/* * DHD Linux header file - contains private structure definition of the Linux specific layer * * Copyright (C) 1999-2019, Broadcom. * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * * <> * * $Id: dhd_linux_priv.h 815919 2019-04-22 09:06:50Z $ */ #ifndef __DHD_LINUX_PRIV_H__ #define __DHD_LINUX_PRIV_H__ #include #ifdef SHOW_LOGTRACE #include #include #endif /* SHOW_LOGTRACE */ #include #include #ifdef CONFIG_COMPAT #include #endif /* CONFIG COMPAT */ #include #include #include #include #include #include #ifdef PCIE_FULL_DONGLE #include #include #endif /* PCIE_FULL_DONGLE */ /* * Do not include this header except for the dhd_linux.c dhd_linux_sysfs.c * Local private structure (extension of pub) */ typedef struct dhd_info { #if defined(WL_WIRELESS_EXT) wl_iw_t iw; /* wireless extensions state (must be first) */ #endif /* defined(WL_WIRELESS_EXT) */ dhd_pub_t pub; /* for supporting multiple interfaces. * static_ifs hold the net ifaces without valid FW IF */ dhd_if_t *iflist[DHD_MAX_IFS + DHD_MAX_STATIC_IFS]; wifi_adapter_info_t *adapter; /* adapter information, interrupt, fw path etc. */ char fw_path[PATH_MAX]; /* path to firmware image */ char nv_path[PATH_MAX]; /* path to nvram vars file */ char clm_path[PATH_MAX]; /* path to clm vars file */ char conf_path[PATH_MAX]; /* path to config vars file */ #ifdef DHD_UCODE_DOWNLOAD char uc_path[PATH_MAX]; /* path to ucode image */ #endif /* DHD_UCODE_DOWNLOAD */ /* serialize dhd iovars */ struct mutex dhd_iovar_mutex; struct semaphore proto_sem; #ifdef PROP_TXSTATUS spinlock_t wlfc_spinlock; #ifdef BCMDBUS ulong wlfc_lock_flags; ulong wlfc_pub_lock_flags; #endif /* BCMDBUS */ #endif /* PROP_TXSTATUS */ wait_queue_head_t ioctl_resp_wait; wait_queue_head_t d3ack_wait; wait_queue_head_t dhd_bus_busy_state_wait; wait_queue_head_t dmaxfer_wait; uint32 default_wd_interval; timer_list_compat_t timer; bool wd_timer_valid; struct tasklet_struct tasklet; spinlock_t sdlock; spinlock_t txqlock; spinlock_t dhd_lock; #ifdef BCMDBUS ulong txqlock_flags; #else struct semaphore sdsem; tsk_ctl_t thr_dpc_ctl; tsk_ctl_t thr_wdt_ctl; #endif /* BCMDBUS */ tsk_ctl_t thr_rxf_ctl; spinlock_t rxf_lock; bool rxthread_enabled; /* Wakelocks */ #if defined(CONFIG_HAS_WAKELOCK) struct wake_lock wl_wifi; /* Wifi wakelock */ struct wake_lock wl_rxwake; /* Wifi rx wakelock */ struct wake_lock wl_ctrlwake; /* Wifi ctrl wakelock */ struct wake_lock wl_wdwake; /* Wifi wd wakelock */ struct wake_lock wl_evtwake; /* Wifi event wakelock */ struct wake_lock wl_pmwake; /* Wifi pm handler wakelock */ struct wake_lock wl_txflwake; /* Wifi tx flow wakelock */ #ifdef BCMPCIE_OOB_HOST_WAKE struct wake_lock wl_intrwake; /* Host wakeup wakelock */ #endif /* BCMPCIE_OOB_HOST_WAKE */ #ifdef DHD_USE_SCAN_WAKELOCK struct wake_lock wl_scanwake; /* Wifi scan wakelock */ #endif /* DHD_USE_SCAN_WAKELOCK */ #endif /* CONFIG_HAS_WAKELOCK */ /* net_device interface lock, prevent race conditions among net_dev interface * calls and wifi_on or wifi_off */ struct mutex dhd_net_if_mutex; struct mutex dhd_suspend_mutex; #if defined(PKT_FILTER_SUPPORT) && defined(APF) struct mutex dhd_apf_mutex; #endif /* PKT_FILTER_SUPPORT && APF */ spinlock_t wakelock_spinlock; spinlock_t wakelock_evt_spinlock; uint32 wakelock_counter; int wakelock_wd_counter; int wakelock_rx_timeout_enable; int