bytes - 1] ^= 0x80;
 | |
| 
 | |
| 	sha3_process_block72(ctx->state);
 | |
| 
 | |
| 	/* Output */
 | |
| 	memcpy(resbuf, ctx->state, 64);
 | |
| 	return 64;
 | |
| }
 | 