wakelock_ctrl_timeout_enable; bool waive_wakelock; uint32 wakelock_before_waive; /* Thread to issue ioctl for multicast */ wait_queue_head_t ctrl_wait; atomic_t pend_8021x_cnt; dhd_attach_states_t dhd_state; #ifdef SHOW_LOGTRACE dhd_event_log_t event_data; #endif /* SHOW_LOGTRACE */ #if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) struct early_suspend early_suspend; #endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */ #ifdef ARP_OFFLOAD_SUPPORT u32 pend_ipaddr; #endif /* ARP_OFFLOAD_SUPPORT */ #ifdef DHDTCPACK_SUPPRESS spinlock_t tcpack_lock; #endif /* DHDTCPACK_SUPPRESS */ #ifdef FIX_CPU_MIN_CLOCK bool cpufreq_fix_status; struct mutex cpufreq_fix; struct pm_qos_request dhd_cpu_qos; #ifdef FIX_BUS_MIN_CLOCK struct pm_qos_request dhd_bus_qos; #endif /* FIX_BUS_MIN_CLOCK */ #endif /* FIX_CPU_MIN_CLOCK */ void *dhd_deferred_wq; #ifdef DEBUG_CPU_FREQ struct notifier_block freq_trans; int __percpu *new_freq; #endif // endif unsigned int unit; struct notifier_block pm_notifier; #ifdef DHD_PSTA uint32 psta_mode; /* PSTA or PSR */ #endif /* DHD_PSTA */ #ifdef DHD_WET uint32 wet_mode; #endif /* DHD_WET */ #ifdef DHD_DEBUG dhd_dump_t *dump; struct timer_list join_timer; u32 join_timeout_val; bool join_timer_active; uint scan_time_count; struct timer_list scan_timer; bool scan_timer_active; #endif // endif #if defined(DHD_LB) /* CPU Load Balance dynamic CPU selection */ /* Variable that tracks the currect CPUs available for candidacy */ cpumask_var_t cpumask_curr_avail; /* Primary and secondary CPU mask */ cpumask_var_t cpumask_primary, cpumask_secondary; /* configuration */ cpumask_var_t cpumask_primary_new, cpumask_secondary_new; /* temp */ struct notifier_block cpu_notifier; /* Tasklet to handle Tx Completion packet freeing */ struct tasklet_struct tx_compl_tasklet; atomic_t tx_compl_cpu; /* Tasklet to handle RxBuf Post during Rx completion */ struct tasklet_struct rx_compl_tasklet; atomic_t rx_compl_cpu; /* Napi struct for handling rx packet sendup. Packets are removed from * H2D RxCompl ring and placed into rx_pend_queue. rx_pend_queue is then * appended to rx_napi_queue (w/ lock) and the rx_napi_struct is scheduled * to run to rx_napi_cpu. */ struct sk_buff_head rx_pend_queue ____cacheline_aligned; struct sk_buff_head rx_napi_queue ____cacheline_aligned; struct napi_struct rx_napi_struct ____cacheline_aligned; atomic_t rx_napi_cpu; /* cpu on which the napi is dispatched */ struct net_device *rx_napi_netdev; /* netdev of primary interface */ struct work_struct rx_napi_dispatcher_work; struct work_struct tx_compl_dispatcher_work; struct work_struct tx_dispatcher_work; struct work_struct rx_compl_dispatcher_work; /* Number of times DPC Tasklet ran */ uint32 dhd_dpc_cnt; /* Number of times NAPI processing got scheduled */ uint32 napi_sched_cnt; /* Number of times NAPI processing ran on each available core */ uint32 *napi_percpu_run_cnt; /* Number of times RX Completions got scheduled */ uint32 rxc_sched_cnt; /* Number of times RX Completion ran on each available core */ uint32 *rxc_percpu_run_cnt; /* Number of times TX Completions got scheduled */ uint32 txc_sched_cnt; /* Number of times TX Completions ran on each available core */ uint32 *txc_percpu_run_cnt; /* CPU status */ /* Number of times each CPU came online */ uint32 *cpu_online_cnt; /* Number of times each CPU went offline */ uint32 *cpu_offline_cnt; /* Number of times TX processing run on each core */ uint32 *txp_percpu_run_cnt; /* Number of times TX start run on each core */ uint32 *tx_start_percpu_run_cnt; /* Tx load balancing */ /* TODO: Need to see if batch processing is really required in case of TX * processing. In case of RX the Dongle can send a bunch of rx completions, * hence we took a 3 queue approach * enque - adds the skbs to rx_pend_queue * dispatch - uses a lock and adds the list of skbs from pend queue to * napi queue * napi processing - copies the pend_queue into a local queue and works * on it. * But for TX its going to be 1 skb at a time, so we are just thinking * of using only one queue and use the lock supported skb queue functions * to add and process it. If its in-efficient we'll re-visit the queue * design. */ /* When the NET_TX tries to send a TX packet put it into tx_pend_queue */ /* struct sk_buff_head tx_pend_queue ____cacheline_aligned; */ /* * From the Tasklet that actually sends out data * copy the list tx_pend_queue into tx_active_queue. There by we need * to spinlock to only perform the copy the rest of the code ie to * construct the tx_pend_queue and the code to process tx_active_queue * can be lockless. The concept is borrowed as is from RX processing */ /* struct sk_buff_head tx_active_queue ____cacheline_aligned; */ /* Control TXP in runtime, enable by default */ atomic_t lb_txp_active; /* Control RXP in runtime, enable by default */ atomic_t lb_rxp_active; /* * When the NET_TX tries to send a TX packet put it into tx_pend_queue * For now, the processing tasklet will also direcly operate on this * queue */ struct sk_buff_head tx_pend_queue ____cacheline_aligned; /* Control RXP in runtime, enable by default */ /* cpu on which the DHD Tx is happenning */ atomic_t tx_cpu; /* CPU on which the Network stack is calling the DHD's xmit function */ atomic_t net_tx_cpu; /* Tasklet context from which the DHD's TX processing happens */ struct tasklet_struct tx_tasklet; /* * Consumer Histogram - NAPI RX Packet processing * ----------------------------------------------- * On Each CPU, when the NAPI RX Packet processing call back was invoked * how many packets were processed is captured in this data structure. * Now its difficult to capture the "exact" number of packets processed. * So considering the packet counter to be a 32 bit one, we have a * bucket with 8 bins (2^1, 2^2 ... 2^8). The "number" of packets * processed is rounded off to the next power of 2 and put in the * approriate "bin" the value in the bin gets incremented. * For example, assume that in CPU 1 if NAPI Rx runs 3 times * and the packet count processed is as follows (assume the bin counters are 0) * iteration 1 - 10 (the bin counter 2^4 increments to 1) * iteration 2 - 30 (the bin counter 2^5 increments to 1) * iteration 3 - 15 (the bin counter 2^4 increments by 1 to become 2) */ uint32 *napi_rx_hist[HIST_BIN_SIZE]; uint32 *txc_hist[HIST_BIN_SIZE]; uint32 *rxc_hist[HIST_BIN_SIZE]; #endif /* DHD_LB */ #if defined(DNGL_AXI_ERROR_LOGGING) && defined(DHD_USE_WQ_FOR_DNGL_AXI_ERROR) struct work_struct axi_error_dispatcher_work; #endif /* DNGL_AXI_ERROR_LOGGING && DHD_USE_WQ_FOR_DNGL_AXI_ERROR */ #ifdef SHOW_LOGTRACE #ifdef DHD_USE_KTHREAD_FOR_LOGTRACE tsk_ctl_t thr_logtrace_ctl; #else struct delayed_work event_log_dispatcher_work; #endif /* DHD_USE_KTHREAD_FOR_LOGTRACE */ #endif /* SHOW_LOGTRACE */ #if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) #endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */ struct kobject dhd_kobj; struct kobject dhd_conf_file_kobj; struct timer_list timesync_timer; #if defined(BT_OVER_SDIO) char btfw_path[PATH_MAX]; #endif /* defined (BT_OVER_SDIO) */ #ifdef WL_MONITOR struct net_device *monitor_dev; /* monitor pseudo device */ struct sk_buff *monitor_skb; uint monitor_len; uint monitor_type; /* monitor pseudo device */ #endif /* WL_MONITOR */ #if defined(BT_OVER_SDIO) struct mutex bus_user_lock; /* lock for sdio bus apis shared between WLAN & BT */ int bus_user_count; /* User counts of sdio bus shared between WLAN & BT */ #endif /* BT_OVER_SDIO */ #ifdef SHOW_LOGTRACE struct sk_buff_head evt_trace_queue ____cacheline_aligned; #endif // endif #ifdef DHD_PCIE_NATIVE_RUNTIMEPM struct workqueue_struct *tx_wq; struct workqueue_struct *rx_wq; #endif /* DHD_PCIE_NATIVE_RUNTIMEPM */ #ifdef DHD_DEBUG_UART bool duart_execute; #endif /* DHD_DEBUG_UART */ struct mutex logdump_lock; /* indicates mem_dump was scheduled as work queue or called directly */ bool scheduled_memdump; struct work_struct dhd_hang_process_work; #ifdef DHD_HP2P spinlock_t hp2p_lock; #endif /* DHD_HP2P */ } dhd_info_t; extern int dhd_sysfs_init(dhd_info_t *dhd); extern void dhd_sysfs_exit(dhd_info_t *dhd); extern void dhd_dbg_ring_proc_create(dhd_pub_t *dhdp); extern void dhd_dbg_ring_proc_destroy(dhd_pub_t *dhdp); int __dhd_sendpkt(dhd_pub_t *dhdp, int ifidx, void *pktbuf); #if defined(DHD_LB) #if defined(DHD_LB_TXP) int dhd_lb_sendpkt(dhd_info_t *dhd, struct net_device *net, int ifidx, void *skb); void dhd_tx_dispatcher_work(struct work_struct * work); void dhd_tx_dispatcher_fn(dhd_pub_t *dhdp); void dhd_lb_tx_dispatch(dhd_pub_t *dhdp); void dhd_lb_tx_handler(unsigned long data); #endif /* DHD_LB_TXP */ #if defined(DHD_LB_RXP) int dhd_napi_poll(struct napi_struct *napi, int budget); void dhd_rx_napi_dispatcher_fn(struct work_struct * work); void dhd_lb_rx_napi_dispatch(dhd_pub_t *dhdp); void dhd_lb_rx_pkt_enqueue(dhd_pub_t *dhdp, void *pkt, int ifidx); #endif /* DHD_LB_RXP */ void dhd_lb_set_default_cpus(dhd_info_t *dhd); void dhd_cpumasks_deinit(dhd_info_t *dhd); int dhd_cpumasks_init(dhd_info_t *dhd); void dhd_select_cpu_candidacy(dhd_info_t *dhd); #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) int dhd_cpu_startup_callback(unsigned int cpu); int dhd_cpu_teardown_callback(unsigned int cpu); #else int dhd_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu); #endif /* LINUX_VERSION_CODE < 4.10.0 */ int dhd_register_cpuhp_callback(dhd_info_t *dhd); int dhd_unregister_cpuhp_callback(dhd_info_t *dhd); #if defined(DHD_LB_TXC) void dhd_lb_tx_compl_dispatch(dhd_pub_t *dhdp); #endif /* DHD_LB_TXC */ #if defined(DHD_LB_RXC) void dhd_lb_rx_compl_dispatch(dhd_pub_t *dhdp); void dhd_rx_compl_dispatcher_fn(struct work_struct * work); #endif /* DHD_LB_RXC */ #endif /* DHD_LB */ #if defined(DHD_LB_IRQSET) || defined(DHD_CONTROL_PCIE_CPUCORE_WIFI_TURNON) void dhd_irq_set_affinity(dhd_pub_t *dhdp, const struct cpumask *cpumask); #endif /* DHD_LB_IRQSET || DHD_CONTROL_PCIE_CPUCORE_WIFI_TURNON */ #endif /* __DHD_LINUX_PRIV_H__ */